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1. Introduction

Here we are interested in the global existence, extinction and non-extinction phenomena of the weak
solutions of the following polytropic filtration equation with variable coefficients

|x|−sut − div(|∇um|p−2∇um) = λ|x|−αuq, (x, t) ∈ Ω × (0,+∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞),
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN(N ≥ 2) with smooth boundary ∂Ω, u0(x) is a non-negative non-
trivial function and um

0 ∈ L∞ (Ω) ∩W1,p
0 (Ω), m, p, q, s, α and λ are positive parameters and satisfy

N−2
N+2 < m ≤ 1, 1 < p < 2, 1−m

2 < q ≤ 1 and α < s. (1.2)

Inhomogeneous parabolic problems like (1.1) are applied to describe many real natural phenomena
(see [1, 2] and the references therein). Numerous literatures are devoted to deal with the qualitative
properties of the solutions to various inhomogeneous parabolic problems. For example, one can refer
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to [3–10] for the researches on the well-posedness, comparison theorem, regularity, global existence
and blow-up, interface blow-up phenomenon, and so on. The main purpose of the present article
is to study the global existence and the conditions on the occurrence of the extinction behavior for
solutions to problem (1.1). Problem (1.1) might not have classical solution due to the occurrence of the
degeneration and singularity. Based on this reason, we work with the weak solution of problem (1.1)
in the following sense.

Definition 1.1. Let T > 0 and ΩT = Ω × (0,T ). A function u (x, t) ∈ C
(
[0,T ] ; L1 (Ω)

)
with ∇um ∈

Lp (ΩT ), |x|−s ut ∈ L2 (ΩT ), and |x|−α uq ∈ L2 (ΩT ) is said to be a weak sub-solution of problem (1.1) if
it fulfills the following assumptions

• For any nonnegative test function

ϕ ∈
{
Φ : Φ ∈ L2 (ΩT ) ,Φ ∈ C

(
[0,T ] ; L2 (Ω)

)
,∇Φ ∈ Lp (ΩT ) ,Φt ∈ L2 (ΩT ) ,Φ|∂Ω = 0

}
,

it holds that "
ΩT

|x|−sutϕdxdt +
"
ΩT

|∇um|p−2∇um · ∇ϕdxdt ≤ λ
"
ΩT

|x|−αuqϕdxdt. (1.3)

• u (x, t) ≤ 0 for (x, t) ∈ ∂Ω × (0,T ).
• u (x, 0) ≤ u0 (x) for x ∈ Ω.

The definition of the weak super-solution can be given by changing “≤” into “≥” in the above
inequalities. Moreover, we call that u (x, t) is a weak solution of problem (1.1) if u (x, t) is a weak
sub-solution as well as a weak super-solution of problem (1.1).

Next, let us review some related results on the extinction behaviors of the solutions to parabolic
problem of the form

|x|−sut − div(|∇um|p−2∇um) = f (u, x, t) , (x, t) ∈ Ω × (0,+∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞),
u(x, 0) = u0(x), x ∈ Ω.

(1.4)

Under the assumptions s = 0, f ≡ 0 and m = 1, the author of [11] claimed that the solution of (1.4)
possesses the extinction property if and only if p ∈ (1, 2). The authors of [12–15] studied problem
(1.4) with s = 0 and f = λuq. Under the condition m (p − 1) ∈ (0, 1), they proved that if q > m (p − 1),
the extinction phenomenon of the solution to problem (1.4) will occur for appropriate small initial data
u0 (x), while if q < m (p − 1), the solution to problem (1.4) does not possess the extinction property.
In the critical case q = m (p − 1), they concluded that whether the extinction phenomenon of the
solution occurs or not depends strongly on the size of the positive parameter λ. Crespo and Alonso [16]
investigated problem (1.4) with s = 0, m = 1, p ∈ (1, 2) and f = λ |x|−p up−1. Based on Hardy
inequality and comparison principle, they found the conditions on the occurrence of the extinction and
non-extinction phenomena. To be more specific, they showed that if λ > p−p (N − p)p, then the solution
does not possess the extinction behavior, while if λ fulfills the hypothesis (i) 0 < λ < p−p (N − p)p for
2N

