In this article, a kind of nonlinear wave model with the Caputo fractional derivative is solved by an efficient algorithm, which is formulated by combining a time second-order shifted convolution quadrature (SCQ) formula in time and a mixed element method in space. The stability of numerical scheme is derived, and an optimal error result for unknown functions which include an original function and two auxiliary functions are proven. Further, the numerical tests are conducted to confirm the theoretical results.
Citation: Yining Yang, Yang Liu, Cao Wen, Hong Li, Jinfeng Wang. Efficient time second-order SCQ formula combined with a mixed element method for a nonlinear time fractional wave model[J]. Electronic Research Archive, 2022, 30(2): 440-458. doi: 10.3934/era.2022023
In this article, a kind of nonlinear wave model with the Caputo fractional derivative is solved by an efficient algorithm, which is formulated by combining a time second-order shifted convolution quadrature (SCQ) formula in time and a mixed element method in space. The stability of numerical scheme is derived, and an optimal error result for unknown functions which include an original function and two auxiliary functions are proven. Further, the numerical tests are conducted to confirm the theoretical results.
[1] | Y. Luchko, Fractional wave equation and damped waves, J. Math. Phys., 54 (2013), 031505. https://doi.org/10.1063/1.4794076 doi: 10.1063/1.4794076 |
[2] | L. Feng, F. Liu, I. Turner, Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun. Nonlinear Sci. Numer. Simulat., 70 (2019), 354–371. https://doi.org/10.1016/j.cnsns.2018.10.016 doi: 10.1016/j.cnsns.2018.10.016 |
[3] | M. Dehghan, M. Abbaszadeh, A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algor., 73 (2016), 445–476. https://doi.org/10.1007/s11075-016-0103-1 doi: 10.1007/s11075-016-0103-1 |
[4] | W. McLean, K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105 (2007), 481–510. https://doi.org/10.1007/s00211-006-0045-y doi: 10.1007/s00211-006-0045-y |
[5] | X. C. Zheng, H. Wang, Wellposedness and regularity of a nonlinear variable-order fractional wave equation, Appl. Math. Lett., 95 (2019), 29–35. https://doi.org/10.1016/j.aml.2019.03.015 doi: 10.1016/j.aml.2019.03.015 |
[6] | L. Feng, I. Turner, P. Perré, K. Burrage, An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media, Commun. Nonlinear Sci. Numer. Simulat., 92 (2020), 105454. https://doi.org/10.1016/j.cnsns.2020.105454 doi: 10.1016/j.cnsns.2020.105454 |
[7] | X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576 |
[8] | K. Hosseini, M. Ilie, M. Mirzazadeh, D. Baleanu, An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law, Math. Meth. Appl. Sci., 44 (2021) 6247–6258. https: //doi.org/10.1002/mma.7059 |
[9] | R. H. Feng, Y. Liu, Y. Hou, H. Li, Z. C. Fang, Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model, Eng. Comput., 2022. https: //doi.org/10.1007/s00366-020-01032-9 |
[10] | Z. C. Fang, R. X. Du, H. Li, Y. Liu, A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations, AIMS Math., 7 (2022), 1941–1970. 10.3934/math.2022112 doi: 10.3934/math.2022112 |
[11] | W. P. Bu, Y. F. Tang, Y. C. Wu, J. Y. Yang, Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model, Appl. Math. Comput., 257 (2015), 355–364. https://doi.org/10.1016/j.amc.2014.09.034 doi: 10.1016/j.amc.2014.09.034 |
[12] | Y. Liu, Z. D. Yu, H. Li, F. W. Liu, J. F. Wang, Time two-mesh algorithm combined with finite element method for time fractional water wave model, Int. J. Heat Mass Transf., 120 (2018), 1132–1145. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.118 doi: 10.1016/j.ijheatmasstransfer.2017.12.118 |
[13] | K. Hosseini, M. Ilie, M. Mirzazadeh, A. Yusuf, T. A. Sulaiman, D. Baleanu, S. Salahshour, An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense, Math. Comput. Simulat., 187 (2021), 248–260. https://doi.org/10.1016/j.matcom.2021.02.021 doi: 10.1016/j.matcom.2021.02.021 |
