This article is devoted to the global existence and extinction behavior of the weak solution to an inhomogeneous polytropic filtration equation. Based on the integral norm estimate approach, the conditions on the global existence and the occurrence of the extinction singularity of the weak solution are given. Moreover, we also prove the non-extinction result under some appropriate assumptions by using the weak upper and lower solutions method.
Citation: Dengming Liu, Changyu Liu. On the global existence and extinction behavior for a polytropic filtration equation with variable coefficients[J]. Electronic Research Archive, 2022, 30(2): 425-439. doi: 10.3934/era.2022022
This article is devoted to the global existence and extinction behavior of the weak solution to an inhomogeneous polytropic filtration equation. Based on the integral norm estimate approach, the conditions on the global existence and the occurrence of the extinction singularity of the weak solution are given. Moreover, we also prove the non-extinction result under some appropriate assumptions by using the weak upper and lower solutions method.
[1] | P. Rosenau, S. Kamin, Propagation of thermal waves in an inhomogeneous medium, Comm. Pure Appl. Math., 34 (1981), 831–852. https://doi.org/10.1002/cpa.3160340605 |
[2] | P. Baras, J. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 294 (1984), 121–139. https://doi.org/10.1090/S0002-9947-1984-0742415-3 doi: 10.1090/S0002-9947-1984-0742415-3 |
[3] | M. Bertsch, A class of degenerate diffusion equations with a singular nonlinear term, Nonlinear Anal., 7 (1983), 117–127. https://doi.org/10.1016/0362-546X(83)90110-4 doi: 10.1016/0362-546X(83)90110-4 |
[4] | L. Boccardo, A. Dall'Aglio, T. Gallouët, L. Orsina, Existence and regularity results for some nonlinear parabolic equations, Adv. Math. Sci. Appl., 9 (1999), 1017–1031. |
[5] | G. Reyes, A. Tesei, Basic theory for a diffusion-absorption equation in an inhomogeneoue medium, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 197–222. https://doi.org/10.1007/s00030-003-1017-x doi: 10.1007/s00030-003-1017-x |
[6] | Z. Tan, Non-Newton filtration equation with special medium void, Acta Math. Sci. B (Engl. Ed.), 24 (2004), 118–128. https://doi.org/10.1016/S0252-9602(17)30367-3 doi: 10.1016/S0252-9602(17)30367-3 |
[7] | A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal., 86 (2007), 755–782. https://doi.org/10.1080/00036810701435711 doi: 10.1080/00036810701435711 |
[8] | E. Novruzov, On blow-up of solution of nonhomogeneous polytropic equation with source, Nonlinear Anal., 71 (2009), 3992–3998. https://doi.org/10.1016/j.na.2009.02.069 doi: 10.1016/j.na.2009.02.069 |
[9] | D. M. Liu, C. L. Mu, Cauchy problem for a doubly degenerate parabolic equation with inhomogeneous source and measure data, Differ. Integral Equ., 27 (2014), 1001–1012. |
[10] | J. Zhou, Global existence and blow-up of solutions for a non-Newton polytropic filtration system with special volumetric moisture content, Comput. Math. Appl., 71 (2016), 1163–1172. https://doi.org/10.1016/j.camwa.2016.01.029 doi: 10.1016/j.camwa.2016.01.029 |
[11] | Y. G. Gu, Necessary and sufficient conditions of extinction of solution on parabolic equations, Acta Math. Sinica (Chin. Ser.), 37 (1994), 73–79. |
[12] | Y. Tian, C. L. Mu, Extinction and non-extinction for a $p$-Laplacian equation with nonlinear source, Nonlinear Anal., 69 (2008), 2422–2431. https://doi.org/10.1016/j.na.2007.08.021 doi: 10.1016/j.na.2007.08.021 |
[13] | J. X. Yin, C. H. Jin, Critical extinction and blow-up exponents for fast diffusive $p$-Laplacian with sources, Math. Meth. Appl. Sci., 30 (2007), 1147–1167. https://doi.org/10.1002/mma.833 doi: 10.1002/mma.833 |
[14] | J. Zhou, C. L. Mu, Critical blow-up and extinction exponents for non-Newton polytropic filtration equation with source, Bull. Korean Math. Soc., 46 (2009), 1159–1173. https://doi.org/10.4134/BKMS.2009.46.6.1159 doi: 10.4134/BKMS.2009.46.6.1159 |
[15] | C. H. Jin, J. X. Yin, Y. Y. Ke, Critical extinction and blow-up exponents for fast diffusive polytropic filtration equation with sources, Proc. Edinb. Math. Soc., 52 (2009), 419–444. https://doi.org/10.1017/S0013091507000399 doi: 10.1017/S0013091507000399 |
[16] | J. A. A. Crespo, I. P. Alonso, Global behavior of the Cauchy problem for some critical nonlinear parabolic equations, SIAM J. Math. Anal., 31 (2000), 1270–1294. https://doi.org/10.1137/S0036141098341137 doi: 10.1137/S0036141098341137 |
[17] | X. M. Deng, J. Zhou, Global existence, extinction, and non-extinction of solutions to a fast diffusion $p$-Laplcae evolution equation with singular potential, J. Dyn. Control Syst., 26 (2020), 509–523. https://doi.org/10.1007/s10883-019-09462-5 doi: 10.1007/s10883-019-09462-5 |
[18] | D. M. Liu, C. Y. Liu, Global existence and extinction singularity for a fast diffusive polytropic filtration equation with variable coefficient, Math. Probl. Eng., 2021 (2021), ID 5577777, 9 pages. https://doi.org/10.1155/2021/5577777 doi: 10.1155/2021/5577777 |