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Abstract: Recently, correlation filter-based tracking methods have been widely adopted in UAV target
tracking due to their outstanding performance and excellent tracking efficiency. However, existing
correlation filter-based tracking methods still face issues such as redundant visual features with weak
discriminative ability, inadequate spatio-temporal information mining, and filter degradation. In order to
overcome these challenges, this paper proposes a spatial saliency-aware strategy that reduces redundant
information in spatial and channel dimensions, thus improving the discriminative ability between the
target and background. Also, this paper proposes a position estimation mechanism under spatio-temporal
joint constraints to fully mine spatio-temporal information and enhance the robustness of the model
in complex scenarios. Furthermore, this paper establishes a positive expert group using historical
positive samples to assess the reliability of candidate samples, thereby effectively mitigating the filter
degradation issue. Ultimately, the effectiveness of the proposed method is demonstrated through the
evaluation of multiple public datasets. The experimental results reveal that this method outperforms
others in tracking performance under various challenging conditions.

Keywords: UAV object tracking; spatial saliency perception; positive expert group; spatio-temporal
joint constraints

1. Introduction

UAV object tracking technology is widely used in harsh environments unsuitable for human visual
positioning, such as high-altitude operations [1], military surveillance [2], personnel rescue in fire
environments [3], and object anchoring in nuclear radiation-polluted areas [4]. This technology primarily
involves real-time positioning and continuous monitoring capabilities for specific objects.
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UAV object tracking needs to cope with common tracking challenges and tackle some unique
challenges as follows: 1) Due to the broad aerial-to-ground perspective, background interference is
significantly increased compared to conventional tracking tasks; 2) The small size of UAVs results in
minimal carrying capacity, power, and computational resources; 3) Flight-induced vibrations caused
by aerial turbulence can lead to motion blur in the captured images, making robust feature extraction
more challenging. Consequently, UAV object-tracking algorithms still have significant potential for
improvement and research value.

UAV object tracking algorithms can be broadly divided into discriminative correlation filter (DCF)-
based methods [5–10] and deep learning-based approaches [11–15]. While deep learning techniques
achieve outstanding object-tracking performance, they are unsuitable for deployment on UAV systems
with constrained computational resources. DCF algorithms have emerged as the leading framework for
UAV object tracking, owing to their computational efficiency and robust performance on single-core
CPUs. This character makes them ideal for resource-constrained edge computing platforms, including
UAVs and autonomous vehicles. Although DCF algorithms have progressed in UAV object tracking,
existing DCF trackers still exhibit limitations in feature extraction, filter degradation, and spatiotemporal
feature fusion.

Initial correlation filter algorithms primarily depended on handcrafted features [16], such as his-
togram of oriented gradient (HOG) [17] and color names (CN) [18], for object representation. These
algorithms demonstrated outstanding tracking performance and efficient computational capabilities,
achieving a state-of-the-art level [19–21]. Nonetheless, these handcrafted features often fail to capture
subtle differences among similar objects in complex environments, hindering effective differentiation
between the object and background. As a result, some researchers adopted deep features obtained from
convolutional neural networks (CNN) to augment the tracking accuracy of correlation filters [5, 22–24].
However, these high-dimensional features still contain redundant and potentially harmful information.
To address these problems, researchers have focused on feature reduction and selection. For instance,
some trackers employ principal component analysis (PCA) [22, 25] to reduce the dimensionality of
deep features. Some researchers introduced attention mechanisms [26] and dynamic weight allocation
strategies [9, 27] to filter adequate spatial and channel information, suppressing invalid or harmful
information. Likewise, the GFS-DCF [8] method introduced group sparsity statistical priors to select
more significant spatial and channel information. LADCF [28] achieves joint spatio-temporal filter
learning on a low-dimensional discriminative manifold, leveraging adaptive spatial feature selection and
temporal consistency constraints. Moreover, due to the DCF algorithm’s use of cyclic shift operators to
form training samples, discontinuities arise at the shift junctions, creating boundary effects.

To enhance the discrimination of perspective features and remove redundant or detrimental informa-
tion, scholars have started integrating saliency detection into the DCF tracking framework, developing
advanced algorithms, and making notable progress. For example, in [29], object saliency maps are in-
corporated into regularization weights to suppress background noise dynamically. Similarly, DRCF [30]
integrates cascading discriminative correlation filters with spatio-temporal saliency to enhance the
robustness and precision of object tracking. SDCS-CF [31] uses a lightweight, fully convolutional
network to produce saliency maps that serve as differential weights for features in the search area,
thereby boosting the tracker’s resilience to background disturbances. Alternative methods use image
saliency data to establish spatial or temporal regularization constraints [32,33] or rely on spatio-temporal
saliency maps to strengthen object feature representation [34, 35]. Yet, most methods focus on reducing
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spatial or channel information, neglecting their interconnections. To bolster the link between spatial and
channel data, we introduce a feature reduction strategy that is aware of saliency channels, directing the
selection of channel features and allocating channel attention through spatial saliency information.

The integration of spatio-temporal information is crucial in object tracking. Yet, traditional UAV
DCF approaches have not thoroughly explored this aspect. In recent years, scholars have increasingly
recognized the importance of spatio-temporal information, leading to fruitful explorations. For example,
STRCF [36] adopts a spatio-temporal regularization method to fuse temporal and spatial information.
Unlike the fixed parameters of STRCF, AutoTrack [37] leverages local and global data to devise an
adaptive method for tuning regularization parameters. Similarly, DeepABCF [38] employs spatio-
temporal anomaly suppressors to mitigate adverse effects from intraclass disruptions and complex
backdrops. Specific deep learning techniques, such as CSWinTT [39] and STARK [14], utilize dynamic
templates to delve into spatio-temporal information. Drawing inspiration from these methods, we have
formulated boundary suppression factors, spatial interference suppressors, and spatiotemporal anomaly
suppressors to develop a precise model for object localization.

Filter degradation significantly contributes to tracker failures, especially under partial or complete
occlusion, where degraded filters might incorrectly identify occluding objects as the object. To tackle
this issue, several researchers have incorporated multiple historical positive samples into the learning
process of filters, like SRDCFdecon [40], C-COT [41], STSL [42], and VALACF [43]. Inspired by these
methods, we present a strategy to assess the reliability of optimal candidate objects through a panel of
optimistic experts. This involves forming a group with multiple historical positive samples, evaluating
the reliability of candidate samples in each frame, and updating the filter with the most reliable samples.

In summary, this article introduces a UAV object tracking algorithm utilizing spatial saliency-aware
correlation filtering, dubbed SSACF. The key contributions of this study are outlined as follows:

(i) We introduce a spatial saliency-aware strategy employing the object’s color statistical histograms
to build a non-standard saliency-aware mask. This method replaces “symmetric” sampling with
“asymmetric” sampling, leveraging the object’s shape characteristics to filter background interference
and enhance spatial feature discrimination. Based on this, spatial saliency is utilized to guide the
reduction of channel information.

(ii) We introduce a positioning estimation mechanism under joint spatio-temporal constraints, em-
ploying boundary suppression factors to reduce boundary effects and spatial interference suppressors to
diminish intraclass interference. Furthermore, the mechanism incorporates spatio-temporal anomaly
suppression regularizers that analyze response differences between adjacent frames to regulate filter
outputs in abnormal regions. These actions thoroughly leverage spatio-temporal information.

(iii) We utilize historical positive samples to form a panel of optimistic experts to assess the reliability
of candidate samples. If reliability falls below a predefined threshold, indicating contamination, filter
learning is paused, effectively mitigating filter degradation during occlusion scenarios.

The subsequent sections of this paper are organized as follows: Section 2 provides the necessary
preliminary background. Section 3 elaborates on the details of implementing the proposed tracking
methods. Section 4 presents the evaluation results, comparing our algorithm against state-of-the-art
(SOTA) trackers on four benchmark datasets: OTB100 [44], DTB70 [45], UAV123 [46], and UAV20L.
Finally, the paper concludes with a summary of key findings and future research directions.
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2. Preliminary knowledge

2.1. Review of DCF

Accurately localizing an object in continuous video frames is essential for visual object tracking.
The correlation filter (DCF)-based method seeks to predict the initial location of the object in a video.
This process assumes that the expected location of the tracked object in frame t+1 is determined by
training a filterWt ∈ RH×W×C, represented as a W ×H matrix with C-dimensional channel features. The
training sample Xt from frame t and the corresponding Gaussian-shaped expected response map Y are
utilized. To obtain multi-channel correlation filters, DCF formulates the tracking task as a regularized
least squares problem:

Wt = argmin
Wt

1
2

∥∥∥∥∥∥∥
C∑

c=1

X{c}t ⋆W{c}
t − Y

∥∥∥∥∥∥∥
2

2

+
λ

2

C∑
c=1

∥∥∥W{c}
t

∥∥∥2
F = argmin

Wt

1
2

∥∥∥∥∥∥∥
C∑

c=1

X{c}t ∗ W̄{c}
t − Y

∥∥∥∥∥∥∥
2

2

+
λ

2

C∑
c=1

∥∥∥W{c}
t

∥∥∥2
F ,

(2.1)

where ⋆ represents the cyclic correlation operator, and ∗ is the cyclic convolution operator. λ is
the regularization parameter, W{c}

t ∈ R
H×W is the corresponding discriminative correlation filter, and

X{c}t ∈ R
H×W denotes the feature of the c-th channel. W̄{c}

t is obtained by first reversing W{c}
t row-wise,

then performing a one-unit cyclic shift, then reversing it column-wise and shifting it cyclically. If

W{c}
t =


1 2 3
4 5 6
7 8 9

, then W̄{c}
t =


9 7 8
2 3 1
6 4 5

.
The least squares problem can be subsequently converted into the Fourier domain. By deriving the

closed-form solution to Eq (2.1), the solution for the filterWt ∈ R
H×W×C is obtained through Fourier

transform and complex conjugate operations, as follows:

Ŵ{c}
t =

X̂{c}t ⊙ Ŷ∗

C∑
c=1

(
X̂{c}t

)∗
⊙ X̂{c}t + λ

, (2.2)

where .̂ denotes the discrete Fourier transform, ⊙ represents entry-wise multiplication, and .∗ stands for
the complex conjugate operator.

In the following frame, the response map R ∈ RH×W is calculated by extracting the feature vector
Z ∈ RH×W×C. This is done using the inverse Fourier transform, where the features from all channels are
multiplied element-wise with the filter in the Fourier domain and summed, and then an inverse Fourier
transform is performed to obtain the response map R, as described below:

R = real
F −1

 C∑
c=1

Ẑc
⊙

(
Ŵ{c}

t

)∗ , (2.3)

where F −1 represents the inverse Fourier transform, and the object position in frame t+1 is determined
by the peak location in the response map R. real refers to the real part operator.

2.2. Spatial saliency awareness

Leveraging feature extraction, this study employs an “asymmetric” sampling mechanism to dynam-
ically allocate visual spatial attention within the tracker, significantly improving the differentiation
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between the object and the background. In addressing spatial saliency, a spatial saliency perception
matrix M facilitates asymmetric background awareness. The design specifics of the matrix M are
detailed as follows:

Assuming the test sample is Z ∈ RRh×Cw×3, based on Bayes’ posterior probability theorem, the
probability that pixel zp=(r, c)T belongs to the object is:

p
(
m = 1| zp

)
∝ p
(
zp|m = 1

)
p (m = 1) , (2.4)

where m is an element of the spatial saliency perception matrix M ∈ RRh×Cw , m = 1 indicates that pixel
zp belongs to the object, and m = 0 indicates that the pixel originates from the contextual background.

p
(
zp

)
= 1

RhCw
is a constant probability, ∝ denotes proportionality, and p

(
zp|m = 1

)
=e−
∥zp−p(t−1)∥

2
2

2σ2 signifies
the spatial prior probability of the object, with σ representing the standard deviation of the Gaussian
window, and p(t−1) indicating the object’s location in the previous frame. p (m = 1) signifies the
probability associated with color likelihood, defined as:

p (m = 1)=aT ek(zp), (2.5)

where the color information from each pixel is converted into a vector ek(zp) ∈ R
N j×1 (where N j is the

number of color categories). The vector is a one-hot vector (with a value of 1 at the k(zp)-th position
and 0 elsewhere, where k(zp) represents the color index at the pixel zp). d =

{
do, db

}
is the color

histogram, and p (m = 1) is calculated after back-projecting to spatial pixels. do
∈ RN j×1 represents the

object’s color histogram, and db
∈ RN j×1 represents the background’s color histogram. a ∈ RN j×1 is the

regression filter for color histograms, with its solving function as follows:

La=min
a

N j∑
j=1

[
do

j

(
a j − 1

)2
+ db

j

(
a j

)2]
+λ ∥a∥22, (2.6)

where λ is a hyper-parameter of the ridge regression. ∥a∥22 =

√
N j∑
j=1

a2
j is the L2 norm of the vector

a ∈ RN j×1, and a j represents the entry of a. Similarly, do
j and db

j represent the entries of do and db,
respectively. The answer to Eq (2.6) is provided:

a j =
do

j

do
j + db

j+λ
. (2.7)

Note: In Eq (2.7), division is element-wise.
Through binarization of the probabilities detailed in Eq (2.4), the spatial saliency perception matrix

M is formulated. The matrix elements m take values of either 0 or 1.

m =
1, p

(
m = 1| zp

)
> α

0, others
, (2.8)

where α ∈ (0, 1) serves as the posterior probability threshold that dictates whether a pixel is part of the
object. If α is set too low, asymmetric sampling may capture too much background detail; conversely, if
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it is set too high, vital object information may be omitted. In real-world settings, manual adjustment of
this parameter is typically necessary to fine-tune tracking performance. Once M is acquired, it needs to
be reshaped to RH×W to facilitate correlation filtering.

Additionally, color information is derived by transitioning the image from the RGB to the HSV color
space. The hue component is segmented into N j intervals ranging from 0 to 1, followed by computing a
color histogram for the hue component of each pixel within the object. Likewise, the color histogram
for the hue component of each pixel in the background is calculated. This method allows for estimating
the color type k(zp) of each pixel by directly determining the interval to which its hue component
corresponds. However, as this approach is not directly applicable to grayscale images, intervals from
0 to 1 are defined for such images, and histograms for the grayscale values of object and background
pixels are computed within each interval. This method permits the estimation of each pixel’s color from
its grayscale value. However, as color information is essential for object tracking, the effectiveness of
this approach is reduced on grayscale images compared to color images.

3. Method

3.1. Spatial saliency-based feature reduction strategy

The effectiveness of deep learning in object tracking largely stems from the capability of neural
networks to extract superior and more refined deep features. Although numerous methods incorporate
image saliency information to develop spatial/temporal regularization terms [29, 32, 33] for reducing
boundary effects or managing object appearance variations through reinforcement learning, the limited
training samples in visual tracking pose challenges. This scarcity often leads to overlooked connections
between multi-channel features and object saliency information. Employing a deep network trained in a
particular object to extract its multi-channel features can result in the inclusion of numerous interfering
channels. When the DCF tracker extracts features from the search region and generates the response map
according to the object’s location, it should prioritize analyzing the energy levels of feature channels
specifically within the object region. This paper is dedicated to allocating attention to object channels
and selecting channel features based on their saliency within the feature space.

As shown in Figure 1, to quantify the confidence of feature channels, we use the asymmetric sampling
from Section 2.2 to obtain the spatial saliency of the object. We subsequently apply weights to the
extracted feature maps of the object to generate the object-perception and background-perception region
feature maps. Finally, by calculating the average energy of these two parts, we use the FR (Feature
Reliability) index as an evaluation metric to allocate object channel attention and select channel features.
The FR [47] index is defined as:

FR{c} =
EO

(
X{c}t

)
EB

(
X{c}t

) , c = 1, 2, · · · ,C, (3.1)

where FR{c} denotes the FR value of the c-th channel, and EO

(
X{c}t

)
denotes the average energy of the

object-perception region, calculated as:

EO

(
X{c}t

)
=

∑
(i, j)∈O

X{c}t (i, j)

AO
,

(3.2)
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where X{c}t (i, j) denotes the feature located at position (i, j) in the current frame, and AO indicates the
area of the object-perception region.

Similarly, EB

(
X{c}t

)
denotes the average energy of the background region:

EB

(
X{c}t

)
=

∑
(i, j)∈S

X{c}t (i, j) −
∑

(i, j)∈O
X{c}t (i, j)

AS − AO
,

(3.3)

where AS signifies the area of the object search region.

Figure 1. Spatial saliency-based feature reduction strategy.

Based on the earlier equations, it is evident that a high FR score signifies that the feature channel
contains substantial object-related information, while a low FR score indicates the presence of more
background noise in the channel. Thus, this section evaluates the FR scores for all feature channels
and strategically selects channels with higher FR scores for filter training using established weights.
This approach minimizes the negative impact of low-confidence channels during filter learning. The
specific methodology employs the FR index to determine the importance of each channel, subsequently
assigning differential weights to channels based on their assessed importance. The calculation procedure
is outlined as follows:

s{c} = 1 +
1
2
×

FR{c} −min(FR)
max(FR) −min(FR)

, (3.4)

where s{c} denotes the weight of the c-th feature channel, min(FR) is the minimum FR score across all
channels, and the max(FR) is the maximum FR score across all channels.

This method effectively improves the precision of feature channel selection during the object-tracking
process, thereby enhancing the robustness and accuracy of tracking.
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3.2. Position estimation mechanism with spatio-temporal joint constraints

In this strategy, to achieve precise object localization and tracking, we design boundary suppression
regularization factors, spatial interference suppression regularization factors, and spatio-temporal outlier
suppression regularization factors to integrate both spatial and temporal constraints. The boundary
suppression regularization term utilizes a fixed inverse Gaussian function, as detailed in [48], to
alleviate boundary effects resulting from the assumption of periodic boundary conditions. The spatial
interference suppression regularization factors analyze response map variations between consecutive
frames to effectively capture the position of interference sources in the current frame, thus suppressing
their impact on the object tracking process. The spatio-temporal anomaly suppression regularization
factors aim to suppress pixels with notable changes in adjacent frames, mitigating tracking drift resulting
from out-of-plane rotation and significant object deformations.

By incorporating the spatial saliency sampling scheme, we introduce the spatial saliency perception
matrix M to build a spatial saliency correlation filtering framework, and apply spatial saliency constraints
G{c} = M ⊙ W{c}, to each channel filter W{c}. The objective function for the tracking model is then
formulated as:

L
(
G{c},W{c} | M

)
= 1

2

∥∥∥∥∥∥ C∑
c=1

X{c}t ⋆ G{c} − Y
∥∥∥∥∥∥2

2

+ λ2

C∑
c=1

∥∥∥W̃ ⊙M ⊙W{c}
∥∥∥2

2

s.t. G{c} = M ⊙W{c}
, (3.5)

where W̃ represents the spatio-temporal outlier suppression regularization factors, and the factor is
defined as:

W̃ = SB + θ1ST + θ2SS , (3.6)

where θ1 and θ2 represent the balance parameters, SB represents the fixed-shape inverse Gaussian spatial
regularization factors used to suppress boundary effects, ST =

|R(t)[∆t]−R(t−1)[∆t−1]|
R(t−1)[∆t−1]

represents the spatio-
temporal anomaly suppression regularization factors, R(t−1) [∆t−1] denotes the map after the peak value
of R(t−1) is shifted to the center of the search space by the shift operator [∆t−1], and R(t) [∆t] represents
the map after the peak value of R(t) is shifted to the center of the search space by the cyclic shift
operator [∆t], with the shift distance ∆t calculated based on the relative distance between the peak value
position of R(t) and the center of the region; SS = IS [∆t] is the spatio-temporal anomaly suppression
regularization factors, and IS represents the interference object detection matrix, with elements:

IS (x, y) =

1, if (x, y) is detected as the peak position
0, others

, (3.7)

where Is [∆t] represents the matrix obtained by shifting Is to the center of the search space using the
cyclic shift operator [∆t].

3.3. Evaluation of optimal candidate object reliability based on the positive expert group

Traditional correlation filter tracking methods often treat the sample with the highest response as
the object appearance in the current frame, disregarding the reliability of this prime candidate. This
practice can lead to filter degradation in cases of occlusion. In response to this challenge, this paper
introduces an evaluation method for the reliability of optimal candidate objects using a positive expert
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group. This approach determines the reliability of various samples by archiving object appearance slices
from different historical periods and selecting the most reliable one for tracking. Without historical data
for the first frame, the positive expert group comprises image segments of the object captured from
different perspectives or states within that frame.

Figure 2. Positive expert group process flow diagram.

As illustrated in Figure 2, these slices serve as reference templates in subsequent frames. They
enable the filter to choose the most reliable samples from the positive expert group during occlusions or
disturbances. In processing the following frames, the filter first identifies the sample with the highest
response value and extracts its features. Subsequently, the extracted features are compared with those
from the positive expert group to determine the sample that most closely resembles a positive sample
from the past. If the similarity exceeds a specified threshold, the sample is regarded as reliable and
adopted as the object appearance for updating the filter in the current frame. Conversely, if the sample
fails to meet the similarity threshold, it is not added to the positive expert group, thereby preventing
filter degradation. The detailed implementation process is as follows:

For the initial frame, since there is no historical data, the positive expert group is entirely composed
of patches from the first frame, i.e., pn=vec(T(1)(n=1,2, · · · ,N), where pn represents the n-th column
vector in the positive expert group matrix P, and T(1) ∈ Ru(1)

H ×u(1)
W represents the patches of the object

in the first frame (a four-dimensional tensor, where the first frame’s object template T (1) ∈ Ru(1)
H ×u(1)

W ×3

is reformulated into matrix form T(1) to reduce computation). Beginning with the second frame, it is
assumed that the optimal candidate object derived from the correlation response is Q (for convenience in
subsequent storage and computation, Q is converted to a grayscale image Q ∈ Ru(1)

h ×u(1)
w , and its column

vector q = vec(Q)), from which HOG features are extracted from both pn and q as:hpn =
HOG(pn)

max(HOG(pn))

hq =
HOG(q)

max(HOG(q))

, (3.8)

where HOG(q) represents the extracted HOG-features of q, and max(HOG(q)) represents the peak
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value of the HOG-features. Finally, the maximum cosine similarity is computed to determine whether
the object is occluded.

When max(cos(hpn ,hq)) exceeds a certain threshold τ, the most dissimilar positive expert template
from the second to the N-th patches in the positive expert group is eliminated. Subsequently, q replaces
the eliminated positive expert template. If the similarity falls below the threshold, it is presumed that
the object is occluded; consequently, updates to the training samples, filter, positive expert group, and
background color histograms are withheld.

3.4. Solving the objective function filter for the tracking model

In this section, for resolving the tracking model, we draw upon [10], employ the Lagrange multiplier
Lc along with a quadratic penalty constraint term, and develop the augmented Lagrangian function
representation of the objective function as:

L
(
G{c}, W{c}, L{c}|M

)
=

1
2

∥∥∥∥∥∥∥
C∑

c=1

X{c} ∗ Ḡ{c} − Y

∥∥∥∥∥∥∥
2

2

+
λ

2

C∑
c=1

∥∥∥W̃ ⊙M ⊙W{c}
∥∥∥2

2

+ β

C∑
c=1

tr
{
LW{c}

(
G{c} −M ⊙W{c}

)}
+
β

2

C∑
c=1

∥∥∥G{c} −M ⊙W{c}
∥∥∥2

2,

(3.9)

where tr (X) signifies the trace of the matrix X, and β represents the coefficient associated with the
quadratic penalty function.

Through the application of the spatial convolution theorem, Eq (3.9) is reformulated as:

L

(
Ĝ{c}, Ŵ{c}

, L̂{c}|M
)
= max

L̂{c}
min

Ĝ{c}, Ŵ{c}



1
2

∥∥∥∥∥∥∥
C∑

c=1

X̂{c} ⊙
(
Ĝ{c}
)∗
− Ŷ

∥∥∥∥∥∥∥
2

2

+
λ

2

C∑
c=1

∥∥∥W̃ ⊙M ⊙W{c}
∥∥∥2

2

+ β

C∑
c=1

tr
{
L̂W{c}

(
Ĝ{c} − fft2

(
M ⊙W{c}

))}
+
β

2

C∑
c=1

∥∥∥∥Ĝ{c} − fft2
(
M ⊙W{c}

)∥∥∥∥2
2


(3.10)

where X̂ denotes the frequency domain signal of X, and fft2 represents the 2D Fourier transform
operator.