[14] | J. C. Li, Y. Q. Huang, Y. P. Lin, Developing finite element methods for Maxwell's equations in a Cole-Cole dispersive medium, SIAM J. Sci. Comput., 33 (2011), 3153–3174. https://doi.org/10.1137/110827624 doi: 10.1137/110827624 |
[15] | E. Y. Fan, J. F. Wang, Y. Liu, H. Li, Z. C. Fang, Numerical simulations based on shifted second-order difference finite element algorithms for the time fractional Maxwell's system, Eng. Comput., 2020. https: //doi.org/10.1007/s00366-020-01147-z |
[16] | H. L. Liao, T. Tang, T. Zhou, An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen-Cahn equation, SIAM J. Sci. Comput., 43 (2021), A3503–A3526. https://doi.org/10.1137/20M1384105 doi: 10.1137/20M1384105 |
[17] | L. Liu, L. Feng, Q. Xu, L. Zheng, F. Liu, Flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int. Commun. Heat Mass Transf., 116 (2020), 104679. https://doi.org/10.1016/j.icheatmasstransfer.2020.104679 doi: 10.1016/j.icheatmasstransfer.2020.104679 |
[18] | M. Zheng, F. Liu, I. Turner, V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J. Sci. Comput., 37 (2015), A701–A724. https://doi.org/10.1137/140980545 doi: 10.1137/140980545 |
[19] | Y. Cao, B. L. Yin, Y. Liu, H. Li, Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time fractional wave problem, Comput. Appl. Math., 37 (2018), 5126–5145. https://doi.org/10.1007/s40314-018-0626-2 doi: 10.1007/s40314-018-0626-2 |
[20] | B. L. Yin, Y. Liu, H. Li, F. H. Zeng, A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations, Appl. Numer. Math., 165 (2021), 56–82. https://doi.org/10.1016/j.apnum.2021.02.007 doi: 10.1016/j.apnum.2021.02.007 |
[21] | J. Ren, X. Long, S. Mao, J. Zhang, Superconvergence of finite element approximations for the fractional diffusion-wave equation, J. Sci. Comput., 72 (2017), 917–935. https://doi.org/10.1007/s10915-017-0385-z doi: 10.1007/s10915-017-0385-z |
[22] | L. Li, D. Xu, M. Luo, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys., 255 (2013), 471–485. https://doi.org/10.1016/j.jcp.2013.08.031 doi: 10.1016/j.jcp.2013.08.031 |
[23] | H. Y. Jian, T. Z. Huang, X. M. Gu, X. L. Zhao, Y. L. Zhao, Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations, Comput. Math. Appl., 94 (2021), 136–154. https://doi.org/10.1016/j.camwa.2021.05.003 doi: 10.1016/j.camwa.2021.05.003 |
[24] | J. Y. Shen, X. M. Gu, Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete Cont. Dyn. Syst. B, 27 (2022), 1179-1207. 10.3934/dcdsb.2021086 doi: 10.3934/dcdsb.2021086 |
[25] | M. H. Chen, W. H. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 68 (2017), 87–93. https://doi.org/10.1016/j.aml.2016.12.010 doi: 10.1016/j.aml.2016.12.010 |
[26] | H. F. Ding, A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation, Appl. Numer. Math., 135 (2019), 30–46. https://doi.org/10.1016/j.apnum.2018.08.005 doi: 10.1016/j.apnum.2018.08.005 |
[27] | F. H. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), 411–430. https://doi.org/10.1007/s10915-014-9966-2 doi: 10.1007/s10915-014-9966-2 |
[28] | H. Sun, Z. Z. Sun, G. H. Gao, Some temporal second order difference schemes for fractional wave equations, Numer. Meth. Part. Differ. Equations, 32 (2016), 970–1001. https://doi.org/10.1002/num.22038 doi: 10.1002/num.22038 |
[29] | J. Huang, Y. Tang, L. Vázquez, J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algor., 64 (2013), 707–720. https://doi.org/10.1007/s11075-012-9689-0 doi: 10.1007/s11075-012-9689-0 |
[30] | Z. B. Wang, S. K. Vong, A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation, Int. J. Comput. Math., 92 (2015), 970–979. https://doi.org/10.1080/00207160.2014.915960 doi: 10.1080/00207160.2014.915960 |
[31] | F. Liu, M. M. Meerschaert, R. McGough, P. Zhuang, Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 16 (2013), 9–25. https://doi.org/10.2478/s13540-013-0002-2 doi: 10.2478/s13540-013-0002-2 |
[32] | A. Chen, C. P. Li, Numerical solution of fractional diffusion-wave equation, Numer. Funct. Anal. Opt., 37 (2016), 19–39. |
