Research article Special Issues

Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation

  • Received: 22 December 2024 Revised: 16 February 2025 Accepted: 27 February 2025 Published: 17 March 2025
  • In this paper, we aim to study the stability and convergence of a finite difference scheme for solving the two-dimensional nonlinear multi-term time fractional subdiffusion equation with weakly singular solutions. We apply the L1 scheme to discretize the multi-term temporal Caputo derivatives, a standard central difference method in space, and a backward formula to approximate the nonlinear term on the uniform mesh, respectively. Stability and pointwise-in-time error estimates are obtained for the fully discrete scheme. The global convergence order is $ \alpha_1 $, and the local convergence order is 1 in the temporal direction. The theoretical analysis is verified by some numerical results.

    Citation: Chang Hou, Hu Chen. Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation[J]. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069

    Related Papers:

  • In this paper, we aim to study the stability and convergence of a finite difference scheme for solving the two-dimensional nonlinear multi-term time fractional subdiffusion equation with weakly singular solutions. We apply the L1 scheme to discretize the multi-term temporal Caputo derivatives, a standard central difference method in space, and a backward formula to approximate the nonlinear term on the uniform mesh, respectively. Stability and pointwise-in-time error estimates are obtained for the fully discrete scheme. The global convergence order is $ \alpha_1 $, and the local convergence order is 1 in the temporal direction. The theoretical analysis is verified by some numerical results.



    加载中


    [1] C. Ming, F. Liu, L. Zheng, I. Turner, V. Anh, Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid, Comput. Math. Appl., 72 (2016), 2084–2097. https://doi.org/10.1016/j.camwa.2016.08.012 doi: 10.1016/j.camwa.2016.08.012
    [2] L. Feng, F. Liu, I. Turner, L. Zheng, Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid, Fract. Calc. Appl. Anal., 21 (2018), 1073–1103. https://doi.org/10.1515/fca-2018-0058 doi: 10.1515/fca-2018-0058
    [3] H. Li, G. ur Rahman, H. Naz, J. F. Gómez-Aguilar, Modeling of implicit multi term fractional delay differential equation: Application in pollutant dispersion problem, Alex. Eng. J., 94 (2024), 1–22. https://doi.org/10.1016/j.aej.2024.03.021 doi: 10.1016/j.aej.2024.03.021
    [4] S. Qin, F. Liu, I. Turner, V. Vegh, Q. Yu, Q. Yang, Multi-term time-fractional Bloch equations and application in magnetic resonance imaging, J. Comput. Appl. Math., 319 (2017), 308–319. https://doi.org/10.1016/j.cam.2017.01.018 doi: 10.1016/j.cam.2017.01.018
    [5] Y. Wang, Y. Zhao, H. Chen, Discrete comparison principle of a finite difference method for the multi-term time fractional diffusion equation, Numer. Algorithms, 93 (2023), 1581–1593. https://doi.org/10.1007/s11075-022-01480-y doi: 10.1007/s11075-022-01480-y
    [6] R. Du, Z. Sun, Temporal second-order difference methods for solving multi-term time fractional mixed diffusion and wave equations, Numer. Algorithms, 88 (2021), 191–226. https://doi.org/10.1007/s11075-020-01037-x doi: 10.1007/s11075-020-01037-x
    [7] J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time-fractional black-scholes equation in european option pricing, Math. Methods Appl. Sci., 2025. https://doi.org/10.1002/mma.10717
    [8] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [9] X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [10] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [11] Y. Mahatekar, A. S. Deshpande, A generalized NPCM for solving multi-term fractional differential equations, Int. J. Appl. Comput. Math., 8 (2022), 115. https://doi.org/10.1007/s40819-022-01305-5 doi: 10.1007/s40819-022-01305-5
    [12] Y. Wei, Y. Zhao, Z. Shi, F. Wang, Y. Tang, Spatial high accuracy analysis of fem for two-dimensional multi-term time-fractional diffusion-wave equations, Acta Math. Appl. Sin. Engl. Ser., 34 (2018), 828–841. https://doi.org/10.1007/s10255-018-0795-1 doi: 10.1007/s10255-018-0795-1
    [13] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [14] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [15] Z. Liu, F. Liu, F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136 (2019), 139–151. https://doi.org/10.1016/j.apnum.2018.10.005 doi: 10.1016/j.apnum.2018.10.005
    [16] P. Lyu, Y. Liang, Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math., 151 (2020), 448–471. https://doi.org/10.1016/j.apnum.2019.11.012 doi: 10.1016/j.apnum.2019.11.012
    [17] D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
    [18] D. Li, J. Zhang, Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain, J. Comput. Phys., 322 (2016), 415–428. https://doi.org/10.1016/j.jcp.2016.06.046 doi: 10.1016/j.jcp.2016.06.046
    [19] Y. Jiang, H. Chen, T. Sun, C. Huang, Efficient L1-ADI finite difference method for the two-dimensional nonlinear time-fractional diffusion equation, Appl. Math. Comput., 471 (2024), 128609. https://doi.org/10.1016/j.amc.2024.128609 doi: 10.1016/j.amc.2024.128609
    [20] D. Li, H. Qin, J. Zhang, Sharp pointwise-in-time error estimate of L1 scheme for nonlinear subdiffusion equations, J. Comput. Math., 42 (2024), 662–678. https://doi.org/10.4208/jcm.2205-m2021-0316 doi: 10.4208/jcm.2205-m2021-0316
    [21] B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1–23. https://doi.org/10.1137/16M1089320 doi: 10.1137/16M1089320
    [22] C. Huang, X. Liu, X. Meng, M. Stynes, Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem, Comput. Methods Appl. Math., 20 (2020), 815–825. https://doi.org/10.1515/cmam-2019-0042 doi: 10.1515/cmam-2019-0042
    [23] D. Cao, H. Chen, Pointwise-in-time error estimate of an ADI scheme for two-dimensional multi-term subdiffusion equation, J. Appl. Math. Comput., 69 (2023), 707–729. https://doi.org/10.1007/s12190-022-01759-2 doi: 10.1007/s12190-022-01759-2
    [24] H. Chen, M. Stynes, Using complete monotonicity to deduce local error estimates for discretisations of a multi-term time-fractional diffusion equation, Comput. Methods Appl. Math., 22 (2022), 15–29. https://doi.org/10.1515/cmam-2021-0053 doi: 10.1515/cmam-2021-0053
    [25] M. Al-Maskari, S. Karaa, Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data, SIAM J. Numer. Anal., 57 (2019), 1524–1544. https://doi.org/10.1137/18M1189750 doi: 10.1137/18M1189750
    [26] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC, 2000. https://doi.org/10.1201/9781482285727
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(43) PDF downloads(7) Cited by(0)

Article outline

Figures and Tables

Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog