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Abstract: In this article, a kind of nonlinear wave model with the Caputo fractional derivative is solved
by an efficient algorithm, which is formulated by combining a time second-order shifted convolution
quadrature (SCQ) formula in time and a mixed element method in space. The stability of numerical
scheme is derived, and an optimal error result for unknown functions which include an original function
and two auxiliary functions are proven. Further, the numerical tests are conducted to confirm the
theoretical results.
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1. Introduction

A large number of fractional partial differential equation (FPDE) models have been found in many
fields of science and engineering, such as fractional wave model [1–5], fractional diffusion model
[6–10], fractional FitzHugh-Nagumo monodomain model [11], fractional water wave model [12, 13],
fractional Maxwell model [14,15], fractional Allen-Cahn model [16], fractional constitutive model [17]
and fractional Fokker-Planck model [18]. With the continuous developments of scholars’ research
on FPDE models, the important fractional wave equations studied by theoretical or numerical meth-
ods [1–5] have received a lot of attention. However, as scholars know that due to the existing of the
fractional derivative, their exact solutions for fractional wave equations are hard to be found by some
theoretical methods. So, numerical solutions of fractional wave models are studied by designing ef-
ficient numerical algorithms, such as finite element method [2, 19–22], meshless method [3], finite
difference method [23–33], spectral method [34, 35] and collocation method [36, 37]. In this article,
we focus on the following wave model with a nonlinear term and a high-order Caputo time fractional
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derivative

∂2u
∂t2 +

∂βu
∂tβ
−

∂3u
∂x2∂t

+ f (u) = d(x, t), (x, t) ∈ Ω × J,

u(a, t) = u(b, t) = 0, t ∈ J,

u(x, 0) = 0,
∂u
∂t

(x, 0) = 0, x ∈ Ω,

(1.1)

where Ω = (a, b) is an open space domain and J = (0,T ] with 0 < T < ∞ is a time interval. The source
term d(x, t) is a known smooth function, the nonlinear term satisfies f (u) ∈ C2(R) with f (0) = 0, and
the Caputo fractional derivative is defined by

∂βu(x, t)
∂tβ

=
1

Γ(2 − β)

∫ t

0

∂2u(x,s)
∂s2 ds

(t − s)β−1 , 1 < β < 2. (1.2)

The fractional wave model (1.1), which describe many physical phenomena including nerve con-
duction and wave propagation, can be degenerated into the pseudo-hyperbolic equation for β = 1 and
the hyperbolic wave equation for β = 2, respectively. In [38], Wang et al. developed a mixed element
method with an L2-1σ formula for solving the fractional wave model (1.1) with the time Caputo frac-
tional derivative, which was proposed by improving the H1-Galerkin mixed element method [39–44].
The improved mixed element method can approach three unknown functions simultaneously. However,
in [38], the optimal theory error result for the auxiliary variable v depends on the parameter β−1

2 , from
which the optimal estimate result of ‖v(tn) − vn

h‖ cannot abtained by choosing any fractional parameter
β ∈ (1, 2).

In this article, we develop a fully discrete mixed finite element scheme, where the mixed element
method is used to approximate the space direction and the generalized BDF2-θ [45] that is a shifted
convolution quadrature (SCQ) method [46] is applied to the approxiamtion of the time direction at
any time tn−θ. Based on the formulated fully discrete mixed element method with a second-order SCQ
formula, we prove the stability and derive optimal error estimates for three unknown functions. More
importantly, with a comparison to the theory error results in [38], we can obtain the optimal error result
in L2-norm for the auxiliary variable v at time tn by choosing the shifted parameter θ = 0. Finally, we
implement two numerical examples to verify our optimal theory results.

The rest of the article is outlined as follows: In Section 2, the fully discrete scheme based on the
combination between a mixed element method and an SCQ formula (generalized BDF2-θ) is derived;
In Section 3, the stability is proven by using useful lemmas; The optimal error estimates for the fully
discrete scheme are derived in Section 4. Two experiments, in Section 5, are conducted to further
confirm our theoretical results. Finally, in the last section we give the conclusions and advancements.

Throughout the article, we denote by C a positive generic constant which is free of time and space
meshes, and may be changed at different occurrences.
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2. Fully discrete scheme

By setting the parameter α = β − 1 and an auxiliary variable v = ∂u
∂t as shown in [38], we get

∂βu(x, t)
∂tβ

=
1

Γ(1 − α)

∫ t

0

∂v(x,s)
∂s ds

(t − s)α
=
∂αv(x, t)
∂tα

, 0 < α < 1. (2.1)

Further, by introducing the other auxiliary variable σ = ∂v
∂x , we can rewrite the model (1.1) as the

following coupled system with the low order space-time derivatives

v =
∂u
∂t
,

σ =
∂v
∂x
,

∂v
∂t

+
∂αv
∂tα
−
∂σ

∂x
+ f (u) = d(x, t), (x, t) ∈ Ω × J,

u(a, t) = u(b, t) = v(a, t) = v(b, t) = 0, t ∈ J̄,

u(x, 0) = v(x, 0) = 0, x ∈ Ω̄.