Rewriting Eq (3.10) as a vector form, we obtain:

L

(
ĝ{c}, w{c}, l̂{c}|M

)
= max

l̂{c}


min

ĝ{c}, w{c}



1
2

∥∥∥∥∥∥∥
C∑

c=1

(ĝ{c})∗ ⊙ x̂{c} − ŷ

∥∥∥∥∥∥∥
2

2

+
λ

2

C∑
c=1

∥∥∥Diag(w̃)Pmw{c}
∥∥∥2

2

+ β

C∑
c=1

{
l̂W {c}
[
ĝ{c} −

(
FPmw{c}

)]}
+
β

2

C∑
c=1

∥∥∥∥ĝ{c} − (FPmw{c}
)∥∥∥∥2

2




, (3.11)

where l̂
{c}

, ĝ{c}, and ŵ{c} denote the vector forms of matrices L̂{c}, Ĝ
{c}

, and Ŵ{c}
; x̂=Fx=vec(fft2(X))

(with F = F√D ⊗ F√D, ⊗ representing the Kronecker product operator, F√D ∈ C
√

D×
√

D representing
the discrete Fourier transform matrix with dimensions

√
D ×
√

D, where D=H ×W), Pm ∈ R
D×D is a

diagonal matrix with diagonal elements Pm(i,i)=
{

1 m(i) , 0
0 others

i=1, 2, · · · ,D, and Diag(w̃) refers to the

operator that inserts the vector elements w̃ into the diagonal positions of a zero matrix.
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The sub-problems are solved by iterative minimization using the alternating direction method:

(ĝ{c})(i+1) = argmin
ĝ{c}

Lĝ{c}

(
ĝ{c}
∣∣∣∣(w{c})(i+1), (l̂{c})(i),M

)
(w{c})(i+1) = argmin

w{c}
Lw{c}

(
w{c}
∣∣∣∣(ĝ{c})(i+1), (l̂{c})(i),M

)
(l̂{c})(i+1) = argmin

l̂{c}
Ll̂{c}

(
l̂{c}
∣∣∣∣(ĝ{c})(i+1), (w{c})(i+1),M

) (3.12)

where Lĝ{c}

(
ĝ{c}
∣∣∣∣(w{c})(i+1), (l̂{c})(i),M

)
, Lw{c}

(
w{c}
∣∣∣∣(ĝ{c})(i+1), (l̂{c})(i),M

)
, and Ll̂{c}

(
l̂{c}
∣∣∣∣(ĝ{c})(i+1), (w{c})(i+1),M

)
denote the

objective functions of the individual sub-problems.

3.4.1. Solving the ĝ{c}-subproblem

The components pertaining to ĝ{c} within the augmented Lagrangian function establish the sub-
objective function for ĝ{c}, as outlined below:

Lĝ{c}

(
ĝ{c}|(w{c})(i)

, (l̂{c})(i),M
)

= min
ĝ{c}

1
2

∥∥∥∥∥∥∥
C∑

c=1

(ĝ{c})∗ ⊙ x̂{c} − ŷ

∥∥∥∥∥∥∥
2

2

+
β

2

∥∥∥∥∥(l̂{c})(i)
∥∥∥∥∥2

2
+ β

C∑
c=1

{
l̂H
[
ĝ{c} −

(
FPm(w{c})(i)

)]}
+
β

2

C∑
c=1

∥∥∥∥∥ĝ{c} − (FPm(w{c})(i)
)∥∥∥∥∥2

2
−
β

2

∥∥∥∥∥(l̂{c})(i)
∥∥∥∥∥2

2

= min
ĝ{c}

1
2

∥∥∥∥∥∥∥
C∑

c=1

(ĝ{c})∗ ⊙ x̂{c} − ŷ

∥∥∥∥∥∥∥
2

2

+
β

2

C∑
c=1

∥∥∥∥∥ĝ{c} − (FPm(w{c})(i)
)
+(l̂{c})(i)

∥∥∥∥∥2
2
−
β

2

∥∥∥∥∥(l̂{c})(i)
∥∥∥∥∥2

2

= min
ĝ{c}

1
2

∥∥∥∥∥∥∥
C∑

c=1

ĝ{c} ⊙
(
x̂{c}
)∗
− ŷ*

∥∥∥∥∥∥∥
2

2

+
β

2

C∑
c=1

∥∥∥∥∥ĝ{c} − (FPm(w{c})(i)
)
+(l̂{c})(i)

∥∥∥∥∥2
2
−
β

2

∥∥∥∥∥(l̂{c})(i)
∥∥∥∥∥2

2
.

(3.13)
Differentiating the objective function concerning ĝ{c} and setting it equal to zero, we obtain:

C∑
c=1

x̂{c} ⊙ (x̂{c})∗ ⊙ ĝ{c} − x̂{c} ⊙ ŷ* + βĝ{c} − βFPm(w{c})(i)
+ β(l̂{c})

(i)
= 0. (3.14)

By combining similar terms for ĝ{c}, we get:

{
ĝ{c}
}(i+1)

=
x̂{c} ⊙ ŷ* + βFPm(w{c})(i)

− β(l̂{c})
(i)

C∑
c=1

x̂{c} ⊙ (x̂{c})∗ + β
, (3.15)

where the division sign in the above equation indicates element-wise division.
Writing Eq (3.15) in matrix form gives:

{
Ĝ{c}
}(i+1)

=
X̂{c} ⊙ Ŷ*

+ βmat
(
FPm(w{c})(i))

− β(L̂{c})
(i)

C∑
c=1

X̂{c} ⊙ (X̂{c})
∗

+ β

, (3.16)

where mat denotes the operator responsible for converting a vector into a matrix.
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3.4.2. Solving the w{c}-subproblem

The components associated with w{c} in the augmented Lagrangian function constitute the sub-
objective function for w{c}, detailed below:

Lw{c}

(
h{c}|(g{c})(i+1)

, (l̂{c})(i),M
)

= min
w{c}

λ2
C∑

c=1

∥∥∥Diag(w̃)Pmw{c}
∥∥∥2

2 + β

C∑
c=1

{(
(l̂{c})

(i))H [
(ĝ{c})(i+1)

−
(
FPmw{c}

)]}
+
β

2

C∑
c=1

∥∥∥∥(ĝ{c})(i+1)
−
(
FPmw{c}

)∥∥∥∥2
2


= min

w{c}

−β2
∥∥∥∥∥(l̂{c})(i)

∥∥∥∥∥2
2
+
λ

2

C∑
c=1

∥∥∥Diag(w̃)Pmw{c}
∥∥∥2

2 +
β

2

C∑
c=1

∥∥∥∥∥(FPmw{c}
)
− (ĝ{c})(i+1)

− (l̂{c})
(i)
∥∥∥∥∥2

2

 .
(3.17)

Differentiating the objective function concerning w{c} and setting it equal to zero, we obtain:

∂Lw{c}

∂w{c}
= λ(Diag(w̃)Pm)HDiag(w̃)Pmw{c}+β(FPm)W

[(
FPmw{c}

)
− (ĝ{c})(i+1)

− (l̂{c})
(i)]

= λPmDiag(w̃)Diag(w̃)Pmw{c}+β(FPm)H
[(

FPmw{c}
)
− (ĝ{c})(i+1)

− (l̂{c})
(i)]

= λDiag(w̃ ⊙ w̃ ⊙m)w{c}+βPmFH
[(

FPmw{c}
)
− (ĝ{c})(i+1)

− (l̂{c})
(i)]
= 0,

(3.18)

where F satisfies FHF=DID, FH is the conjugate transpose matrix of the original matrix, and ID ∈ R
D×D

is the identity matrix.
Therefore, we have:

λw̃ ⊙ w̃ ⊙m ⊙ w{c}+βDPmw{c}=βPmFH((ĝ{c})(i+1)
+ (l̂

{c}
)
(i)

). (3.19)

FH satisfies x=FH x̂
D =vec(ifft2(X̂)) (where ifft2 represents the 2D inverse Fourier transform operator),

then we obtain:
λw̃ ⊙ w̃ ⊙m ⊙ w{c}+βDm ⊙ w{c}=βDm ⊙ ((g{c})(i+1)

+ (l{c})(i)
) (3.20)

We obtain:

w{c}=
βDm ⊙ (g{c})(i+1)

+ (l{c})(i)
)

λw̃ ⊙ w̃ ⊙m+βDm
. (3.21)

3.4.3. Solving the l̂
{c}

-subproblem

The objective function of the l̂
{c}

-subproblem is:

Ll̂{c}

(
l̂
{c}
|(ĝ{c})(i+1)

, (w{c})(i+1),M
)
=max

l̂{c}

{
l̂W{c}

(
(ĝ{c})(i+1)

− FPm(w{c})(i+1)
)}
. (3.22)

Using gradient ascent, we obtain:

(l̂
{c}

)
(i+1)
=(l̂
{c}

)
(i)
+µ
(
(ĝ{c})(i+1)

− FPm(w{c})(i+1)
)
. (3.23)

where the value of µ is set to 0.02.
The algorithm is summarized in Algorithm 1 .
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Algorithm 1: The algorithm proposed in this paper

Input: First-frame training sample X(t) ∈ RRh×Cw×3, object template T(1) ∈ Ru(1)
h ×u(1)

w ,
current-frame test sampleZ, positive expert group P, linear interpolation learning rate η,
object color histogram

(
co)(t), background color histogram

(
cb
)(t)

.

Output: Predicted object position and optimal object size
[
u(t)

h × u(t)
w

]
.

1 Compute Ĝ
{c}

using Eq (3.16), build the filter group G(1) = {Ĝ
{c}
}
∣∣∣c=1,2,··· ,C , and determine the

spatial saliency matrix using Eq (2.8);
2 for t = 2 to T do
3 Extract features Ẑ{c}

∣∣∣Z fromZ ∈ RR×C×3;
4 Estimate the spatial saliency perception matrix M for the current frame sample based on(

co)(t−1) and
(
cb
)(t−1)

;
5 Learn weights s{c} according to Eq (3.4), and zero out channel features with low channel

weights as shown in Figure 1;

6 Determine the response R = real
{

C∑
c=1

ifft2
{(

s{c}Ẑ{c}
∣∣∣Z ) ⊙ (Ĝ{c})∗}} for sampleZ;

7 Identify the optimal position using the maximum response value;
8 Determine the optimal scale sb based on the DSST algorithm [49];
9 Set the object size u(t)

h = sbu(t−1)
h , u(t)

w =sbu(t−1)
w ;

10 Determine the best candidate samples Q and q = vec(Q) based on the optimal position and
u(t)

h , u
(t)
w ;

11 for n = 1 to N do
12 S imi(n) = cos(hpn

,hq);
13 end
14 if max(S imi) < τ then
15 Do not update foreground and background color histograms:

(
co)(t) = (co)(t−1),(

cb
)(t)
=
(
cb
)(t−1)

;
16 Do not update training sample: X(t) = X(t−1);
17 Do not update the correlation filter: G(t) = G(t−1);
18 else
19 Retrieve the current frame sample X̃, centered on Q, and sized R ×C;
20 Compute the foreground and background histograms c̃o and c̃b for the best training

sample X(t);
21 Refresh the foreground and background histograms:(

co)(t)= (1 − η)
(
co)(t−1)

+ηc̃o,
(
cb
)(t)
= (1 − η)

(
cb
)(t−1)
+ηc̃b;

22 Update the spatial saliency matrix M;

23 Update filter Ĝ
{c}

based on the current frame sample and Eq (3.16), and form the filter

group tensor G̃ = {Ĝ
{c}
}
∣∣∣c=1,2,··· ,C with Ĝ

{c}
;

24 Update the filter G(t)= (1 − η)G(t−1)+ηG̃;
25 pi = q (where i represents the template with the lowest similarity to q);
26 end
27 end
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4. Experiments

In the experimental section of this paper, we chose four representative benchmark datasets: OTB100,
DTB70, UAV123, and UAV20L. These datasets encompass tracking challenges from various perspec-
tives, complexities, and application scenarios, both from the ground and aerial views, allowing for a
thorough and systematic evaluation of the proposed object-tracking algorithm. First, we performed
a detailed comparison of the performance of the SSACF algorithm and other mainstream trackers on
these four datasets. Subsequently, we selected several typical video sequences from the UAV123 and
UAV20L datasets to qualitatively analyze SSACF’s tracking performance, highlighting its characteristics
in various environments. Ultimately, we conducted a series of ablation studies on the OTB100 dataset to
assess the distinct contributions of each component of SSACF towards enhancing tracking performance.

The experiment was conducted on a platform with an AMD Ryzen 7 7735H processor (3.20 GHz
base frequency, integrated Radeon graphics), 16.0 GB of system memory, and a 64-bit x64 architecture.
All algorithms were implemented using MATLAB R2023a. The key parameter configurations are
as follows: the balance coefficients θ1 and θ2 in Eq (3.6) are set to 0.00009 and 50, respectively; the
reliability evaluation threshold τ in Section 3.3 is set to 0.70; in the objective function in Section 3.4, the
regularization parameter λ is set to 0.05, the quadratic penalty coefficient β is set to 3, and the update
step size µ is set to 0.02.

4.1. Quantitative analysis

4.1.1. A quantitative analysis of the UAV123 dataset

The UAV123 dataset is a comprehensive, large-scale dataset created specifically for tracking in
aerial videos, composed of 123 video sequences with over 110,000 frames, making it one of the most
biggest aerial tracking datasets available. The sequences in UAV123 cover a variety of objects, including
vehicles, pedestrians and buildings, filmed from multiple angles and heights, with complex conditions
such as dynamic backgrounds, occlusion, and rotation. Unlike traditional ground-based datasets,
UAV123 simulates natural aerial surveillance and tracking tasks from a drone perspective, which enables
a better assessment of tracking algorithm performance in aerial environments. All sequences in the
dataset come with detailed bounding box annotations and are categorized according to various attribute
challenges, enabling researchers to test algorithm performance under specific conditions.

In this experiment, we will use the UAV123 dataset to evaluate the robustness and accuracy of
the SSACF algorithm in aerial scenarios. UAV123 offers 12 attribute categories for different visual
challenges, including Camera Motion (CM), Full Occlusion (FO), Similar Object (SO), Illumination
Variation (IV), Viewpoint Change (VC), Partial Occlusion (PO), Scale Variation (SV), Aspect Ratio
Change (ARC), Out-of-View (OV), Fast Motion (FM), Background Clutter (BC), and Low Resolution
(LR). These attributes cover various visual uncertainties encountered during tracking, providing a
comprehensive reference for evaluating tracker performance under different conditions. Furthermore,
a qualitative comparison is conducted between the proposed tracker and seven other SOTA trackers,
including STRCF [36], AutoTrack [37], BACF [20], MCCT H [50], ARCF H [51], Staple [19], and
CSR-DCF [9].

As shown in Figure 3, SSACF demonstrates excellent overall performance, ranking first in both
accuracy and success rate, with scores of 0.774 and 0.603, respectively. Regarding different attribute
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challenges, SSACF achieved accuracy scores of 0.718 and 0.701 under VC and BC conditions, signif-
icantly outperforming other tracking algorithms. This indicates that SSACF performs excellently in
handling viewpoint changes and background clutter, making it especially suitable for object tracking in
complex environments from a UAV perspective. Additionally, under SV and SO conditions, SSACF
exhibited high accuracy, highlighting the algorithm’s stability in handling dynamic object scale ad-
justments. SSACF similarly maintained high success rates under multiple challenging conditions in
UAV123, particularly under SO and VC conditions, with success rates of 0.612 and 0.506, respectively.
This performance demonstrates SSACF’s adaptability and stability in object clutter and viewpoint
changes. SSACF demonstrated stable performance across most dataset attributes, outperforming other
competing trackers.

(a) (b)

Figure 3. Radar chart of precision and success rate for SSACF and other trackers on the
UAV123 dataset. (a) The precision. (b)The success rate.

4.1.2. A quantitative analysis of the OTB100 dataset

The OTB100 dataset ranks as one of the earliest and most extensively used benchmark datasets in
the field of object tracking. It comprises 100 video sequences that vary in length and present a variety
of typical object-tracking challenges. Originating primarily from ground-level perspectives, these
sequences showcase a wide array of scenes and object types such as pedestrians, animals, vehicles, and
handheld items. The dataset serves as a comprehensive benchmark for testing the efficacy of different
tracking algorithms across various scenarios, establishing OTB100 as an essential tool for evaluating
the robustness, precision, and flexibility of these algorithms. Detailed annotations are provided along
with the dataset, and the primary evaluation metrics include the success rate and accuracy per attribute.
In the attribute analysis, the OTB100 benchmark categorizes video sequences into 11 challenging
attributes based on visual interference factors, namely Scale Variation (SV), Low Resolution (LR),
Motion Blur (MB), Out-of-View (OV), Background Clutter (BC), Deformation (DEF), In-Plane Rotation
(IPR), Illumination Variation (IV), Occlusion (OCC), Fast Motion (FM), and Out-of-Plane Rotation
(OPR). Furthermore, we conducted a detailed comparison of the proposed SSACF with nine other
SOTA trackers, including BACF [20], CSR-DCF [9], GFS-DCF(HC) [8], IBRI [52], ARCF H [51],
A3DCF [53], AutoTrack [37], and LCT2 [54].
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Comprehensive comparison of algorithms’s precision and success rate. (a) The
precision on the OTB100 dataset. (b) The success rate on the OTB100 dataset. (c) The
precision on the DTB70 dataset. (d) The success rate on the DTB70 dataset. (e) The precision
on the UAV20L dataset. (f) The success rate on the UAV20L dataset.
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Table 1. The precision of 11 challenging attributes on the OTB100 dataset.
Attribute SSACF BACF CSR-DCF GFS-DCF (HC) IBRI ARCF H A3DCF AutoTrack LCT2
IV 0.853 0.782 0.779 0.745 0.768 0.769 0.765 0.745 0.721
OPR 0.831 0.767 0.760 0.753 0.747 0.737 0.742 0.734 0.733
SV 0.823 0.755 0.739 0.784 0.744 0.736 0.749 0.715 0.665
OCC 0.860 0.714 0.700 0.735 0.710 0.676 0.735 0.693 0.661
DEF 0.849 0.747 0.777 0.693 0.748 0.740 0.689 0.724 0.666
MB 0.856 0.716 0.741 0.765 0.713 0.718 0.753 0.703 0.641
FM 0.848 0.787 0.766 0.772 0.727 0.758 0.782 0.761 0.681
IPR 0.817 0.777 0.781 0.746 0.741 0.750 0.743 0.741 0.765
OV 0.821 0.748 0.691 0.772 0.652 0.674 0.743 0.736 0.593
BC 0.876 0.801 0.778 0.767 0.788 0.803 0.761 0.761 0.734
LR 0.796 0.741 0.677 0.708 0.741 0.692 0.759 0.763 0.537

Table 2. The success rate of 11 challenging attributes on the OTB100 dataset.
Attribute SSACF BACF CSR-DCF GFS-DCF (HC) IBRI ARCF H A3DCF AutoTrack LCT2
IV 0.803 0.756 0.726 0.720 0.730 0.746 0.687 0.726 0.592
OPR 0.749 0.695 0.644 0.691 0.674 0.649 0.622 0.653 0.602
SV 0.722 0.686 0.605 0.723 0.664 0.642 0.643 0.633 0.464
OCC 0.783 0.676 0.632 0.700 0.662 0.626 0.649 0.650 0.561
DEF 0.760 0.671 0.681 0.632 0.679 0.663 0.560 0.670 0.564
MB 0.829 0.710 0.711 0.752 0.685 0.705 0.674 0.683 0.617
FM 0.797 0.759 0.704 0.747 0.694 0.730 0.724 0.708 0.613
IPR 0.714 0.697 0.638 0.670 0.671 0.654 0.644 0.644 0.629
OV 0.735 0.698 0.582 0.727 0.621 0.622 0.656 0.678 0.531
BC 0.801 0.771 0.705 0.731 0.748 0.762 0.660 0.722 0.663
LR 0.618 0.663 0.434 0.632 0.666 0.568 0.700 0.669 0.295

Tables 1 and 2 show the performance of SSACF and the other nine advanced trackers in accuracy
and success rate evaluations based on attributes. The best three performances are distinguished by
the colors red, green, and blue. As shown in Table 1, SSACF exhibited outstanding performance in
most attributes, particularly in BC and MB, where its accuracy reached 0.876 and 0.858, respectively.
SSACF maintained a high tracking accuracy compared to other algorithms in these specific interference
conditions. Moreover, SSACF’s performance was slightly lower under LR conditions, reaching only
0.796. SSACF’s accuracy metrics outperformed other algorithms in most attributes, showcasing its
strong adaptability to different environments. As shown in Table 2, SSACF also performed exceptionally
well in terms of success rate in OTB100, particularly under MB conditions, with a success rate of 0.803.
This result suggests that, compared to other trackers, SSACF can more effectively handle common issues,
such as object variations in the scene. Combining the visual rankings shown in Figure 4(a),(b), SSACF
ranks highly in accuracy and success rate, achieving 0.867 and 0.631, respectively, fully showcasing its
stability and reliability on the OTB100 benchmark.

4.1.3. A quantitative analysis of the DTB70 dataset

The DTB70 dataset is a benchmark specifically designed for drone viewpoints, containing 70
challenging sequences focused on UAV tracking tasks. The video sequences in DTB70 encompass a
range of complex factors, simulating the high-dynamic environments commonly encountered in real
drone tracking scenarios. This dataset is particularly apt for evaluating tracking algorithms’ performance
in handling high-frequency motion, environmental vibrations, and changes in viewpoint, thereby
confirming their suitability for UAV applications. All sequences in DTB70 are accurately annotated
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using a similar evaluation method to the OTB dataset, enabling direct comparison with results from
other datasets.

In this experiment, we utilize the DTB70 dataset to assess the robustness and flexibility of the
algorithm in a UAV environment. The attribute annotations in DTB70 cover 11 visual challenges, slightly
differing from OTB100, including Background Clutter (BC), Motion Blur (MB), Fast Camera Motion
(FCM), Out-of-View (OV), In-Plane Rotation (IPR), Deformation (DEF), Aspect Ratio Variation (ARV),
Scale Variation (SV), Occlusion (OCC), Small Object Appearance (SOA), and Out-of-Plane Rotation
(OPR). The trackers compared include ECO H [22], AutoTrack [37], BACF [20], ARCF H [51],
CSR-DCF [9], MCCT H [50], SAMF CA [55], Staple [19], and STRCF [36].

Table 3. The precision of 11 challenging attributes on the DTB70 dataset.
Attribute SSACF ECO H AutoTrack BACF ARCF H CSR-DCF MCCT H SAMF CA Staple STRCF
SV 0.725 0.530 0.688 0.533 0.560 0.663 0.643 0.490 0.489 0.568
ARV 0.686 0.494 0.605 0.392 0.431 0.551 0.495 0.428 0.430 0.492
OCC 0.795 0.648 0.631 0.515 0.546 0.617 0.570 0.560 0.528 0.617
DEF 0.728 0.557 0.670 0.448 0.427 0.561 0.550 0.408 0.419 0.554
FCM 0.851 0.677 0.744 0.622 0.654 0.711 0.621 0.537 0.494 0.713
IPR 0.750 0.557 0.684 0.534 0.547 0.602 0.551 0.447 0.457 0.586
OPR 0.486 0.418 0.439 0.266 0.262 0.449 0.383 0.209 0.371 0.385
OV 0.736 0.534 0.690 0.567 0.671 0.689 0.573 0.629 0.420 0.652
BC 0.825 0.553 0.635 0.499 0.555 0.612 0.484 0.419 0.393 0.611
SOA 0.860 0.660 0.731 0.624 0.679 0.614 0.606 0.554 0.529 0.677
MB 0.835 0.632 0.703 0.617 0.590 0.637 0.502 0.492 0.332 0.689

Table 4. The success rate of 11 challenging attributes on the DTB70 dataset.
Attribute SSACF ECO H AutoTrack BACF ARCF H CSR-DCF MCCT H SAMF CA Staple STRCF
SV 0.510 0.429 0.493 0.392 0.406 0.476 0.439 0.336 0.349 0.417
ARV 0.448 0.373 0.405 0.273 0.314 0.396 0.334 0.299 0.314 0.347
OCC 0.520 0.432 0.415 0.348 0.354 0.407 0.377 0.341 0.349 0.400
DEF 0.478 0.389 0.452 0.302 0.308 0.396 0.354 0.279 0.283 0.390
FCM 0.546 0.464 0.496 0.429 0.444 0.455 0.410 0.347 0.331 0.467
IPR 0.489 0.401 0.454 0.365 0.383 0.414 0.376 0.310 0.318 0.393
OPR 0.387 0.311 0.343 0.203 0.228 0.339 0.243 0.157 0.283 0.257
OV 0.490 0.387 0.407 0.382 0.424 0.445 0.349 0.388 0.278 0.424
BC 0.490 0.332 0.394 0.316 0.354 0.376 0.296 0.264 0.231 0.369
SOA 0.532 0.446 0.473 0.411 0.434 0.394 0.399 0.348 0.346 0.447
MB 0.539 0.426 0.468 0.402 0.395 0.416 0.334 0.312 0.217 0.447

As shown in Table 3, the attribute accuracy on the DTB70 dataset indicates that SSACF performs
significantly under FCM and OCC conditions, with accuracy scores of 0.851 and 0.795, respectively.
This result demonstrates that SSACF can handle high-speed motion and dynamically changing back-
grounds while maintaining high accuracy even in scenes with frequent occlusions. Table 4 presents
the success rate performance under various challenging attributes. SSACF achieved success rates of
0.510 and 0.490 in the SV and BC environments, respectively. SSACF outperforms other algorithms in
complex background conditions, highlighting its strong resistance to interference. SSACF shows an
exceptional ability to adapt compared to other trackers, making it especially suitable for dynamic UAV
environments. Other algorithms show considerable fluctuations in complex scenes, whereas SSACF
maintains stable scores in various scenarios, highlighting its strong generalization ability. The rankings
in Figure 4(c),(d) further illustrate SSACF’s leading position in accuracy and success rate, achieving
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0.801 and 0.525, respectively.

4.1.4. A quantitative analysis of the UAV20L dataset

UAV20L is a subset of UAV123, consisting of 20 long sequence videos designed to evaluate long-
duration tracking tasks. Long-duration tracking tasks require the algorithm to deal with more frequent
challenges, such as occlusion, background clutter, and object changes, especially in long-range tracking
from a UAV perspective. The design of the UAV20L dataset is aimed at testing the stability and
continuity of tracking algorithms in long-duration scenarios, assessing their robustness and processing
capability for extended sequences. To provide a more detailed analysis of visual uncertainties, the
UAV20L dataset also annotates sequences with 12 different attributes, with challenges similar to those
in UAV123.

Table 5. The precision of 12 challenging attributes on the UAV20L dataset.
Attribute SSACF ARCF AutoTrack BACF ARCF H CSR-DCF MCCT H SAMF CA Staple STRCF
SV 0.835 0.701 0.717 0.726 0.713 0.693 0.696 0.672 0.703 0.727
ARC 0.832 0.713 0.734 0.729 0.713 0.718 0.732 0.676 0.721 0.711
LR 0.866 0.671 0.706 0.710 0.702 0.668 0.681 0.673 0.681 0.705
FM 0.878 0.746 0.812 0.827 0.806 0.846 0.829 0.742 0.826 0.804
FO 0.886 0.807 0.795 0.810 0.798 0.762 0.786 0.681 0.773 0.774
PO 0.846 0.714 0.739 0.746 0.738 0.698 0.699 0.671 0.717 0.753
OV 0.833 0.675 0.726 0.730 0.728 0.698 0.686 0.649 0.712 0.769
BC 0.906 0.958 0.921 0.940 0.923 0.860 0.913 0.894 0.887 0.881
IV 0.746 0.692 0.649 0.636 0.605 0.626 0.666 0.644 0.628 0.602
VC 0.861 0.712 0.728 0.727 0.708 0.753 0.761 0.697 0.746 0.727
CM 0.838 0.707 0.723 0.732 0.719 0.698 0.699 0.678 0.709 0.732
SO 0.793 0.648 0.625 0.635 0.617 0.589 0.594 0.635 0.605 0.639

Table 6. The success rate of 12 challenging attributes on the UAV20L dataset.
Attribute SSACF ARCF AutoTrack BACF ARCF H CSR-DCF MCCT H SAMF CA Staple STRCF
SV 0.655 0.622 0.597 0.626 0.599 0.571 0.580 0.558 0.587 0.587
ARC 0.695 0.672 0.643 0.674 0.649 0.622 0.632 0.599 0.639 0.606
LR 0.734 0.693 0.657 0.689 0.678 0.647 0.639 0.623 0.651 0.639
FM 0.760 0.748 0.744 0.772 0.733 0.710 0.742 0.684 0.738 0.700
FO 0.757 0.723 0.696 0.749 0.730 0.691 0.683 0.625 0.696 0.686
PO 0.679 0.654 0.633 0.665 0.647 0.578 0.620 0.549 0.585 0.635
OV 0.622 0.581 0.581 0.602 0.588 0.513 0.577 0.488 0.520 0.609
BC 0.902 0.928 0.872 0.943 0.933 0.879 0.835 0.859 0.881 0.847
IV 0.603 0.611 0.554 0.595 0.559 0.520 0.518 0.531 0.546 0.472
VC 0.670 0.636 0.593 0.613 0.572 0.584 0.617 0.532 0.607 0.578
CM 0.676 0.650 0.626 0.661 0.636 0.566 0.609 0.554 0.582 0.610
SO 0.608 0.557 0.521 0.566 0.542 0.485 0.487 0.526 0.507 0.489

As shown in Table 5, SSACF demonstrated overall high accuracy, excelling in most attributes.
For instance, under BC conditions, SSACF achieved an accuracy of 0.906, markedly outperforming
other algorithms and showcasing its exceptional ability to manage complex background scenarios.
In addition, SSACF also performed well under FO and LR conditions, achieving accuracy scores
of 0.886 and 0.866, respectively. As shown in Table 6, SSACF’s success rate under BC conditions
reached 0.902, continuing to demonstrate its strong tracking ability in complex backgrounds. SSACF
showed outstanding success rates across various challenging attributes, highlighting its high reliability
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(a) (b) (c) (d) (e)

Figure 5. Visualization of tracking performance on different video sequences. (a) Horse1. (b)
Gull1. (c) bird1 1. (d) car2 s. (e) car7.

in different practical application scenarios. Figure 4(e),(f) presents the ranking of SSACF against other
SOTA algorithms on the UAV20L dataset, showcasing SSACF’s leading position in complex dynamic
environments. Its accuracy and success rate reached 0.842 and 0.664, confirming its stability and
adaptability in long-duration tasks.

4.2. Qualitative analysis

To more intuitively evaluate the tracking performance, typical video sequences were selected from
the DTB70 and UAV123 datasets, including the “Horse1” and “Gull1” sequences from DTB70, and
the “bird1 1”, “car2 s”, and “car7” sequences from UAV123. Frame-by-frame comparisons were made
between SSACF and nine SOTA trackers. The lighter blue box indicates the ground truth. Figure 5
illustrates the performance of different algorithms across several typical tracking challenges. The
following is a detailed analysis of the comparison results for these challenge attributes:

(1) Similar targets. In the “Horsel” video sequence shown in Figure 5(a), the object is a group of
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horses moving on the grass with similar colors and shapes, causing some algorithms to misidentify other
objects. SSACF, BACF, and IBRI algorithms maintain accurate object tracking throughout the sequence,
while the other algorithms suffer from varying degrees of object loss and mistracking of interfering
objects. Likewise, in the “bird1 1” video sequence shown in Figure 5(c), the color of the object bird
is similar to the numbers on the UAV interface, leading most algorithms to misidentify the interface
numbers as the object. Only SSACF succeeds in maintaining accurate tracking of the object.

(2) Background clutter. In the “car2 s” video sequence shown in Figure 5(d), the car gradually
moves into a shadowed area, increasing background complexity. This background interference causes
most algorithms to incorrectly identify the shadow as the object, losing track of the original object.
SSACF effectively filters out background distractions by capturing the object’s shape features, ensuring
stable object tracking.

(3) Occlusion. In the “car7” video sequence shown in Figure 5(e), the car is occluded by tree
branches, and all other algorithms lose the object. However, SSACF, thanks to its robust handling of
occlusion features, can continue tracking the occluded object, showcasing the algorithm’s strength in
dealing with occlusions.

(4) Fast motion. In the “Gull1” video sequence shown in Figure 5(b), the rapid movement of the
seagull results in motion blur and drastic changes in position, which presents a considerable challenge
to tracking algorithms. The BACF algorithm completely loses the object. In contrast, SSACF remains
stable in tracking the object despite motion blur and positional changes, exhibiting strong adaptability
to fast motion.

The SSACF algorithm shows remarkable robustness and stability when confronting typical tracking
challenges such as similar objects, background clutter, occlusion, and fast motion, further affirming its
reliability for tracking in complex settings.

4.3. Ablation study

4.3.1. Feature reduction based on spatial saliency

To validate the impact of spatial saliency-based feature reduction on tracking results, this study
experiments with SSACF algorithms with and without feature reduction and explains the tracking
outcomes. The blue box indicates the ground truth.

Table 7. Comparison of performance metrics between models with and without feature reduction.

Performance metric With feature reduction Without feature reduction
Average center point error 7.81 17.23
Average tracking overlap 0.76 0.61

As shown in Figure 6, the red dashed box represents the model with feature reduction, and the green
solid box represents the model without feature reduction. The experiment demonstrates that at frame 16,
when the difference between the object and background is evident, both models can track the object
effectively. In frame 49, the green solid box experiences slight drift when the background changes,
while the red dashed box continues to track accurately. By frame 82, the green solid box is misled by
nearby interference and drifts, while the red box tracks the object accurately. Table 7 shows that the
model with feature reduction outperforms the model without feature reduction, with an average center
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point error of 7.81 and an average tracking overlap of 0.76, compared to 17.23 and 0.61, respectively.

Figure 6. Comparison of models with and without feature reduction.

4.3.2. Regularization factors under temporal-spatial joint constraints

This study examines whether introducing three regularization factors (boundary suppression factor,
spatial interference suppression factor, and temporal-spatial anomaly suppression factor- affects) the
tracking results and compares the outcomes. The blue box indicates the ground truth.

As shown in Figure 7, the comparison experiment shows the results of models with and without
regularization factors. The red dashed box represents the model with regularization factors, while
the green solid box represents the model without regularization factors. The experiment shows that
from frames 81 to 190, both models can track the object accurately. However, at frame 190, an intra-
class interference occurs on the left side, leading to significant displacement of the solid box at frame
201, causing the object to be inaccurately tracked. Similar results are observed in frames 201 to 394.
However, the model with regularization factors (indicated by the dashed box) is better at maintaining the
accurate tracking of the object. As seen in Table 8, the model with regularization factors has an average
center point error of 4.55, significantly lower than the 40.19 error for the model without regularization
factors. The average tracking overlap for the model with regularization factors is 0.74, while the model
without regularization factors only achieves 0.35. This shows that incorporating regularization factors
significantly enhances both tracking accuracy and stability.
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Figure 7. Comparison of models with and without feature reduction.

Table 8. Comparison of performance metrics between models with and without regulariza-
tion factors.

Performance metric With regularization factors Without regularization factors
Average center point error 4.55 40.19
Average tracking overlap 0.74 0.35

4.3.3. Optimal candidate objects based on positive expert group

This study conducts a comprehensive experimental evaluation of the SSACF algorithm with and
without the positive expert group to verify whether the optimal candidate object based on the positive
expert group influences the tracking results. The blue box indicates the ground truth.

Figure 8 shows an ablation experiment on the optimal candidate object using the positive expert
group. In frame 38, both models (with and without the expert group) initially track the object accurately.
However, in frame 323, occlusion occurs. In subsequent frames, the model without the expert group
fails due to prior learning of the occluder’s features, causing a large displacement. In contrast, the model
with the expert group retains the object’s features and continues tracking accurately. As shown in Table
9, the model with the expert group has an average center point error of 8.57, significantly lower than the
90.38 error without it. Additionally, the tracking overlap for the model with the expert group is 0.75,
compared to 0.28 for the model without. This highlights that incorporating the optimal candidate object
from the expert group improves tracking accuracy and stability.
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Figure 8. Comparison of models with and without feature reduction.

Table 9. Comparison of performance metrics between models with and without positive
expert group.

Performance metric With positive expert group Without positive expert group
Average center point error 8.57 90.38
Average tracking overlap 0.75 0.28

4.4. Comparing deep-learning-based trackers

In this subsection, we present a detailed tracking performance comparison experiment between
the SSACF algorithm and other deep- learning-based trackers (including SiamFC [11], ATOM [56],
CSWinTT [39], TransT [13], and DiMP [57]) on the UAV123 dataset. The quantitative comparative
analysis in Table 10 reveals that most deep-learning-based trackers outperform the proposed method.
However, their high computational complexity limits their potential deployment on edge devices. The
core module of the SSACF algorithm, with its innovative lightweight design, significantly reduces
algorithm complexity while maintaining target recognition accuracy. Its modular architecture and
hardware adaptation optimization strategies make it more suitable for deployment on UAV platforms.

Table 10. Comparison with algorithms based on deep learning tracker.

Metohd SiamFC CSWinTT TransT DiMP ATOM Ours
Success rate (%) 49.2 68.2 66 64.2 61.7 60.3
Precision (%) 72.7 87.5 85.2 84.9 82.7 80.1
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4.5. Real-time tracking comparison

In this subsection, we comprehensively explore the frames per second (fps) and limitations of the
SSACF algorithm using the OTB100 dataset. Table 11 compares the real-time performance (measured in
FPS) of the SSACF algorithm with traditional handcrafted feature trackers (such as ECO H, AutoTrack
and BACF) across multiple video sequences. The experimental results show that the proposed method
is capable of achieving a good balance between speed and accuracy.

Table 11. Frames per second (fps) of each tracking algorithm in some videos come from
OTB100.

Video Ours CSR-DCF BACF GFS-DCF(HC) IBRI ARCF H A3DCF AutoTrack LCT2
Girl 23.62 20.77 23.72 23.81 11.45 32.01 20.25 7.40 12.71
Doll 15.33 11.27 16.04 15.40 13.33 28.75 14.25 9.56 28.82
Football1 19.76 18.04 33.11 26.46 17.10 40.80 22.24 8.01 14.60
Boy 22.49 21.75 27.12 27.48 4.68 9.26 24.38 11.40 17.64
Subway 20.53 20.20 38.02 27.10 21.54 44.89 24.50 14.26 18.35

5. Conclusions

In this paper, we proposed the SSACF tracker, which effectively tackles common problems in UAV
object tracking, such as visual feature redundancy, limited discriminative power, insufficient exploitation
of spatiotemporal information, and filter degradation. This paper refines feature selection on both spatial
and channel dimensions by implementing a spatial saliency-aware strategy, substantially improving the
discriminative capability between the object and the background. Furthermore, the spatiotemporal joint
constraint location estimation mechanism introduced in this paper fully leverages spatiotemporal infor-
mation, considerably enhancing the model’s tracking robustness in complex environments. Additionally,
to address filter degradation, this paper successfully mitigates decreases in tracking accuracy during
occlusions by employing a reliable expert group evaluation method. The experimental outcomes indi-
cate that the SSACF algorithm performs exceptionally well across various challenging public datasets,
confirming its considerable potential for UAV visual object-tracking applications. Future research will
concentrate on improving the real-time performance and robustness of the algorithm to accommodate
the increasing needs of various UAV applications.
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