[33] | Z. D. Luo, H. Wang, A highly efficient reduced-order extrapolated finite difference algorithm for time-space tempered fractional diffusion-wave equation, Appl. Math. Lett., 102 (2020), 106090. https://doi.org/10.1016/j.aml.2019.106090 doi: 10.1016/j.aml.2019.106090 |
[34] | H. Zhang, X. Y. Jiang, Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation, Appl. Numer. Math., 146 (2019), 1–12. https://doi.org/10.1016/j.apnum.2019.06.019 doi: 10.1016/j.apnum.2019.06.019 |
[35] | Y. Q. Liu, H. G. Sun, X. L. Yin, L. B. Feng, Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation, Zeitschrift für angewandte Mathematik und Physik, 71 (2020), 1–19. https://doi.org/10.1007/s00033-019-1244-6 doi: 10.1007/s00033-019-1244-6 |
[36] | Y. Yang, Y. Chen, Y. Huang, H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl. 73 (2017), 1218–1232. https: //doi.org/10.1016/j.camwa.2016.08.017 |
[37] | G. Fairweather, X. H. Yang, D. Xu, H. X. Zhang, An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation, J. Sci. Comput., 65 (2015), 1217–1239. https://doi.org/10.1007/s10915-015-0003-x doi: 10.1007/s10915-015-0003-x |
[38] | J. F. Wang, B. L. Yin, Y. Liu, H. Li, Z. C. Fang, Mixed finite element algorithm for a nonlinear time fractional wave model, Math. Comput. Simulat., 188 (2021), 60–76. https://doi.org/10.1016/j.matcom.2021.03.038 doi: 10.1016/j.matcom.2021.03.038 |
[39] | Y. Liu, H. Li, $H^1$-Galerkin Mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput., 212 (2009) 446–457. https: //doi.org/10.1016/j.amc.2009.02.039 |
[40] | L. Guo, H. Z. Chen, $H^1$-Galerkin Mixed finite element method for the regularized long wave equation, Computing, 77 (2006), 205–221. https://doi.org/10.1007/s00607-005-0158-7 doi: 10.1007/s00607-005-0158-7 |
[41] | A. K. Pani, An $H^1$-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (1998), 712–727. https://doi.org/10.1137/S0036142995280808 doi: 10.1137/S0036142995280808 |
[42] | D. Y. Shi, J. J. Wang, F. Yan, Unconditional superconvergence analysis of an $H^1$-Galerkin mixed finite element method for nonlinear Sobolev equations, Numer. Meth. Part. Differ. Equations, 34 (2018), 145–166. https://doi.org/10.1002/num.22189 doi: 10.1002/num.22189 |
[43] | Z. G. Shi, Y. M. Zhao, F. Liu, Y. F. Tang, F. L. Wang, Y. H. Shi, High accuracy analysis of an $H^1$-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations, Comput. Math. Appl., 74 (2017), 1903–1914. https://doi.org/10.1016/j.camwa.2017.06.057 doi: 10.1016/j.camwa.2017.06.057 |
[44] | C. Wen, Y. Liu, B. L. Yin, H. Li, J. F. Wang, Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model, Numer. Algor., 88 (2021), 523–553. https://doi.org/10.1007/s11075-020-01048-8 doi: 10.1007/s11075-020-01048-8 |
[45] | B. L. Yin, Y. Liu, H. Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Appl. Math. Comput., 368 (2020), 124799. https://doi.org/10.1016/j.amc.2019.124799 doi: 10.1016/j.amc.2019.124799 |
[46] | Y. Liu, B. Yin, H. Li, Z. Zhang, The unified theory of shifted convolution quadrature for fractional calculus, J. Sci. Comput., 89 (2021), 2. https://doi.org/10.1007/s10915-021-01630-9 doi: 10.1007/s10915-021-01630-9 |
[47] | G. Gao, H. Sun, Z. Sun, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence, J. Comput. Phys., 280 (2015), 510–528. https://doi.org/10.1016/j.jcp.2014.09.033 doi: 10.1016/j.jcp.2014.09.033 |
[48] | Y. Liu, Y. W. Du, H. Li, F. W. Liu, Y. J. Wang, Some second-order $\theta$ schemes combined with finite element method for nonlinear fractional Cable equation, Numer. Algor., 80 (2019), 533–555. https://doi.org/10.1007/s11075-018-0496-0 doi: 10.1007/s11075-018-0496-0 |
[49] | L. F. Wu, Y. Y. Pan, X. Z. Yang, An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation, Comput. Appl. Math., 40 (2021), 67. https://doi.org/10.1007/s40314-021-01455-0 doi: 10.1007/s40314-021-01455-0 |
[50] | B. L. Yin, Y. Liu, H. Li, Z. M. Zhang, Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes, BIT Numer. Math., 2021. https: //doi.org/10.1007/s10543-021-00890-z |