(2.2)

For the fully discrete scheme, we first divide time interval [0,T ] by the nodes tn = nτ (n = 0, 1, 2, ...,N)
with the time step length size τ = T/N, where tn satisfy 0 = t0 < t1 < t2 < · · · < tN = T , N is a positive
integer. Setting φn = φ(·, tn), the generalized BDF2-θ (See [45]) for the Caputo fractional differential
operator with α ∈ (0, 1] at time tn−θ is

∂αφn−θ

∂tα
=τ−α

n∑
j=0

ω(α)
j φ

n− j + O(τ2)

�Ψα,n
τ φ + O(τ2).

(2.3)

The convolution weights {ω(α)
j }
∞
j=0 are the coefficients of the following generating function with the

relation ω(α)(ξ) =
∑∞

j=0 ω
(α)
j ξ

j,

ω(α)(ξ) =
(3α − 2θ

2α
−

2α − 2θ
α

ξ +
α − 2θ

2α
ξ2

)α
, 0 ≤ θ ≤ min{α,

1
2
}. (2.4)

For the convenience of application in calculation, we provide the relationship among these convolution
weights {ω(α)

j }
∞
j=0.

Lemma 2.1. (See [45]) The convolution weights ω(α)
k for the generalized BDF2-θ can be arrived at by

the recursive formula
ω(α)

0 =

(3α − 2θ
2α

)α
, ω(α)

1 = 2(θ − α)
( 2α
3α − 2θ

)1−α

,

ω(α)
k =

2α
k(3α − 2θ)

[
2(α − θ)

(k − 1
α
− 1

)
ω(α)

k−1 + (α − 2θ)
(
1 −

k − 2
2α

)
ω(α)

k−2

]
, k ≥ 2.
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For the term ∂v(tn−θ)
∂x , we have the following formula

∂φ(tn−θ)
∂x

= (1 − θ)
∂φn

∂x
+ θ

∂φn−1

∂x
+ O(τ2) �

∂φn−θ

∂x
+ O(τ2). (2.5)

Now, by combining Eqs (2.2), (2.3) with (2.5), we have

(a) Ψ1,n
τ u = vn−θ + Rn−θ

1 ,

(b) σn−θ =
∂vn−θ

∂x
+ Rn−θ

2 ,

(c) Ψ1,n
τ v + Ψα,n

τ v −
∂σn−θ

∂x
+ f (un−θ) = d(x, tn−θ) + Rn−θ

3 ,

(2.6)

where

Rn−θ
1 = Ψ1,n

τ u −
∂u(tn−θ)
∂t

+ v(tn−θ) − vn−θ = O(τ2),

Rn−θ
2 = σn−θ − σ(tn−θ) +

∂v(tn−θ)
∂x

−
∂vn−θ

∂x
= O(τ2),

Rn−θ
3 = Ψ1,n

τ v −
∂v(tn−θ)
∂t

+ Ψα,n
τ v −

∂αv(tn−θ)
∂tα

+
∂σ(tn−θ)
∂x

−
∂σn−θ

∂x
+ f (u(tn−θ)) − f (un−θ) = O(τ2).

Based on Eq (2.6), the mixed weak formulation is to find (un, vn, σn) ∈ L2 × H1
0 × H1, such that

(a) (Ψ1,n
τ u,w) = (vn−θ,w) + (Rn−θ

1 ,w),

(b)
(
σn−θ,

∂ψ

∂x

)
=

(∂vn−θ

∂x
,
∂ψ

∂x

)
+

(
Rn−θ

2 ,
∂ψ

∂x

)
,

(c) (Ψ1,n
τ σ, χ) + (τ−α

n∑
j=0

ω(α)
j σ

n− j, χ) +
(∂σn−θ

∂x
,
∂χ

∂x

)
= −(g(un−θ)In−θ

0 σ, χ) −
(
d(x, tn−θ),

∂χ

∂x

)
+ (Rn−θ

3 ,
∂χ

∂x
) + (Rn−θ

4 , χ),

(2.7)

where g(un−θ) = f ′(un−θ), In−θ
0 σ = τ

(
1
2σ

0 +
n−2∑
k=1

σk + (1− θ
2 )σn−1 + 1

2 (1− θ)σn
)
,Rn−θ

4 = g(un−θ)(
∫ tn−θ

0
σdt−

In−θ
0 σ) = O(τ2).

Setting (ūn, v̄n, σ̄n) ∈ L2 × H1
0 × H1 be the time approximate solutions of (un, vn, σn), we have

(a) (Ψ1,n
τ ū,w) = (v̄n−θ,w),

(b)
(
σ̄n−θ,

∂ψ

∂x

)
=

(∂v̄n−θ

∂x
,
∂ψ

∂x

)
,

(c) (Ψ1,n
τ σ̄, χ) + (τ−α

n∑
j=0

ω(α)
j σ̄

n− j, χ) +
(∂σ̄n−θ

∂x
,
∂χ

∂x

)
= −(g(ūn−θ)In−θ

0 σ̄, χ) −
(
d(x, tn−θ),

∂χ

∂x

)
.

(2.8)

Electronic Research Archive Volume 30, Issue 2, 440–458.



444

For formulating the fully discrete mixed element scheme, we provide the following mixed finite ele-
ment spaces

Lh = {uh|uh ∈ P
m on each element,m ∈ N},

Vh = {vh|vh ∈ P
k on each element, vh(a) = vh(b) = 0,

∂vh

∂x
∈ L2, k ∈ Z+},

Hh = {σh|σh ∈ P
r on each element,

∂σh

∂x
∈ L2, r ∈ Z+},

where Ps the set of polynomials of x with the degree of s ∈ N. Based on Eq (2.7), we obtain the mixed
element scheme. That is to find (un

h, v
n
h, σ

n
h) ∈ Lh × Vh × Hh ⊂ L2 × H1

0 × H1, such that

(a) (Ψ1,n
τ uh,wh) = (vn−θ

h ,wh), ∀wh ∈ Lh,

(b)
(
σn−θ

h ,
∂ψh

∂x

)
=

(∂vn−θ
h

∂x
,
∂ψh

∂x

)
, ∀ψh ∈ Vh,

(c) (Ψ1,n
τ σh, χh) + (τ−α

n∑
j=0

ω(α)
j σ

n− j
h , χh) +

(∂σn−θ
h

∂x
,
∂χh

∂x

)
= −(g(un−θ

h )In−θ
0 σh, χh) −

(
d(x, tn−θ),

∂χh

∂x

)
, ∀χh ∈ Hh.

(2.9)

Remark 2.2. 1) For implementing the computation based on the system (2.9), we need to consider the
following case for n = 1. For this case, we only need to take the semi-discrete approximation of the
nonlinear term

g(ū1−θ)I1−θ
0 σ̄ = g(ū0)I1

0σ̄ = g(ū0)τσ̄0,

and the fully discrete approximation

g(ūh
1−θ)I1−θ

0 σ̄h = g(ūh
0)I1

0σ̄h = g(ūh
0)τσ̄0

h.

2) Now, we illustrate how to derive the Eq (2.7)(c). We multiply Eq (2.6)(c) by −∂χ
∂x , and then make the

inner product on the space domain Ω̄ = [a, b]. Taking the first term as an example, we deduce it in
detail. By the integration by part, we obtain for v ∈ H1

0(Ω)

(
Ψ1,n
τ v,−

∂χ

∂x

)
=

(
Ψ1,n
τ

∂v
∂x
, χ

)
+ [χΨ1,n

τ v]|ba = (Ψ1,n
τ σ, χ),

which also shows that χ only needs to belong to H1(Ω). For this problem, readers can also see other
references [39–41].

Remark 2.3. 1) In Ref [45], one can see that the generalized BDF2-θ is given by

∂αφn−θ

∂tα
=τ−α

n∑
j=0

ω(α)
j φ

n− j + τ−α
k∑

j=1

w(α)
n, jφ

j + O(τ2)

�Ψα,n
τ φ + Sα,nτ,k φ + O(τ2),

(2.10)
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where Ψα,n
τ φ and Sα,nτ,k are called the convolution part and the starting part, respectively. If we only

consider the model with a sufficiently smooth exact solution, the starting part will disappear. For this
problem, readers can see the detailed illustrations in [45]. Here, we just study the case without the
starting part.
2) Readers can know easily from many references that the following relationship between the Caputo
fractional derivative and the Riemann-Liouville derivative holds

RL
0 Dα

t φ(t) =C
0 Dα

t φ(t) +

n−1∑
j=0

φ( j)(0)
Γ(1 + j − α)

t j−α, n − 1 ≤ α < n, (2.11)

which imply that if initial values φ( j)(0) = 0, the equality RL
0 Dα

t φ(t) =C
0 Dα

t φ(t) holds. In this article, the
Caputo fractional derivative C

0 Dα
t φ(t) is written as ∂αφ(t)

∂tα .

3. Lemmas and stability

Now we need to introduce some useful lemmas for the next analysis.

Lemma 3.1. (See [45]) For series {φm} m ≥ 2, we have

Ψ1,m
τ (φ, φm) ≥

1
4τ

(Hm(φ) − Hm−1(φ)), (3.1)

with
Hm(φ) = (3 − 2θ)‖φm‖2 − (1 − 2θ)‖φm−1‖2 + 2‖φm − φm−1‖2. (3.2)

In addition, we have
Hm(φ) ≥ ‖φm‖2, (3.3)

where θ ∈ [0, 1
2 ].

Proof. Here, we just need to take θ = α
2 , and then follow the derived process as in [47] to get the

result.

Lemma 3.2. (See [45]) Let ω(α)
k be the coefficients of generating function ω(α)(ξ) and the parameter θ

satisfies 0 ≤ θ ≤ min{α, 1
2 }, where α ∈ (0, 1). Then we have for any vector (φ0, φ1, · · · , φn) ∈ Rn+1

n∑
m=0

m∑
k=0

(ω(α)
m−kφ

k, φm) ≥ 0,∀n ≥ 1. (3.4)

Lemma 3.3. (See [45]) With the shifted parameter θ ≤ 1
2 and φ0 = 0, we have for any vector

(φ1, φ2, · · · , φn) ∈ Rn

n∑
m=1

(φm−θ, φm) ≥ 0,∀n ≥ 1, (3.5)

where vm−θ � (1 − θ)vm + θvm−1.

Without loss of generality, we will analyze the stability of the numerical scheme Eq (2.9) for the
case of the source term d(x, t) = 0.
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Theorem 3.4. For the fully discrete system (2.9), the following stability holds

‖un
h‖

2 + ‖σn
h‖

2 + ‖vn−θ
h ‖

2 +
∥∥∥∥∂vn−θ

h

∂x

∥∥∥∥2
≤ C(‖u0

h‖
2 + ‖σ0

h‖
2), (3.6)

where C is a positive constant independent on mesh parameters τ and h .

Proof. In Eq (2.9)(a), we take wh = un
h, use Eq (3.1) and Cauchy-Schwarz inequality as well as Young

inequality to get for n ≥ 2

1
4τ

(Hn(uh) − Hn−1(uh)) ≤ (vn−θ
h , un

h) ≤
1 − θ

2
‖vn

h‖
2 +

θ

2
‖vn−1

h ‖
2 +

1
2
‖un

h‖
2. (3.7)

Sum Eq (3.7) for j = 2 to n, and use Eqs (3.2) and (3.3) to arrive at

‖un
h‖

2 ≤Hn(uh)

≤τ

n∑
j=2

(
(2 − θ)‖v j

h‖
2 + 2θ‖v j−1

h ‖
2 + 2‖u j

h‖
2
)

+ H1(uh)

≤τ

n∑
j=2

(
(2 − θ)‖v j

h‖
2 + 2θ‖v j−1

h ‖
2 + 2‖u j

h‖
2
)

+ C(‖u1
h‖

2 + ‖u0
h‖

2).

(3.8)

Letting ψh = vn−θ
h in Eq (2.9)(b), using Cauchy-Schwarz inequality as well as Young inequality, noting

that vn−θ
h ∈ Vh ⊂ H1

0 and making use of Poincaré inequality, we have

‖vn−θ
h ‖

2 ≤ C
∥∥∥∥∂vn−θ

h

∂x

∥∥∥∥2
≤ C‖σn−θ

h ‖
2. (3.9)

In Eq (2.9)(c), we set χh = σn
h, replace n with k and sum for k = 2 to n to get

n∑
k=2

(Ψ1,k
τ σh, σ

k
h) + τ−α

n∑
k=2

( k∑
j=0

ω(α)
k− jσ

j
h, σ

k
h

)
+

n∑
k=2

(∂σk−θ
h

∂x
,
∂σk

h

∂x

)
=

n∑
k=2

(−τg(uk−θ
h )

(1
2
σ0

h +

k−2∑
j=1

σ
j
h + (1 −

θ

2
)σk−1

h +
1
2

(1 − θ)σk
h

)
, σk

h),

(3.10)

Use Hölder inequality as well as Young inequality to arrive at

1
4τ

n∑
k=2

(Hk(σh) − Hk−1(σh)) + τ−α
n∑

k=2

( k∑
j=0

ω(α)
k− jσ

j
h, σ

k
h

)
+

n∑
k=2

(∂σk−θ
h

∂x
,
∂σk

h

∂x

)
≤τ

n∑
k=2

(
‖g(uk−θ

h )‖∞
∥∥∥∥1

2
σ0

h +

k−2∑
j=1

σ
j
h + (1 −

θ

2
)σk−1

h +
1
2

(1 − θ)σk
h

∥∥∥∥‖σk
h‖

)
≤Cτ

n∑
k=2

(
‖σk

h‖

k∑
j=0

‖σ
j
h‖

)
≤C

n∑
k=2

(
τ

k∑
j=0

‖σ
j
h‖

2 +
τ(k + 1)

2
‖σk

h‖
2
)
.

(3.11)
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Multiplying Eq (3.11) by 4τ and using Young inequality as well as triangle inequality, we have

Hn(σh) + 4τ1−α
n∑

k=2

( k∑
j=0

ω(α)
k− jσ

j
h, σ

k
h

)
+ 4τ

n∑
k=2

(∂σk−θ
h

∂x
,
∂σk

h

∂x

)
≤Cτ

n∑
k=0

‖σk
h‖

2 + H1(σh)

≤Cτ
n∑

k=0

‖σk
h‖

2 + C(‖σ1
h‖

2 + ‖σ0
h‖

2).

(3.12)

Now we only need to estimate the case for n = 1. Similar to the processes of Eqs (3.8) and (3.12), we
easily derive

‖u1
h‖

2 ≤Cτ(‖v1
h‖

2 + τ‖v0
h‖

2 + ‖u1
h‖

2) + ‖u0
h‖

2, (3.13)

and

‖σ1
h‖

2 + τ1−α
1∑

j=0

(ω(α)
1− jσ

j
h, σ

1
h) + τ

(∂σ1−θ
h

∂x
,
∂σ1

h

∂x

)
≤C‖σ0

h‖
2. (3.14)

Combining Eqs (3.8), (3.12), (3.13) with (3.14), we have

‖un
h‖

2 ≤C(‖u0
h‖

2 + τ

n∑
j=0

‖v j
h‖

2 + τ

n∑
j=1

‖u j
h‖

2), (3.15)

‖σn
h‖

2 + τ1−α
n∑

k=0

(
k∑

j=0

ω(α)
k− jσ

j
h, σ

k
h) + τ

n∑
k=1

(∂σk−θ
h

∂x
,
∂σk

h

∂x

)
≤C(‖σ0

h‖
2 + τ

n∑
k=0

‖σk
h‖

2). (3.16)

Combining Lemmas 3.2–3.3, Eqs (3.9), (3.15) with (3.16), we have

‖un
h‖

2 + ‖σn
h‖

2 + ‖vn−θ
h ‖

2 + ‖
∂vn−θ

h

∂x
‖2

≤C(‖u0
h‖

2 + ‖σ0
h‖

2 + τ

n∑
k=0

(‖uk
h‖

2 + ‖vk
h‖

2 + ‖σk
h‖

2)).
(3.17)

Use Gronwall lemma to finish the proof.

4. Optimal error analysis

In this section, we obtain an error estimate for the numerical scheme Eq (2.9). To facilitate the
analysis, we first introduce three projection operators with the corresponding estimate inequalities.

Lemma 4.1. Define an L2-projection operator Λh : L2(Ω)→ Lh by

(ū − Λhū, ωh) = 0, ∀ωh ∈ Lh, (4.1)

with an estimate inequality

‖ū − Λhū‖ + ‖ūt − Λhūt‖ ≤ Chm+1(‖ū‖m+1 + ‖ūt‖m+1), ∀ū ∈ Hm+1(Ω). (4.2)
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Lemma 4.2. (See [41]). Define an elliptic projection operator Υh : H1
0(Ω)→ Vh, such that(∂v̄

∂x
− Υh

∂v̄
∂x
,
∂φh

∂x

)
= 0, ∀φh ∈ Vh, (4.3)

with an estimate inequality

‖v̄ − Υhv̄‖ + h‖v̄ − Υhv̄‖1 ≤ Chk+1‖v̄‖k+1, ∀v̄ ∈ H1
0(Ω) ∩ Hk+1(Ω). (4.4)

Lemma 4.3. (See [41]) Define a Rize projection operator Πh : H1(Ω)→ Hh by

A(σ̄ − Πhσ̄, χh) = 0, ∀χh ∈ Hh, (4.5)

where A(σ̄, φ) �
(
∂σ̄
∂x ,

∂φ

∂x

)
+ λ(σ̄, φ) and A(φ, φ) ≥ µ0‖φ‖

2
1, µ0 > 0 is a constant. Further, the estimate

inequality holds

‖σ̄ − Πhσ̄‖ + ‖σ̄t − Πhσ̄t‖ + h‖σ̄ − Πhσ̄‖1 ≤ Chr+1(‖σ̄‖r+1 + ‖σ̄t‖r+1), ∀σ̄ ∈ Hr+1(Ω). (4.6)

Theorem 4.4. With Λhū(0) = ū0
h, Υhv̄(0) = v̄0

h and Πhσ̄(0) = σ̄0
h, there exists a positive constant C

independent of (h, τ) such that

‖u(tn) − un
h‖ + ‖σ(tn) − σn

h‖ + ‖v(tn−θ) − vn−θ
h ‖ ≤ C(hmin{m+1,r+1,k+1} + τ2). (4.7)

Proof. For convenience, we write errors as

ū(tn) − un
h = (ū(tn) − Λhūn) + (Λhūn − un

h) = ρn + ϑn,

v̄(tn) − vn
h = (v̄(tn) − Υhv̄n) + (Υhv̄n − vn

h) = ζn + ξn,

σ̄(tn) − σn
h = (σ̄(tn) − Πhσ̄

n) + (Πhσ̄
n − σn

h) = ηn + δn,

Subtract Eq (2.9)(a) from Eq (2.8)(a), set ωh = ϑn, apply the projection Eq (4.1) and use Cauchy-
Schwarz inequality and Young inequality to obtain

(Ψ1,n
τ ϑ, ϑn) = − (Ψ1,n

τ ρ, ϑn) + (ζn−θ + ξn−θ, ϑn)

≤
1
2

(‖Ψ1,n
τ ρ‖2 + ‖ξn−θ‖2 + ‖ζn−θ‖2) +

3
2
‖ϑn‖2.

(4.8)

Replace n by m, sum from m = 2 to n, and use Lemmas 3.1 to have

‖ϑn‖2 ≤Hn(ϑ)

≤Cτ
n∑

m=2

(‖Ψ1,n
τ ρ‖2 + ‖ξn−θ‖2 + ‖ζn−θ‖2) + Cτ

n∑
m=2

‖ϑm‖2 + C(‖ϑ1‖2 + ‖ϑ0‖2).
(4.9)

Subtract Eq (2.9)(b) from Eq (2.8)(b), take ψh = ξn−θ and apply projection Eq (4.3) to get(
δn−θ,

∂ξn−θ

∂x

)
= −

(
ηn−θ,

∂ξn−θ

∂x

)
+

∥∥∥∥∂ξn−θ

∂x

∥∥∥∥2
. (4.10)

Use Cauchy-Schwarz inequality, Young inequality and Poincaré inequality to arrive at∥∥∥∥∂ξn−θ

∂x

∥∥∥∥2
+ ‖ξn−θ‖2 ≤C(‖ηn−θ‖2 + ‖δn‖2 + ‖δn−1‖2). (4.11)
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Subtract Eq (2.9)(c) from Eq (2.8)(c), choose χh = δn, apply projection Eq (4.5) and use Hölder
inequality as well as Young inequality to get

(Ψ1,n
τ δ, δn) + (Ψα,n

τ δ, δn) +
(∂δn−θ

∂x
,
∂δn

∂x

)
= − (Ψ1,n

τ η, δn) − (Ψα,n
τ η, δn) + λ(ηn−θ, δn)

−
(
g(ūn−θ)In−θ

0 σ̄ − g(un−θ
h )In−θ

0 σh, δ
n
)

= − (Ψ1,n
τ η, δn) − (Ψα,n

τ η, δn) + λ(ηn−θ, δn)

−
(
g(ūn−θ)In−θ

0 σ̄ − g(un−θ
h )In−θ

0 σ̄ + g(un−θ
h )In−θ

0 σ̄ − g(un−θ
h )In−θ

0 σh, δ
n
)

