We survey some recent results related to free boundary problems of incompressible ideal magnetohydrodynamics equations, and present the main ideas in the proofs of the ill-posedness in 2D when the Taylor sign condition is violated given [
Citation: Chengchun Hao, Tao Luo. Some results on free boundary problems of incompressible ideal magnetohydrodynamics equations[J]. Electronic Research Archive, 2022, 30(2): 404-424. doi: 10.3934/era.2022021
We survey some recent results related to free boundary problems of incompressible ideal magnetohydrodynamics equations, and present the main ideas in the proofs of the ill-posedness in 2D when the Taylor sign condition is violated given [
[1] | C. Hao, T. Luo, Ill-posedness of free boundary problem of the incompressible ideal MHD, Commun. Math. Phys., 376 (2020), 259–286. https://doi.org/10.1007/s00220-019-03614-1 doi: 10.1007/s00220-019-03614-1 |
[2] | C. Hao, T. Luo, Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations, J. Differential Equations, 299 (2021), 542–601. https://doi.org/10.1016/j.jde.2021.07.030 doi: 10.1016/j.jde.2021.07.030 |
[3] | C. Hao, T. Luo, A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 212 (2014), 805–847. https://doi.org/10.1007/s00205-013-0718-5 doi: 10.1007/s00205-013-0718-5 |
[4] | S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math., 130 (1997), 39–72. https://doi.org/10.1007/s002220050177 doi: 10.1007/s002220050177 |
[5] | S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445–495. https://doi.org/10.1090/S0894-0347-99-00290-8 doi: 10.1090/S0894-0347-99-00290-8 |
[6] | T. Alazard, N. Burq, C. Zuily, On the water waves equations with surface tension, Duke Math. J., 158 (2011), 413–499. https://doi.org/10.1215/00127094-1345653 doi: 10.1215/00127094-1345653 |
[7] | T. Alazard, N. Burq, C. Zuily, On the Cauchy problem for gravity water waves, Invent. Math., 198 (2014), 71–163. https://doi.org/10.1007/s00222-014-0498-z doi: 10.1007/s00222-014-0498-z |
[8] | D. M. Ambrose, N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., 58 (2005), 1287–1315. https://doi.org/10.1002/cpa.20085 doi: 10.1002/cpa.20085 |
[9] | K. Beyer, M. Günther, On the Cauchy problem for a capillary drop, I. Irrotational motion, Math. Methods Appl. Sci., 21 (1998), 1149–1183. https://doi.org/10.1002/(SICI)1099-1476(199808)21:12<1149::AID-MMA990>3.0.CO;2-C doi: 10.1002/(SICI)1099-1476(199808)21:12<1149::AID-MMA990>3.0.CO;2-C |
[10] | H. Christianson, V. M. Hur, G. Staffilani, Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations, 35 (2010), 2195–2252. https://doi.org/10.1080/03605301003758351 doi: 10.1080/03605301003758351 |
[11] | D. Christodoulou, H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math., 53 (2000), 1536–1602. https://doi.org/10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q doi: 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q |
[12] | D. Coutand, S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829–930. https://doi.org/10.1090/S0894-0347-07-00556-5 doi: 10.1090/S0894-0347-07-00556-5 |
[13] | D. G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed, Comm. Partial Differential Equations, 12 (1987), 1175–1201. https://doi.org/10.1080/03605308708820523 doi: 10.1080/03605308708820523 |
[14] | D. Lannes, The Water Waves Problem: Mathematical Analysis and Asympototics, Mathematical Surveys and Monographs, 188, American Mathematical Society, Providence, RI, 2013. https://doi.org/10.1090/surv/188 |
[15] | H. Lindblad, K. H. Nordgren, A priori estimates for the motion of a self-gravitating incompressible liquid with free surface boundary, J. Hyperbolic Differ. Equ., 6 (2009), 407–432. https://doi.org/10.1142/S021989160900185X doi: 10.1142/S021989160900185X |
[16] | T. Poyferre, Q.-H. Nguyen, A paradifferential reduction for the gravity-capillary waves system at low regularity and applications, Bull. Soc. Math. France, 145 (2017), 643–710. https://doi.org/10.24033/bsmf.2750 doi: 10.24033/bsmf.2750 |
[17] | J. Shatah, C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008), 698–744. https://doi.org/10.1002/cpa.20213 doi: 10.1002/cpa.20213 |
[18] | Y. Sun, W. Wang, Z. Zhang, Well-posedness of the plasma-vacuum interface problem for ideal incompressible MHD, Arch. Ration. Mech. Anal., 234 (2019), 81–113. https://doi.org/10.1007/s00205-019-01386-5 doi: 10.1007/s00205-019-01386-5 |
[19] | P. Zhang, Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877–940. https://doi.org/10.1002/cpa.20226 doi: 10.1002/cpa.20226 |
[20] | Y. Trakhinin, Local existence for the free boundary problem for the non-relativistic and relativistic compressible Euler equations with a vacuum boundary condition, Commun. Pure Appl. Math., 62 (2009), 1551–1594. https://doi.org/10.1002/cpa.20282 doi: 10.1002/cpa.20282 |
