Research article

UAV object tracking algorithm based on spatial saliency-aware correlation filter

  • † The authors contributed equally to this work
  • Received: 20 November 2024 Revised: 18 February 2025 Accepted: 07 March 2025 Published: 14 March 2025
  • Recently, correlation filter-based tracking methods have been widely adopted in UAV target tracking due to their outstanding performance and excellent tracking efficiency. However, existing correlation filter-based tracking methods still face issues such as redundant visual features with weak discriminative ability, inadequate spatio-temporal information mining, and filter degradation. In order to overcome these challenges, this paper proposes a spatial saliency-aware strategy that reduces redundant information in spatial and channel dimensions, thus improving the discriminative ability between the target and background. Also, this paper proposes a position estimation mechanism under spatio-temporal joint constraints to fully mine spatio-temporal information and enhance the robustness of the model in complex scenarios. Furthermore, this paper establishes a positive expert group using historical positive samples to assess the reliability of candidate samples, thereby effectively mitigating the filter degradation issue. Ultimately, the effectiveness of the proposed method is demonstrated through the evaluation of multiple public datasets. The experimental results reveal that this method outperforms others in tracking performance under various challenging conditions.

    Citation: Changhui Wu, Jinrong Shen, Kaiwei Chen, Yingpin Chen, Yuan Liao. UAV object tracking algorithm based on spatial saliency-aware correlation filter[J]. Electronic Research Archive, 2025, 33(3): 1446-1475. doi: 10.3934/era.2025068

    Related Papers:

  • Recently, correlation filter-based tracking methods have been widely adopted in UAV target tracking due to their outstanding performance and excellent tracking efficiency. However, existing correlation filter-based tracking methods still face issues such as redundant visual features with weak discriminative ability, inadequate spatio-temporal information mining, and filter degradation. In order to overcome these challenges, this paper proposes a spatial saliency-aware strategy that reduces redundant information in spatial and channel dimensions, thus improving the discriminative ability between the target and background. Also, this paper proposes a position estimation mechanism under spatio-temporal joint constraints to fully mine spatio-temporal information and enhance the robustness of the model in complex scenarios. Furthermore, this paper establishes a positive expert group using historical positive samples to assess the reliability of candidate samples, thereby effectively mitigating the filter degradation issue. Ultimately, the effectiveness of the proposed method is demonstrated through the evaluation of multiple public datasets. The experimental results reveal that this method outperforms others in tracking performance under various challenging conditions.



    加载中


    [1] H. Zhang, P. He, M. Zhang, C. Daqing, E. Neretin, B. Li, UAV target tracking method based on deep reinforcement learning, in International Conference on Cyber-Physical Social Intelligence (ICCSI), IEEE, (2022), 274–277. https://doi.org/10.1109/ICCSI55536.2022.9970588
    [2] R. Wu, Y. Liu, X. Wang, P. Yang, Visual tracking based on spatiotemporal transformer and fusion sequences, Image Vision Comput., 148 (2024), 105107. https://doi.org/10.1016/j.imavis.2024.105107 doi: 10.1016/j.imavis.2024.105107
    [3] J. McGee, S. J. Mathew, F. Gonzalez, Unmanned aerial vehicle and artificial intelligence for thermal target detection in search and rescue applications, in International Conference on Unmanned Aircraft Systems, IEEE, (2020), 883–891. https://doi.org/10.1109/ICUAS48674.2020.9213849
    [4] P. Byukusenge, Y. Zhang, Life detection based on uavs - thermal images in search and rescue operation, in IEEE 22nd International Conference on Communication Technology, IEEE, (2022), 1728–1731. https://doi.org/10.1109/ICCT56141.2022.10073136
    [5] K. Chen, L. Wang, H. Wu, C. Wu, Y. Liao, Y. Chen, et al., Background-aware correlation filter for object tracking with deep cnn features, Eng. Lett., 32 (2024), 1351–1363.
    [6] J. Wen, H. Chu, Z. Lai, T. Xu, L. Shen, Enhanced robust spatial feature selection and correlation filter learning for uav tracking, Neural Networks, 161 (2023), 39–54. https://doi.org/10.1016/j.neunet.2023.01.003 doi: 10.1016/j.neunet.2023.01.003
    [7] J. Lin, J. Peng, J. Chai, Real-time UAV correlation filter based on response-weighted background residual and spatio-temporal regularization, IEEE Geosci. Remote Sens. Lett., 20 (2023), 1–5. https://doi.org/10.1109/LGRS.2023.3272522 doi: 10.1109/LGRS.2023.3272522
    [8] T. Xu, Z. H. Feng, X. J. Wu, J. Kittler, Joint group feature selection and discriminative filter learning for robust visual object tracking, in IEEE/CVF International Conference on Computer Vision, IEEE, (2019), 7949–7959. https://doi.org/10.1109/ICCV.2019.00804
    [9] A. Lukezic, T. Vojir, L. C. Zajc, J. Matas, M. Kristan, Discriminative correlation filter with channel and spatial reliability, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2017), 6309–6318. https://doi.org/10.1109/CVPR.2017.515
    [10] Y. Chen, K. Chen, Four mathematical modeling forms for a correlation filter object tracking algorithm and the fast calculation for the filter, Electron. Res. Arch., 32 (2024), 4684–4714. https://doi.org/10.3934/era.2024213 doi: 10.3934/era.2024213
    [11] L. Bertinetto, J. Valmadre, J. Henriques, A. Vedaldi, P. Torr, Fully-convolutional siamese networks for object tracking, in Computer Vision-ECCV 2016 Workshops, Springer, 9914 (2016), 850–865. https://doi.org/10.1007/978-3-319-48881-3_56
    [12] P. Voigtlaender, J. Luiten, P. H. S. Torr, B. Leibe, Siam r-cnn: Visual tracking by re-detection, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, (2020), 6578–6588. https://doi.org/10.1109/CVPR42600.2020.00661
    [13] X. Chen, B. Yan, J. Zhu, D. Wang, X. Yang, H. Lu, Transformer tracking, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, (2021), 8126–8135. https://doi.org/10.1109/CVPR46437.2021.00803
    [14] B. Yan, H. Peng, J. Fu, D. Wang, H. Lu, Learning spatio-temporal transformer for visual tracking, in IEEE/CVF International Conference on Computer Vision, IEEE, (2021), 10448–10457. https://doi.org/10.1109/ICCV48922.2021.01028
    [15] Y. Cui, C. Jiang, L. Wang, G. Wu, Mixformer: End-to-end tracking with iterative mixed attention, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, (2022), 13608–13618. https://doi.org/10.1109/CVPR52688.2022.01324
    [16] S. Xuan, S. Li, M. Han, X. Wan, G. Xia, Object tracking in satellite videos by improved correlation filters with motion estimations, IEEE Trans. Geosci. Remote Sens., 58 (2020), 1074–1086. https://doi.org/10.1109/TGRS.2019.2943366 doi: 10.1109/TGRS.2019.2943366
    [17] S. Ma, B. Zhao, Z. Hou, W. Yu, L. Pu, X. Yang, Socf: A correlation filter for real-time uav tracking based on spatial disturbance suppression and object saliency-aware, Expert Syst. Appl., 238 (2024), 122131. https://doi.org/10.1016/j.eswa.2023.122131 doi: 10.1016/j.eswa.2023.122131
    [18] J. van de Weijer, C. Schmid, J. Verbeek, D. Larlus, Learning color names for real-world applications, IEEE Trans. Image Process., 18 (2009), 1512–1523. https://doi.org/10.1109/TIP.2009.2019809 doi: 10.1109/TIP.2009.2019809