= − (Ψ1,n
τ η, δn) − (Ψα,n

τ η, δn) + λ(ηn−θ, δn)

−
(
(g(ūn−θ) − g(un−θ

h ))In−θ
0 σ̄, δn

)
−

(
g(un−θ

h )In−θ
0 (σ̄ − σh), δn

)
≤

1
2
‖Ψ1,n

τ η‖2 +
1
2
‖Ψα,n

τ η‖2 +
λ(1 − θ)

2
‖ηn‖2 +

λθ

2
‖ηn−1‖2 +

(3
2

+
λ

2

)
‖δn‖2

+
(
‖(g(ūn−θ) − g(un−θ

h )‖‖In−θ
0 σ̄‖∞ + ‖g(un−θ

h )‖∞‖In−θ
0 (σ̄ − σh)‖

)
‖δn‖

≤
1
2
‖Ψ1,n

τ η‖2 +
1
2
‖Ψα,n

τ η‖2 +
λ(1 − θ)

2
‖ηn‖2 +

λθ

2
‖ηn−1‖2 +

(3
2

+
λ

2

)
‖δn‖2

+
(
C‖g′(ς)‖∞(‖ρn−θ + ϑn−θ‖ + C‖τ(

1
2

(η0 + δ0) +

n−1∑
j=1

(η j + δ j)

+
(
1 −

θ

2

)
(ηn−1 + δn−1) +

1
2

(1 − θ)(ηn + δn))‖
)
‖δn‖

≤
1
2
‖Ψ1,n

τ η‖2 +
1
2
‖Ψα,n

τ η‖2 + C(‖ηn‖2 + ‖ηn−1‖2 + ‖ρn‖2 + ‖ρn−1‖2)

+ C(‖δn‖2 + ‖ϑn‖2 + ‖ϑn−1‖2) + Cτ
n∑

k=0

(‖ηk‖2 + ‖δk‖2).

(4.12)

Replace n by m and sum for m = 2 to n to arrive at

n∑
m=2

(Ψ1,m
τ δ, δm) + τ−α

n∑
m=2

( m∑
j=0

ω(α)
m− jδ

j, δm
)

+

n∑
m=2

(∂δm−θ

∂x
,
∂δm

∂x

)
≤C

n∑
m=2

(‖Ψα,m
τ η‖2 + ‖Ψ1,m

τ η‖2 + ‖δm‖2) + C
n∑

m=1

(‖ρm‖2 + ‖ηm‖2 + ‖ϑm‖2) + Cτ
n∑

m=1

m∑
k=0

(‖ηk‖2 + ‖δk‖2).

(4.13)

Noting that the similar method in [45, 48], we have

‖Ψα,n
τ η‖ ≤

∥∥∥∥Πh(
∂ασ̄n−θ

∂tα
) −

∂ασ̄n−θ

∂tα

∥∥∥∥ ≤ Chr+1, (4.14)

and
‖Ψ1,n

τ η‖ ≤ Chr+1. (4.15)
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Multiply Eq (4.13) by 4τ, and combine Lemmas 4.1 and 4.3 with Eqs (4.14) and (4.15) to arrive at

‖δn‖2 + τ1−α
n∑

m=2

( m∑
j=0

ω(α)
m− jδ

j, δm
)

+ τ

n∑
m=2

(∂δm−θ

∂x
,
∂δm

∂x

)
≤C(h2k+2 + h2r+2) + Cτ

n∑
m=0

‖δm‖2 + Cτ
n∑

m=1

‖ϑm‖2 + ‖δ1‖2 + ‖δ0‖2.

(4.16)

Combining Eqs (4.16), (4.9) with (4.11), we have the estimate

‖δn‖2 + ‖ϑn‖2 + ‖ξn−θ‖2 +
∥∥∥∥∂ξn−θ

∂x

∥∥∥∥2
+ τ1−α

n∑
m=2

( m∑
j=0

ω(α)
m− jδ

j, δm
)

+ τ

n∑
m=2

(∂δm−θ

∂x
,
∂δm

∂x

)
≤C(h2k+2 + h2r+2 + τ

n∑
m=2

(‖Ψ1,n
τ ρ‖2 + ‖ζn−θ‖2) + Cτ

n∑
m=0

‖δm‖2 + Cτ
n∑

m=1

‖ϑm‖2

+ C(‖ϑ1‖2 + ‖δ1‖2 + ‖ϑ0‖2 + ‖δ0‖2).

(4.17)

For the case n = 1, we use a similar derivation to Eq (4.17) to get

‖δ1‖2 + ‖ϑ1‖2 + ‖ξ1−θ‖2 +
∥∥∥∥∂ξ1−θ

∂x

∥∥∥∥2
+ τ1−α

( 1∑
j=0

ω(α)
1− jδ

j, δm
)

+ τ
(∂δ1−θ

∂x
,
∂δ1

∂x

)
≤C(h2k+2 + h2r+2 + h2m+2 + ‖ϑ0‖2 + ‖δ0‖2).

(4.18)

Combining Eq (4.17) with (4.18) and using Gronwall inequality, we have

‖δn‖2 + ‖ϑn‖2 + ‖ξn−θ‖2 +
∥∥∥∥∂ξn−θ

∂x

∥∥∥∥2
+ τ1−α

n∑
m=0

( m∑
j=0

ω(α)
m− jδ

j, δm
)

+ τ

n∑
m=1

(∂δm−θ

∂x
,
∂δm

∂x

)
≤C(h2k+2 + h2r+2 + h2m+2).

(4.19)

Apply Lemmas 3.2–3.3 and combine Eqs (4.2), (4.4), (4.6) with triangle inequality to arrive at

‖ū(tn) − un
h‖ + ‖σ̄(tn) − σn

h‖ + ‖v̄(tn−θ) − vn−θ
h ‖ ≤ Chmin{m+1,r+1,k+1}. (4.20)

Combining Eq (4.20) with triangle inequality, we have

‖u(tn) − un
h‖ + ‖σ(tn) − σn

h‖ + ‖v(tn−θ) − vn−θ
h ‖

≤‖u(tn) − ū(tn)‖ + ‖ū(tn) − un
h‖ + ‖σ(tn) − σ̄(tn)‖

+ ‖σ̄(tn) − σn
h‖ + ‖v(tn−θ) − v̄(tn−θ)‖ + ‖v̄(tn−θ) − vn−θ

h ‖

≤‖ū(tn) − un
h‖ + ‖σ̄(tn) − σn

h‖ + ‖v̄(tn−θ) − vn−θ
h ‖ + Cτ2,

(4.21)

which implies that we finish the proof.

5. Numerical tests

In this section, we will consider two numerical examples based on the linear element to validate
our optimal theory results. In numerical experiments, we need to use the recursive formula provided
in Lemma 2.1.
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Table 1. The errors and convergence rates in time with h = 1
1000 .

β θ τ ‖u − uh‖ Rate ‖v − vh‖ Rate ‖σ − σh‖ Rate
1/10 1.3016E-02 - 5.8621E-03 - 1.8795E-02 -

0.1 1/14 6.7031E-03 1.9722 3.1046E-03 1.8891 9.8770E-03 1.9122
1/18 4.0738E-03 1.9816 1.9155E-03 1.9214 6.0722E-03 1.9357
1/10 1.0864E-02 - 5.1423E-03 - 1.6540E-02 -

1.3 0.2 1/14 5.5735E-03 1.9837 2.6895E-03 1.9263 8.5751E-03 1.9524
1/18 3.3800E-03 1.9901 1.6452E-03 1.9558 5.2236E-03 1.9723
1/10 8.7318E-03 - 4.2714E-03 - 1.3791E-02 -

0.3 1/14 4.4618E-03 1.9954 2.1909E-03 1.9842 7.0052E-03 2.0131
1/18 2.6999E-03 1.9989 1.3219E-03 2.0104 4.2068E-03 2.0292
1/10 1.3694E-02 - 7.6728E-03 - 2.5054E-02 -

0.1 1/14 7.0334E-03 1.9802 4.0506E-03 1.8986 1.3074E-02 1.9329
1/18 4.2656E-03 1.9899 2.4853E-03 1.9438 7.9743E-03 1.9674
1/10 1.1421E-02 - 6.9048E-03 - 2.2668E-02 -

1.5 0.2 1/14 5.8412E-03 1.9927 3.6073E-03 1.9296 1.1693E-02 1.9674
1/18 3.5340E-03 1.9995 2.1967E-03 1.9738 7.0731E-03 2.0001
1/10 9.1253E-03 - 5.9755E-03 - 1.9778E-02 -

0.3 1/14 4.6449E-03 2.0070 3.0749E-03 1.9746 1.0033E-02 2.0170
1/18 2.8024E-03 2.0105 1.8517E-03 2.0180 5.9965E-03 2.0480
1/10 1.4835E-02 - 1.0860E-02 - 3.6502E-02 -

0.1 1/14 7.6140E-03 1.9822 5.8365E-03 1.8454 1.9333E-02 1.8888
1/18 4.6125E-03 1.9944 3.6181E-03 1.9027 1.1890E-02 1.9345
1/10 1.2430E-02 - 1.0006E-02 - 3.3861E-02 -

1.7 0.2 1/14 6.3535E-03 1.9946 5.3398E-03 1.8665 1.7790E-02 1.9128
1/18 3.8395E-03 2.0042 3.2932E-03 1.9232 1.0879E-02 1.9572
1/10 9.9846E-03 - 8.9741E-03 - 3.0669E-02 -

0.3 1/14 5.0785E-03 2.0092 4.7432E-03 1.8951 1.5940E-02 1.9450
1/18 3.0599E-03 2.0159 2.9049E-03 1.9510 9.6719E-03 1.9879

5.1. Example 1

In this test, we calculate the convergence rate in time and space. By taking the space domain
Ω̄ = [0, 1] and the time domain [0, 1], the nonlinear term f (u) = u2 and the source term

d(x, t) =
(
6t +

6
Γ(4 − β)

t3−β + 3π2t2) sin(πx) + (t3 sin(πx))2,

with given initial and boundary conditions in Eq (1.1), we can validate easily that the exact solution is
u = t3 sin πx.

In Table 1, with fixed space step length size h = 1
1000 and changed time step length parameters

τ = 1
10 ,

1
14 ,

1
18 , we arrive at the approximating time second-order convergence rate in L2-norm for three

functions based on different parameters β = 1.3, 1.5, 1.7 and θ = 0.1, 0.2, 0.3. Similarly, by choosing
the same parameters β and θ as the ones in Table 1 with space-time step length parameters τ = 1

2000 and
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h = 1
10 ,

1
30 ,

1
50 , we calculate the approximating a priori error results with the second-order convergence

rate in Table 2. The data computed in Tables 1 and 2 show the optimal convergence results are achieved
by using our method.

Table 2. The errors and convergence rates in space with τ = 1
2000 .

β θ h ‖u − uh‖ Rate ‖v − vh‖ Rate ‖σ − σh‖ Rate
1/10 1.6537E-02 - 4.9369E-02 - 3.2169E-01 -

0.1 1/30 1.9382E-03 1.9514 5.7725E-03 1.9536 3.6219E-02 1.9880
1/50 7.0494E-04 1.9800 2.0990E-03 1.9804 1.3053E-02 1.9978
1/10 1.6537E-02 - 4.9369E-02 - 3.2169E-01 -

1.3 0.2 1/30 1.9383E-03 1.9514 5.7725E-03 1.9536 3.6219E-02 1.9880
1/50 7.0499E-04 1.9799 2.0990E-03 1.9804 1.3053E-02 1.9978
1/10 1.6537E-02 - 4.9369E-02 - 3.2169E-01 -

0.3 1/30 1.9383E-03 1.9514 5.7725E-03 1.9536 3.6219E-02 1.9880
1/50 7.0505E-04 1.9798 2.0990E-03 1.9804 1.3053E-02 1.9978
1/10 1.6445E-02 - 4.9220E-02 - 3.0753E-01 -

0.1 1/30 1.9279E-03 1.9512 5.7568E-03 1.9533 3.4563E-02 1.9896
1/50 7.0124E-04 1.9799 2.0934E-03 1.9803 1.2451E-02 1.9986
1/10 1.6445E-02 - 4.9220E-02 - 3.0753E-01 -

1.5 0.2 1/30 1.9280E-03 1.9511 5.7568E-03 1.9533 3.4563E-02 1.9896
1/50 7.0130E-04 1.9797 2.0934E-03 1.9803 1.2451E-02 1.9986
1/10 1.6445E-02 - 4.9220E-02 - 3.0753E-01 -

0.3 1/30 1.9281E-03 1.9511 5.7568E-03 1.9533 3.4563E-02 1.9896
1/50 7.0136E-04 1.9796 2.0934E-03 1.9803 1.2451E-02 1.9986
1/10 1.6339E-02 - 4.9077E-02 - 2.9293E-01 -

0.1 1/30 1.9161E-03 1.9509 5.7420E-03 1.9530 3.2857E-02 1.9914
1/50 6.9697E-04 1.9797 2.0883E-03 1.9801 1.1831E-02 1.9995
1/10 1.6339E-02 - 4.9077E-02 - 2.9293E-01 -

1.7 0.2 1/30 1.9161E-03 1.9508 5.7420E-03 1.9530 3.2857E-02 1.9914
1/50 6.9704E-04 1.9796 2.0883E-03 1.9801 1.1831E-02 1.9995
1/10 1.6339E-02 - 4.9077E-02 - 2.9293E-01 -

0.3 1/30 1.9162E-03 1.9508 5.7420E-03 1.9530 3.2857E-02 1.9914
1/50 6.9710E-04 1.9795 2.0883E-03 1.9801 1.1831E-02 1.9995

5.2. Example 2

In this numerical example, we consider the same space-time domain and the nonlinear term as
shown in the first example, and choose the exact solution u = t3 sin(3πx)

x+1 with the corresponding source
term. By choosing the space parameter h = 1/30, time step length size τ = 1/200, fractional parameter
β = 1.7 and shifted parameter θ = 0.3, we obtain the comparison in Figures 1–3 between the figures
of numerical solutions and the figures of exact solutions at t = 0.25, 0.5, 0.75, 1, from which one can
visually see the approximation effect.
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Figure 1. Comparison between u and uh at different time t.
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Figure 2. Comparison between v and vh at different time t.

Remark 5.1. 1) From these two examples, readers can see that the linear basis functions for three
finite element spaces are used. In this article, the presented time second-order fully discrete mixed
finite element scheme is derived by combining Pani’s space H1-mixed element method with a time
second-order SCQ formula, so it also does not need to meet the LBB condition. Further, the degrees
with k, m and r of three polynomial basis functions can be freely selected.
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2) By introducing two auxiliary variables, the original problem is transformed into a low order coupled
system in space-time directions. In this case, many efficient numerical approximation schemes in
time for solving this system can be constructed. From the computational point of view, there are
some small differences among them. However, the related technical difficulty of theoretical analysis by
using different approximation technique is even a big difference, which will bring many challenges to
researchers. For example, in this article, the positive definite property is used for analyzing the stability
and error estimate, which differs from the iterative technique shown in [38].
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Figure 3. Comparison between σ and σh at different time t.

6. Conclusions and advancements

From the data computed by our fully discrete SCQ mixed element method, one can see clearly that
the convergence orders for both space and time are optimal, which is in agreement with our theory
result. With a comparison to the standard Galerkin finite element method for directly solving the
studied fractional wave model, the advantage of this method is that three unknown functions can be
approximated simultaneously. However, the computing time problem is its limitations, which urges us
to further study the fast computing technology based on this method.

In the future, we will extend this method to solve multidimensional fractional wave models and
multi-term time fractional wave equations [49], and consider other SCQ formulas [46, 50] and their
numerical theories.
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