[21] | H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math., 162 (2005), 109–194. https://doi.org/10.4007/annals.2005.162.109 doi: 10.4007/annals.2005.162.109 |
[22] | H. Lindblad, C. Luo, A priori estimates for the compressible Euler equations for a liquid with free surface boundary and the incompressible limit, Comm. Pure Appl. Math., 71 (2018), 1273–1333. https://doi.org/10.1002/cpa.21734 doi: 10.1002/cpa.21734 |
[23] | D. Coutand, J. Hole, S. Shkoller, Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit, SIAM J. Math. Anal., 45 (2013), 3690–3767. https://doi.org/10.1137/120888697 doi: 10.1137/120888697 |
[24] | T. Luo, H. Zeng, On the free surface motion of highly subsonic heat-conducting inviscid flows, Arch. Ration. Mech. Anal., 240 (2021), 877–926. https://doi.org/10.1007/s00205-021-01624-9 doi: 10.1007/s00205-021-01624-9 |
[25] | S. H. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, WILEY-VCH, 2004. |
[26] | H. Zirin, Astrophysics of the Sun, Cambridge University Press, Cambridge, 1988. |
[27] | J. P. Cox, R. T. Giuli, Principles of Stellar Structure, I., II., Gordon and Breach, New York, 1968. |
[28] | C. Luo, J. Zhang, A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary, Nonlinearity, 33 (2020), 1499–1527. https://doi.org/10.1088/1361-6544/ab60d9 doi: 10.1088/1361-6544/ab60d9 |
[29] | X. Gu, Y. Wang, On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations, J. Math. Pures Appl., 128 (2019), 1–41. https://doi.org/10.1016/j.matpur.2019.06.004 doi: 10.1016/j.matpur.2019.06.004 |
[30] | X. Gu, C. Luo, J. Zhang, Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension, preprint, arXiv: 2105.00596. |
[31] | H. Lindblad, Well-posedness for the linearized motion of an incompressible liquid with free surface boundary, Comm. Pure Appl. Math., 56 (2003), 153–197. https://doi.org/10.1002/cpa.10055 doi: 10.1002/cpa.10055 |
[32] | D. Lee, Uniform estimate of viscous free-boundary magnetohydrodynamics with zero vacuum magnetic field, SIAM J. Math. Anal., 49 (2017), 2710–2789. https://doi.org/10.1137/16M1089794 doi: 10.1137/16M1089794 |
[33] | D. Lee, Initial value problem for the free-boundary magnetohydrodynamics with zero magnetic boundary condition, Commun. Math. Sci., 16 (2018), 589–615. https://doi.org/10.4310/CMS.2018.v16.n3.a1 doi: 10.4310/CMS.2018.v16.n3.a1 |
[34] | P. Chen, S. Ding, Inviscid limit for the free-boundary problems of MHD equations with or without surface tension, preprint, arXiv: 1905.13047. |
[35] | Y. Trakhinin, T. Wang, Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 239 (2021), 1131–1176. https://doi.org/10.1007/s00205-020-01592-6 doi: 10.1007/s00205-020-01592-6 |
[36] | Y. Trakhinin, T. Wang, Well-posedness of the free boundary problem in ideal compressible magnetohydrodynamics with surface tension, Math. Ann., (2021). https://doi.org/10.1007/s00208-021-02180-z |
[37] | C. Hao, On the motion of free interface in ideal incompressible MHD, Arch. Ration. Mech. Anal., 224 (2017), 515–553. https://doi.org/10.1007/s00205-017-1082-7 doi: 10.1007/s00205-017-1082-7 |
[38] | Y. Trakhinin, The existence of current-vortex sheets in ideal compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 191 (2009), 245–310. https://doi.org/10.1007/s00205-008-0124-6 doi: 10.1007/s00205-008-0124-6 |
[39] | P. Secchi, Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem, Nonlinearity, 27 (2014), 105–169. https://doi.org/10.1088/0951-7715/27/1/105 doi: 10.1088/0951-7715/27/1/105 |
[40] | A. Morando, Y. Trakhinin, P. Trebeschi, Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD, Quart. Appl. Math., 72 (2014), 549–587. https://doi.org/10.1090/S0033-569X-2014-01346-7 doi: 10.1090/S0033-569X-2014-01346-7 |
[41] | Y. Trakhinin, Existence of compressible current-vortex sheets: variable coefficients linear analysis, Arch. Ration. Mech. Anal., 177 (2005), 331–366. https://doi.org/10.1007/s00205-005-0364-7 doi: 10.1007/s00205-005-0364-7 |
[42] | G. Q. Chen, Y. G. Wang, Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics, Arch. Ration. Mech. Anal., 187 (2008), 369–408. https://doi.org/10.1007/s00205-007-0070-8 doi: 10.1007/s00205-007-0070-8 |
[43] | Y.-G. Wang, F. Yu, Stabilization effect of magnetic fields on two-dimensional compressible current-vortex sheets, Arch. Ration. Mech. Anal., 208 (2013), 341–389. https://doi.org/10.1007/s00205-012-0601-9 doi: 10.1007/s00205-012-0601-9 |
[44] | Y. Sun, W. Wang, Z. Zhang, Nonlinear stability of current-vortex sheet to the incompressible MHD equations, Commun. Pure Appl. Math., 71 (2018), 356–403. https://doi.org/10.1002/cpa.21710 doi: 10.1002/cpa.21710 |
[45] | Y. Wang, Z. Xin, Global well-posedness of free interface problems for the incompressible inviscid resistive MHD, preprint, arXiv: 2009.11636. |