    [19] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, P. Torr, Staple: Complementary learners for real-time tracking, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2016), 1401–1409. https://doi.org/10.1109/CVPR.2016.156
    [20] H. K. Galoogahi, A. Fagg, S. Lucey, Learning background-aware correlation filters for visual tracking, in IEEE International Conference on Computer Vision, IEEE, (2017), 1135–1143. https://doi.org/10.1109/ICCV.2017.129
    [21] M. Mueller, N. Smith, B. Ghanem, Context-aware correlation filter tracking, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2017), 1396–1404. https://doi.org/10.1109/CVPR.2017.152
    [22] M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg, Eco: Efficient convolution operators for tracking, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2017), 6638–6646. https://doi.org/10.1109/CVPR.2017.733
    [23] C. Ma, J. B. Huang, X. Yang, M. H. Yang, Hierarchical convolutional features for visual tracking, in IEEE International Conference on Computer Vision, IEEE, (2015), 3074–3082. https://doi.org/10.1109/ICCV.2015.352
    [24] M. Danelljan, G. Hager, F. S. Khan, M. Felsberg, Convolutional features for correlation filter based visual tracking, in IEEE International Conference on Computer Vision Workshops, IEEE, (2015), 58–66. https://doi.org/10.1109/ICCVW.2015.84
    [25] K. Dai, D. Wang, H. Lu, C. Sun, J. Li, Visual tracking via adaptive spatially-regularized correlation filters, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, (2019), 4670–4679. https://doi.org/10.1109/CVPR.2019.00480
    [26] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2018), 7132–7141. https://doi.org/10.1109/CVPR.2018.00745
    [27] F. Du, P. Liu, W. Zhao, X. Tang, Joint channel reliability and correlation filters learning for visual tracking, IEEE Trans. Circuits Syst. Video Technol., 30 (2019), 1625–1638. https://doi.org/10.1109/TCSVT.2019.2909654 doi: 10.1109/TCSVT.2019.2909654
    [28] T. Xu, Z. H. Feng, X. J. Wu, J. Kittler, Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking, IEEE Trans. Image Process., 28 (2019), 5596–5609. https://doi.org/10.1109/TIP.2019.2919201 doi: 10.1109/TIP.2019.2919201
    [29] W. Feng, R. Han, Q. Guo, J. Zhu, S. Wang, Dynamic saliency-aware regularization for correlation filter-based object tracking, IEEE Trans. Image Process., 38 (2019), 3232–3245. https://doi.org/10.1109/TIP.2019.2895411 doi: 10.1109/TIP.2019.2895411
    [30] D. Zhao, L. Xiao, H. Fu, T. Wu, X. Xu, B. Dai, Augmenting cascaded correlation filters with spatial-temporal saliency for visual tracking, Inf. Sci., 470 (2019), 78–93. https://doi.org/10.1016/j.ins.2018.08.053 doi: 10.1016/j.ins.2018.08.053
    [31] P. Yang, Q. Wang, J. Dou, L. Dou, Sdcs-cf: Saliency-driven localization and cascade scale estimation for visual tracking, J. Visual Commun. Image Represent., 98 (2024), 104040. https://doi.org/10.1016/j.jvcir.2023.104040 doi: 10.1016/j.jvcir.2023.104040
    [32] C. Fu, J. Xu, F. Lin, F. Guo, T. Liu, Z. Zhang, Object saliency-aware dual regularized correlation filter for real-time aerial tracking, IEEE Trans. Geosci. Remote Sens., 58 (2020), 8940–8951. https://doi.org/10.1109/TGRS.2020.2992301 doi: 10.1109/TGRS.2020.2992301
    [33] X. Yang, S. Li, J. Ma, J. Yang, J. Yan, Co-saliency-regularized correlation filter for object tracking, Signal Process. Image Commun., 103 (2022), 116655. https://doi.org/10.1016/j.image.2022.116655 doi: 10.1016/j.image.2022.116655
    [34] P. Zhang, W. Liu, D. Wang, Y. Lei, H. Wang, H. Lu, Non-rigid object tracking via deep multi-scale spatial-temporal discriminative saliency maps, Pattern Recognit., 100 (2020), 107130. https://doi.org/10.1016/j.patcog.2019.107130 doi: 10.1016/j.patcog.2019.107130
    [35] L. Gao, B. Liu, P. Fu, M. Xu, J. Li, Visual tracking via dynamic saliency discriminative correlation filter, Appl. Intell., 52 (2022), 5897–5911. https://doi.org/10.1007/s10489-021-02260-2 doi: 10.1007/s10489-021-02260-2
    [36] F. Li, C. Tian, W. Zuo, L. Zhang, M. H. Yang, Learning spatial-temporal regularized correlation filters for visual tracking, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2018), 4904–4913. https://doi.org/10.1109/CVPR.2018.00515
    [37] Y. Li, C. Fu, F. Ding, Z. Huang, G. Lu, Autotrack: Towards high-performance visual tracking for uav with automatic spatio-temporal regularization, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, (2020), 11920–11929. https://doi.org/10.1109/CVPR42600.2020.01194
    [38] Y. Chen, H. Wu, Z. Deng, J. Zhang, H. Wang, L. Wang, et al., Deep-feature-based asymmetrical background-aware correlation filter for object tracking, Digital Signal Process., 148 (2024), 104446. https://doi.org/10.1016/j.dsp.2024.104446 doi: 10.1016/j.dsp.2024.104446