N+2 < p < 2 or (ii) 0 < λ <
[
2N − p (N + 1)

]
pp−1 (N − p)p (p − N)−p (p − 2)−p for 1 < p < 2N

N+2 ,
then the solution will vanish in finite time. Recently, the authors of [17] considered problem (1.4)
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with m = 1 and f = uq. Based on integral norm estimate approach and Hardy-Littlewood-Sobolev
inequality, they showed that the solution of problem (1.4) is global providing that the parameters s, p
and q fulfill the conditions 2N

N+2 < p < 2, 0 < q ≤ 1 and 0 ≤ s < Nq
q+1 . Moreover, under some suitable

assumptions, it is clarified that q = p − 1 plays a decisive role in dividing the situation between the
extinction and non-extinction phenomena. Liu et al. [18] generalized the results in [17] to the more
general case m ∈ (0, 1].

Inspired by the above mentioned literatures, we consider the global existence and the extinction
property of the solution to problem (1.1). We will focus our attention on the roles that the variable
coefficients |x|−s and |x|−α play. Our main results state as follows.

Theorem 1.1. Suppose that N−2
N+2 < m ≤ 1, 1 < p < 2, 0 < α < s < N and 1−m

2 < q ≤ 1. Then for any
non-negative bounded initial data u0 (x), the solution u (x, t) of problem (1.1) satisfies that um (x, t) is
global in W1,p norm.

Theorem 1.2. Suppose that N−2
N+2 < m ≤ 1, 1 < p < 2, max

{
m (p − 1) , 1−m

2

}
< q ≤ 1 and

0 < α < s < min
{

N −
(m + 1) (N − p)

mp
,

N p
[
1 − m (p − 1)

]
2N

[
1 − m (p − 1)

]
+ mp (p − 1)

}
.

Then the solution u (x, t) of problem (1.1) will vanish in a finite time provided that the initial data u0 (x)
is suitably small.

Theorem 1.3. Suppose that N−2
N+2 < m ≤ 1, 1 < p < 2, 0 < α < s < N, 1−m

2 < q ≤ m (p − 1) < 1 and
O < Ω. Then for any non-negative bounded initial data u0 (x), problem (1.1) admits a non-extinction
solution provided that the parametric λ is suitably large.

Before leaving this section, let us introduce some notations and fundamental facts (see [17, 18]).
Let Ω be a bounded domain in RN . ∥·∥r denotes the norm in the space Lr (Ω), and ∥·∥W1,r(Ω) denotes the
norm in the space W1,r (Ω). In other words, for any ρ ∈ Lr (Ω),

∥ρ∥r =


∫
Ω

|ρ (x)|r dx
 1

r

, if 1 ≤ r < +∞,

ess sup
x∈Ω
|ρ (x)| , if r = +∞,

and for any ρ ∈ W1,r (Ω),

∥ρ∥W1,r(Ω) =
r
√
∥ρ∥rr + ∥∇ρ∥

r
r.

If ρ ∈ W1,r
0 (Ω), then Poincaré’s inequality implies that ∥∇ρ∥r is equivalent to ∥ρ∥W1,r(Ω) in this case.

We denote B (0,R) be a ball in RN centered at origin with radius R. For any bounded domain

Ω ⊂ RN , there must be a constant R = sup
x∈Ω

√
x2

1 + · · · + x2
N such that Ω ⊆ B (0,R). Furthermore, for any

given number θ ∈ (0,N), one can verify that

0 <
∫
Ω

|x|−θ dx ≤
∫

B(0,R)

|x|−θdx =
ωN

N − θ
RN−θ < +∞,
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where

ωN =
Nπ

N
2

Γ
(

N
2 + 1

)
denotes the surface area of the unit sphere ∂B(0, 1) and Γ is the usual Gamma function.

2. Proofs of the main results

Based on the integral norm estimate approach, we will discuss the conditions on the global existence
and the occurrence of the extinction singularity of the weak solution. We will prove the non-extinction
result under some appropriate assumptions by using the weak upper and lower solutions method. The
proofs of Theorems 1.1, 1.2 and 1.3 will be given in this section.

Proof of Theorem 1.1. According to the different values of q, we shall divide the proof into two cases.
Case 1. 1−m

2 < q < 1. Multiplying the first equation of (1.1) by um and then integrating the result
identity by parts, one has

1
m + 1

d
dt

∫
Ω

|x|−sum+1dx +
∫
Ω

|∇um|
p dx = λ

∫
Ω

|x|−αum+qdx. (2.5)

By Hölder’s inequality, it holds that

∫
Ω

|x|−αum+qdx ≤


∫
Ω

|x|
s(m+q)−α(m+1)

1−q dx


1−q
m+1

︸                      ︷︷                      ︸
κ1


∫
Ω

|x|−sum+1dx


m+q
m+1

, (2.6)

and

κ1 ≤

 R
s(m+q)−α(m+1)

m+1 |Ω|
1−q
m+1 , if 0 < α ≤ s(m+q)

m+1 ,

R
s(m+q)−α(m+1)+N(1−q)

m+1

(
ωN (1−q)

s(m+q)−α(m+1)+N(1−q)

) 1−q
m+1

, if s(m+q)
m+1 < α < s.

Combining (2.5) with (2.6) leads us to

d
dt

∫
Ω

|x|−sum+1dx ≤ λκ1 (m + 1)


∫
Ω

|x|−sum+1dx


m+q
m+1

. (2.7)

Integrating both sides of (2.7) with respect to the time variable from 0 to t, it holds that

∫
Ω

|x|−sum+1dx ≤

λκ1(1 − q)t +


∫
Ω

|x|−sum+1
0 dx


1−q
m+1


m+1
1−q

. (2.8)
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Multiplying the first equation of (1.1) by (um)t and then integrating the result identity by parts, using
Cauchy’s inequality with ε, we find that

4m
(m + 1)2

∫
Ω

|x|−s
[(

u
m+1

2
)

t

]2
dx +

1
p

d
dt

∫
Ω

|∇um|
p dx

≤
2λmε
m + 1

∫
Ω

|x|−s
[(

u
m+1

2
)

t

]2
dx +

λm
2ε(m + 1)

∫
Ω

|x|s−2αum+2q−1dx.
(2.9)

Taking ε ∈
(
0, 2

λ(m+1)

)
, then it follows from (2.9) that

d
dt

∫
Ω

|∇um|
p dx ≤

λmp
2ε(m + 1)

∫
Ω

|x|s−2αum+2q−1dx. (2.10)

With the help of Hölder’s inequality and (2.8), one has

∫
Ω

|x|s−2αum+2q−1dx ≤


∫
Ω

|x|
s(m+q)−α(m+1)

1−q dx


2(1−q)
m+1


∫
Ω

|x|−sum+1dx


m+2q−1

m+1

≤ κ2
1

λκ1(1 − q)t +


∫
Ω

|x|−sum+1
0 dx


1−q
m+1


m+2q−1

1−q

.

(2.11)

Substituting (2.11) into (2.10) and then integrating in the time variable on (0, t), it holds that

∫
Ω

|∇um|
p dx ≤

mpκ1

2ε(m + 1)(m + q)

λκ1(1 − q)t +


∫
Ω

|x|−sum+1
0 dx


1−q
m+1


m+q
1−q

+

∫
Ω

∣∣∣∇um
0

∣∣∣p dx −
mpκ1

2ε(m + 1)(m + q)


∫
Ω

|x|−sum+1
0 dx


m+q
m+1

,

which means that um (x, t) is bounded in W1,p norm in the case 1−m
2 < q < 1.

Case 2. q = 1. Multiplying the first equation of (1.1) by um and then integrating the result identity
by parts, one has

1
m + 1

d
dt

∫
Ω

|x|−sum+1dx +
∫
Ω

|∇um|
p dx = λ

∫
Ω

|x|−αum+1dx ≤ λRs−α
∫
Ω

|x|−sum+1dx,

which tells us that

d
dt

∫
Ω

|x|−sum+1dx ≤ λ (m + 1) Rs−α
∫
Ω

|x|−sum+1dx. (2.12)
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Integrating both sides of (2.12) with respect to the time variable from 0 to t, it holds that∫
Ω

|x|−sum+1dx ≤ eλ(m+1)Rs−αt
∫
Ω

|x|−sum+1
0 dx. (2.13)

Multiplying the first equation of (1.1) by (um)t and then integrating the result identity by parts, using
Cauchy’s inequality with ε, we obtain that

4m
(m + 1)2

∫
Ω

|x|−s
[(

u
m+1

2
)

t

]2
dx +

1
p

d
dt

∫
Ω

|∇um|
p dx

≤
2λmε
m + 1

∫
Ω

|x|−α
[(

u
m+1

2
)

t

]2
dx +

λm
2ε(m + 1)

∫
Ω

|x|−αum+1dx

≤
2λεmRs−α

m + 1

∫
Ω

|x|−s
[(

u
m+1

2
)

t

]2
dx +

λmRs−α

2ε(m + 1)

∫
Ω

|x|−sum+1dx.

(2.14)

Choosing ε ∈
(
0, 2

λ(m+1)Rs−α

)
, then (2.13) and (2.14) imply that

d
dt

∫
Ω

|∇um|
p dx ≤

λmpRs−α

2ε(m + 1)

∫
Ω

|x|−sum+1dx

≤
λmpRs−α

2ε(m + 1)
eλ(m+1)Rs−αt

∫
Ω

|x|−sum+1
0 dx.

Integrating both sides of the above inequality from 0 to t yields that∫
Ω

|∇um|
p dx ≤

∫
Ω

∣∣∣∇um
0

∣∣∣p dx +
mp

2ε(m + 1)2

(
eλ(m+1)Rs−αt − 1

) 
∫
Ω

|x|−sum+1
0 dx

 ,
which tells us that um (x, t) is also bounded in W1,p norm in the case q = 1. The proof of Theorem 1.1
is complete. □

In what follows, we will show that the solution u (x, t) of problem (1.1) vanishes in finite time for
q ∈

(
max

{
1−m

2 ,m(p − 1)
}
, 1

]
provided that the initial data is suitably small.

Proof of Theorem 1.2. Depending on whether the value of q is equal to one, we shall divide the proof
into two parts. We first concern with the extinction property for q ∈

(
max

{
1−m

2 ,m(p − 1)
}
, 1

)
. If

p ∈
(

N+Nm
Nm+m+1 , 2

)
, then by (2.5) and (2.6), it holds that

1
m + 1

d
dt

∫
Ω

|x|−sum+1dx +
∫
Ω

|∇um|
p dx ≤ λκ1


∫
Ω

|x|−sum+1dx


m+q
m+1

. (2.15)

Recalling the following sobolev inequality
∫
Ω

um· N p
N−p dx


N−p
N p

≤ κ2


∫
Ω

|∇um|
p dx


1
p

,
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where κ2 is the optimal embedding constant, then from (2.15), one arrives at

1
m + 1

d
dt

∫
Ω

|x|−sum+1dx + κ−p
2


∫
Ω

um· N p
N−p dx


N−p

N

≤ λκ1


∫
Ω

|x|−sum+1dx


m+q
m+1

. (2.16)

Under the assumptions N+Nm
Nm+m+1 < p < 2 and

α < s < min
{

N −
(m + 1) (N − p)

mp
,

N p
[
1 − m (p − 1)

]
2N + m (p − 1) (p − 2N)

}
< N,

Hölder’s inequality can be used to get

∫
Ω

|x|−sum+1dx ≤


∫
Ω

|x|−s N pm
N pm−(m+1)(N−p) dx


N pm−(m+1)(N−p)

N pm

︸                                     ︷︷                                     ︸
κ3


∫
Ω

um· N p
N−p dx


(N−p)(m+1)

N pm

, (2.17)

where

κ3 ≤


∫

B(0,R)

|x|−s N pm
N pm−(m+1)(N−p) dx


N pm−(m+1)(N−p)

N pm

=

(
ωN[N pm − (m + 1)(N − p)]

N
[
mp (N − s) − (m + 1)(N − p)

]R
N[mp(N−s)−(m+1)(N−p)]

N pm−(m+1)(N−p)

) N pm−(m+1)(N−p)
N pm

< ∞.

Let
y1 (t) =

∫
Ω

|x|−sum+1dx.

By virtue of (2.16) and (2.17), one observes

1
m + 1

dy1

dt
+ κ
−p
2 κ
−

mp
m+1

3 y
mp

m+1
1 ≤ λκ1y

m+q
m+1
1 ,

namely,

dy1

dt
≤ (m + 1) y

mp
m+1
1

(
λκ1y

q−m(p−1)
m+1

1 − κ
−p
2 κ
−

mp
m+1

3

)
. (2.18)

If u0 (x) is sufficiently small such that

κ4 = λκ1
[
y1 (0)

] q−m(p−1)
m+1 − κ

−p
2 κ
−

mp
m+1

3 < 0.

Then, from (2.18), it follows that

dy1

dt
≤ κ4(m + 1)y

mp
m+1
1 .

Electronic Research Archive Volume 30, Issue 2, 425–439.



432

Integrating the above inequality from 0 to t leads to

y1 ≤

{[
y1 (0)

] 1−m(p−1)
m+1 + [1 − m(p − 1)]κ4t

} m+1
1−m(p−1)

.

Therefore, there exists a finite time

T0 =
[
m(p − 1) − 1

]−1 κ−1
4

[
y1 (0)

] 1−m(p−1)
m+1

such that

lim
t→T−0

y1(t) = lim
t→T−0

∫
Ω

|x|−sum+1dx = 0,

which implies that u (x, t) will vanish in finite time T0.
If p ∈

(
1, N+Nm

Nm+m+1

]
. For this subcase, we denote ℓ = 2N+2Nm

p − m − 2 − 2Nm. It is easily seen that
ℓ ≥ m. Multiplying the first equation of (1.1) by ump+ℓ and then integrating the result identity by parts,
one gets

λ

∫
Ω

|x|−αump+ℓ+qdx =
1

mp + ℓ + 1
d
dt

∫
Ω

|x|−sump+ℓ+1dx

+
(
ℓmp−1 + pmp

) (2mp − m + ℓ
p

)−p ∫
Ω

∣∣∣∣∇u
2mp−m+ℓ

p

∣∣∣∣p dx.
(2.19)

Since ∫
Ω

um+ℓ+2dx =
∫
Ω

u
N p

N−p ·
2mp−m+ℓ

p dx ≤ κ5


∫
Ω

∣∣∣∣∇u
2mp−m+ℓ

p

∣∣∣∣p


N
N−P

,

where κ5 is the optimal embedding constant, it holds that

∫
Ω

|x|−sump+ℓ+1dx ≤


∫
Ω

|x|−s mp+ℓ+2
1−m(p−1) dx


1−m(p−1)

m+ℓ+2

︸                        ︷︷                        ︸
κ6


∫
Ω

um+ℓ+2dx


mp+ℓ+1
m+ℓ+2

≤ κ6κ
mp+ℓ+1
m+ℓ+2

5


∫
Ω

∣∣∣∣∇u
2mp−m+ℓ

p

∣∣∣∣p dx


N

N−p ·
mp+ℓ+1
m+ℓ+2

,

(2.20)

and

κ6 ≤


∫

B(0,R)

|x|−s mp+ℓ+2
1−m(p−1) dx


1−m(p−1)

m+ℓ+2

=

(
ωN (1 − m (p − 1))

N (1 − m (p − 1)) − s(mp + ℓ + 2)
R

N(1−m(p−1))−s(mp+ℓ+2)
1−m(p−1)

) 1−m(p−1)
m+ℓ+2

< +∞.
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On the other hand, Hölder’s inequality tells us

∫
Ω

|x|−αump+ℓ+qdx ≤


∫
Ω

|x|
s(mp+ℓ+q)−α(mp+ℓ+1)

1−q dx


1−q

mp+ℓ+1

︸                              ︷︷                              ︸
κ7


∫
Ω

|x|−sump+ℓ+1


mp+ℓ+q
mp+ℓ+1

, (2.21)

where

κ7 ≤


R

s(mp+ℓ+q)−α(mp+ℓ+1)
mp+ℓ+1 |Ω|

1−q
mp+ℓ+1 , if 0 < α ≤ s(mp+ℓ+q)

mp+ℓ+1 ,(
R

s(mp+ℓ+q)−α(mp+ℓ+1)+N(1−q)
1−q ωN (1−q)

s(mp+ℓ+q)−α(mp+ℓ+1)+N(1−q)

) 1−q
mp+ℓ+1

, if s(mp+ℓ+q)
mp+ℓ+1 < α < s.

Noticing that
N − p

N
=

2mp + ℓ − m
m + ℓ + 2

,

combining (2.19) with (2.20) and (2.21), one obtains

d
dt

∫
Ω

|x|−sump+ℓ+1dx

≤


∫
Ω

|x|−sump+ℓ+1dx


2mp+ℓ−m
mp+ℓ+1

λκ7


∫
Ω

|x|−sump+ℓ+1


q−m(p−1)
mp+ℓ+1

− κ8

 ,
(2.22)

where

κ8 = (mp + ℓ + 1)
(
ℓmp−1 + pmp

)
κ

m−ℓ−2mp
m+ℓ+2

5 κ
m−ℓ−2mp
mp+ℓ+1

6

(
ℓ − m + 2pm

p

)−p

.

Letting

y2 (t) =
∫
Ω

|x|−sump+ℓ+1dx,

and choosing u0 (x) so small that

κ9 = λκ7
[
y2 (0)

] q−m(p−1)
mp+ℓ+1 − κ8 < 0,

then by (2.22), it holds that

dy2

dt
≤ κ9y

2mp+ℓ−m
mp+ℓ+1

2 .

Integrating both sides of the above inequality with respect to the time variable on (0, t), on arrives at

y2 ≤

{[
y2 (0)

] 1−m(p−1)
mp+ℓ+1 + [1 − m(p − 1)]κ9t

} mp+ℓ+1
1−m(p−1)

,

which suggests that there exists a finite time

T1 =
[
m(p − 1) − 1

]−1 κ−1
9

[
y2 (0)

] 1−m(p−1)
mp+ℓ+1
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such that

lim
t→T−1

y2(t) = lim
t→T−1

∫
Ω

|x|−sump+ℓ+1dx = 0,

in other words, u (x, t) will vanish in finite time T1.
Now, we focus our attention on the proof of the extinction result for q = 1. We are also going to

divide the proof into two subcases. If p ∈
(

N+Nm
Nm+m+1 , 2

)
, then from (2.5), it follows that

1
m + 1

d
dt

∫
Ω

|x|−sum+1dx +
∫
Ω

|∇um|
p dx = λ

∫
Ω

|x|−αum+1dx ≤ λRs−α
∫
Ω

|x|−sum+1dx.

Similar to the derivation process of (2.18), one obtains

dy1

dt
≤ (m + 1) y

mp
m+1
1

(
λRs−αy

1−m(p−1)
m+1

1 − κ−1
2 κ
−

mp
m+1

3

)
. (2.23)

Taking u0 (x) so small that

κ10 = λRs−α [
y1 (0)

] 1−m(p−1)
m+1 − κ−1

2 κ
−

mp
m+1

3 < 0,

then by (2.23), it holds that

dy1

dt
≤ κ10 (m + 1) y

mp
mp+1

1 .

Integrating both sides of the above inequality with respect to the time variable on (0, t), one can claim
that

y1 ≤

{[
y1 (0)

] 1−m(p−1)
m+1 + [1 − m(p − 1)]κ10t

} m+1
1−m(p−1)

,

which means that there exists a finite time

T2 =
[
m(p − 1) − 1

]−1 κ−1
10

[
y1 (0)

] 1−m(p−1)
m+1

such that

lim
t→T−2

y1(t) = lim
t→T−2

∫
Ω

|x|−sum+1dx = 0,

that is, u (x, t) will vanish in finite time T2.
If p ∈

(
1, N+Nm

Nm+m+1

]
, then by (2.19), it holds that

λRs−α
∫
Ω

|x|−sump+ℓ+1dx ≥ λ
∫
Ω

|x|−αump+ℓ+1dx

=
1

mp + ℓ + 1
d
dt

∫
Ω

|x|−sump+ℓ+1dx

+
(
ℓmp−1 + pmp

) (2mp − m + ℓ
p

)−p ∫
Ω

∣∣∣∣∇u
2mp−m+ℓ

p

∣∣∣∣p dx.
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Similar to the derivation process of (2.22), one obtains

dy2

dt
≤ y

2mp+ℓ−m
mp+ℓ+1

2

(
λRs−αy

1−m(p−1)
mp+ℓ+1

2 − κ8

)
. (2.24)

Selecting u0 (x) so small that

κ11 = λRs−α [
y2 (0)

] 1−m(p−1)
mp+ℓ+1 − κ8 < 0,

then by (2.24), it holds that

dy2

dt
≤ κ11y

2mp+ℓ−m
mp+ℓ+1

2 .

Integrating both sides of the above inequality with respect to the time variable on (0, t), one can con-
clude that

y2 ≤

{[
y2 (0)

] 1−m(p−1)
mp+ℓ+1 + [1 − m(p − 1)]κ11t

} mp+ℓ+1
1−m(p−1)

,

which tells us that there is a finite time

T3 =
[
m(p − 1) − 1

]−1 κ−1
11

[
y (0)

] 1−m(p−1)
mp+ℓ+1

such that

lim
t→T−3

y2(t) = lim
t→T−3

∫
Ω

|x|−sump+ℓ+1dx = 0,

namely, u (x, t) will vanish in finite time T3. The proof of Theorem 1.2 is complete. □

Now it remains to prove the non-extinction result.

Proof of Theorem 1.3. Let λ1 be the first eigenvalue of the following eigenvalue problem and ψ be the
corresponding eigenfunction {

−div(|∇u|p−2∇u) = λu|u|p−2, x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω.

(2.25)

Assume that ψ > 0 and max
x∈Ω

ψ(x) = 1. Define a function f (t) for t ≥ 0 by

f (t) = d
1

m(p−1)−q (1 − e−ct)
1

1−q ,

where d ∈ (0, 1), and 0 < c < [m(p − 1) − q]d
1−q

q−m(p−1) . It is easily seen that f (0) = 0, f (t) ∈ (0, 1) for
t > 0, and

f ′ + d−1 f m(p−1) − f q < 0. (2.26)

Let

ν1(x, t) = f (t)ψ(x).
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Our next objective is to prove that ν1(x, t) is a non-extinction weak sub-solution of problem (1.1).
Denote Ωt = Ω × (0, t) for any t > 0. With the help of (2.26) and the definition of ψ(x), by a series of
simple calculations, one can obtain

κ12 : =
"
Ωt

|x|−sν1τ(x, τ)ϕdxdτ +
"
Ωt

|∇νm
1 |

p−2∇νm
1 · ∇ϕdxdτ − λ

"
Ωt

|x|−ανq
1ϕdxdτ

=

"
Ωt

|x|−s fτ(τ)ψ(x)ϕdxdτ − λ
"
Ωt

|x|−α f q(t)ψq(x)ϕdxdτ

+

"
Ωt

f m(p−1)(τ)|∇ψm|p−2∇ψm · ∇ϕdxdτ

<

"
Ωt

|x|−s
(

f q − d−1 f m(p−1)
)
ψ(x)ϕdxdτ − λ

"
Ωt

|x|−α f q(τ)ψq(x)ϕdxdτ

+ λ1

"
Ωt

f m(p−1)(τ)ψm(p−1)(x)ϕdxdτ

<

"
Ωt

(
|x|α−s + λ1Rα − λψq) ϕ|x|−α f q (τ) dxdτ

︸                                                   ︷︷                                                   ︸
κ13

.

Since O < Ω, one can see that there is a point
(
x⋆, τ⋆

)
∈ Ωt such that

κ13 =
(
|x⋆|α−s + λ1Rα − λψq (

x⋆
)) "
Ωt

ϕ|x|−α f q (τ) dxdτ.

If λ is so large that |x⋆|α−s + λ1Rα − λψq (
x⋆

)
< 0, then one has κ12 < κ13 < 0, which tells us that ν1(x, t)

is a non-extinction weak sub-solution of problem (1.1).
Let ν2(x, t) be a weak solution of the problem as follows

|x|−sut − div(|∇um|p−2∇um) = λ|x|−α (u+ + 1)q , (x, t) ∈ Ω × (0,+∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞),
u(x, 0) = u0(x), x ∈ Ω.

(2.27)

Then ν2(x, t) is a weak super-solution of problem (1.1). Now, by slightly modifying the proof of
Theorem 4.3 in [15], we are about to prove that ν1(x, t) ≤ ν2(x, t). Select the test function ϕϵ (x, t) =
Hϵ

(
νm

1 (x, t) − νm
2 (x, t)

)
, where Hϵ (r) is a monotone increasing smooth approximation of

H (r) =
{

1, r > 0,
0, otherwise.

Moreover, one can verify that Hϵ (r) satisfies lim
ϵ→0

H
′

ϵ (r) = δ (r). By virtue of the definitions of ν1(x, t)
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and ν2(x, t), one has"
Ωt

|x|−s (ν1 − ν2)τ Hϵ

(
νm

1 − ν
m
2
)

dxdτ

+

"
Ωt

H
′

ϵ

(
νm

1 − ν
m
2
) (
|∇νm

1 |
p−2∇νm

1 − |∇ν
m
2 |

p−2∇νm
2

)
· ∇

(
νm

1 − ν
m
2
)

dxdτ

≤ λ

"
Ωt

|x|−α
(
ν

q
1 − (ν2+ + 1)q

)
Hϵ

(
νm

1 − ν
m
2
)

dxdτ.

(2.28)

Letting ϵ → 0, (2.28) leads to∫
Ω

|x|−s (ν1 − ν2)+ dx ≤ λq
"
Ωt

|x|−α (ν1 − (ν2+ + 1))+ dxdτ

≤ λqRs−α
"
Ωt

|x|−s (ν1 − ν2)+ dxdτ.

Gronwall’s inequality tells us that ∫
Ω

|x|−s (ν1 − ν2)+ dx = 0

holds for all t > 0, which means that ν1(x, t) ≤ ν2(x, t) a.e. in Ω × (0,+∞). Then by a standard
iterated process, one sees that problem (1.1) admits a non-extinction weak solution u (x, t) satisfying
ν1(x, t) ≤ u (x, t) ≤ ν2(x, t).

On the other hand, one can also show that

ν3(x, t) =
[
t − m(p − 1)t

] 1
1−m(p−1) ψ(x)

is a non-extinction weak sub-solution of problem (1.1) with q = m(p − 1) provided that λ is suitably
large. Let ν4(x, t) be a weak solution of problem (2.27) with q = m (p − 1). Repeating the arguments in
the case q < m (p − 1), one knows that problem (1.1) admits at least a non-extinction solution u (x, t)
satisfying ν3(x, t) ≤ u (x, t) ≤ ν4(x, t). The proof of Theorem 1.3 is complete. □
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