    [39] Z. Song, J. Yu, Y. P. P. Chen, W. Yang, Transformer tracking with cyclic shifting window attention, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2022), 8791–8800. https://doi.org/10.1109/CVPR52688.2022.00859
    [40] M. Danelljan, G. Hager, F. S. Khan, M. Felsberg, Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2016), 1430–1438. https://doi.org/10.1109/CVPR.2016.159
    [41] M. Danelljan, A. Robinson, F. S. Khan, M. Felsberg, Beyond correlation filters: Learning continuous convolution operators for visual tracking, in European Conference on Computer Vision, Springer, (2016), 472–488. https://doi.org/10.1007/978-3-319-46454-1_29
    [42] Q. Hu, H. Wu, J. Wu, J. Shen, H. Hu, Y. Chen, et al., Spatio-temporal self-learning object tracking model based on anti-occlusion mechanism, Eng. Lett., 31 (2023), 1141–1150.
    [43] Y. Huang, Y. Chen, C. Lin, Q. Hu, J. Song, Visual attention learning and antiocclusion-based correlation filter for visual object tracking, J. Electron. Imaging, 32 (2023), 013023. https://doi.org/10.1117/1.JEI.32.1.013023 doi: 10.1117/1.JEI.32.1.013023
    [44] Y. Wu, J. Lim, M. H. Yang, Online object tracking: A benchmark, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2013), 2411–2418. https://doi.org/10.1109/CVPR.2013.312
    [45] S. Li, D. Y. Yeung, Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models, in AAAI Conference on Artificial Intelligence, AAAI Press, (2017), 4140–4146.
    [46] M. Mueller, N. G. Smith, B. Ghanem, A benchmark and simulator for uav tracking, in European Conference on Computer Vision, Springer, (2016), 445–461. https://doi.org/10.1007/978-3-319-46448-0_27
    [47] S. Ma, Z. Zhao, L. Pu, Z. Hou, L. Zhang, X. Zhao, Learning discriminative correlation filters via saliency-aware channel selection for robust visual object tracking, J. Real-Time Image Process., 20 (2023), 51. https://doi.org/10.1007/s11554-023-01306-7 doi: 10.1007/s11554-023-01306-7
    [48] M. Danelljan, G. Hager, F. S. Khan, M. Felsberg, Learning spatially regularized correlation filters for visual tracking, in IEEE International Conference on Computer Vision, IEEE, (2015), 4310–4318. https://doi.org/10.1109/ICCV.2015.490
    [49] M. Danelljan, G. Hager, F. S. Khan, M. Felsberg, Discriminative scale space tracking, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2016), 1561–1575. https://doi.org/10.1109/TPAMI.2016.2609928 doi: 10.1109/TPAMI.2016.2609928
    [50] N. Wang, W. Zhou, Q. Tian, R. Hong, M. Wang, H. Li, Multi-cue correlation filters for robust visual tracking, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, (2018), 4844–4853. https://doi.org/10.1109/CVPR.2018.00509
    [51] Z. Huang, C. Fu, Y. Li, F. Lin, P. Lu, Learning aberrance repressed correlation filters for real-time UAV tracking, in IEEE/CVF International Conference on Computer Vision, IEEE, (2019), 2891–2900. https://doi.org/10.1109/ICCV.2019.00298
    [52] C. Fu, J. Ye, J. Xu, Y. He, J. Xu, Y. He, Disruptor-aware interval-based response inconsistency for correlation filters in real-time aerial tracking, IEEE Trans. Geosci. Remote Sens., 59 (2021), 6301–6313. https://doi.org/10.1109/TGRS.2020.3030265 doi: 10.1109/TGRS.2020.3030265
    [53] X. F. Zhu, X. J. Wu, T. Xu, Z. H. Feng, J. Kittler, Robust visual object tracking via adaptive attribute-aware discriminative correlation filters, IEEE Trans. Multimedia, 24 (2022), 301–312. https://doi.org/10.1109/TMM.2021.3050073 doi: 10.1109/TMM.2021.3050073
    [54] C. Ma, X. Yang, C. Zhang, M. H. Yang, Long-term correlation tracking, in IEEE Conference on Computer Vision and Pattern Recognition, (2015), 5388–5396. https://doi.org/10.1109/CVPR.2015.7299177
    [55] Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, in Computer Vision-ECCV 2014 Workshops, Springer, 8926 (2015), 254–265. https://doi.org/10.1007/978-3-319-16181-5_18
    [56] M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg, Atom: Accurate tracking by overlap maximization, in IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2019), 4660–4669. https://doi.org/10.1109/CVPR.2019.00479
    [57] G. Bhat, M. Danelljan, L. V. Gool, R. Timofte, Learning discriminative model prediction for tracking, in IEEE/CVF International Conference on Computer Vision, IEEE, (2019), 6182–6191. https://doi.org/10.1109/ICCV.2019.00628
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(108) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog