In this manuscript we consider a coupled, by second order terms, system of two wave equations with a past history acting on the first equation as a stabilizer. We show that the solution of this system decays exponentially by constructing an appropriate Lyapunov function.
Citation: Zayd Hajjej, Menglan Liao. Exponential stability of a system of coupled wave equations by second order terms with a past history[J]. AIMS Mathematics, 2023, 8(12): 28450-28464. doi: 10.3934/math.20231456
In this manuscript we consider a coupled, by second order terms, system of two wave equations with a past history acting on the first equation as a stabilizer. We show that the solution of this system decays exponentially by constructing an appropriate Lyapunov function.
[1] | M. Akil, Z. Hajjej, Exponential stability and exact controllability of a system of coupled wave equations by second order terms (via Laplacian) with only one non-smooth local damping, Math. Method. Appl. Sci., 2023, in press. |
[2] | F. Alabau, P. Cannarsa, V. Komornik, Indirect internal stabilization of weakly coupled systems, J. Evol. Equ., 2 (2002), 127–150. https://doi.org/10.1007/s00028-002-8083-0 doi: 10.1007/s00028-002-8083-0 |
[3] | A. M. Al-Mahdi, M. M. Al-Gharabli, New general decay results in an infinite memory viscoelastic problem with nonlinear damping, Bound. Value Probl., 2019 (2019), 140. https://doi.org/10.1186/s13661-019-1253-6 doi: 10.1186/s13661-019-1253-6 |
[4] | A. M. Al-Mahdi, M. M. Al-Gharabli, Energy decay in a viscoelastic equation with past history and boundary feedback, Appl. Anal., 101 (2022), 4743–4758. https://doi.org/10.1080/00036811.2020.1869943 doi: 10.1080/00036811.2020.1869943 |
[5] | R. G. C. Almeida, M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory, Nonlinear Anal.-Real, 12 (2011), 1023–1032. https://doi.org/10.1016/j.nonrwa.2010.08.025 doi: 10.1016/j.nonrwa.2010.08.025 |
[6] | J. A. D. Appleby, M. Fabrizio, B. Lazzari, D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Mod. Meth. Appl. S., 16 (2006), 1677–1694. https://doi.org/10.1142/S0218202506001674 doi: 10.1142/S0218202506001674 |
[7] | V. V. Chepyzhov, V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptotic Anal., 46 (2006), 251–273. |
[8] | M. Conti, V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pur. Appl. Anal., 4 (2005), 705–720. https://doi.org/10.3934/cpaa.2005.4.705 doi: 10.3934/cpaa.2005.4.705 |
[9] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. An., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609 |
[10] | M. J. D. Santos, J. C. P. Fortes, M. L. Cardoso, Exponential stability for a piezoelectric beam with a magnetic effect and past history, Discrete Cont. Dyn.-B, 27 (2022), 5487–5501. https://doi.org/10.3934/dcdsb.2021283 doi: 10.3934/dcdsb.2021283 |
[11] | M. Fabrizio, B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids, Arch. Ration. Mech. An., 116 (1991), 139–152. https://doi.org/10.1007/BF00375589 doi: 10.1007/BF00375589 |
[12] | L. H. Fatori, J. E. M. Rivera, Energy decay for hyperbolic thermoelastic systems of memory type, Q. Appl. Math., 59 (2001), 441–458. |
[13] | C. Giorgi, J. E. M. Rivera, V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83–99. https://doi.org/10.1006/jmaa.2001.7437 doi: 10.1006/jmaa.2001.7437 |
[14] | A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, J. Math. Anal. Appl., 382 (2001), 748–760. https://doi.org/10.1016/j.jmaa.2011.04.079 doi: 10.1016/j.jmaa.2011.04.079 |
[15] | A. Guesmia, Asymptotic behavior for coupled abstract evolution equations with one infinite memory, Appl. Anal., 94 (2015), 184–217. https://doi.org/10.1080/00036811.2014.890708 doi: 10.1080/00036811.2014.890708 |
[16] | A. Guesmia, S. A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal.-Real, 13 (2012), 476–485. https://doi.org/10.1016/j.nonrwa.2011.08.004 doi: 10.1016/j.nonrwa.2011.08.004 |
[17] | A. Guesmia, S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl., 416 (2014), 212–228. https://doi.org/10.1016/j.jmaa.2014.02.030 doi: 10.1016/j.jmaa.2014.02.030 |
[18] | K. P. Jin, J. Liang, T. J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differ. Equations, 257 (2014), 1501–1528. https://doi.org/10.1016/j.jde.2014.05.018 doi: 10.1016/j.jde.2014.05.018 |
[19] | K. P. Jin, J. Liang, T. J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554–575. https://doi.org/10.1016/j.jmaa.2019.02.055 doi: 10.1016/j.jmaa.2019.02.055 |
[20] | Z. Liu, S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity, Q. Appl. Math., 54 (1996), 21–31. |
[21] | V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333–360. https://doi.org/10.1007/s00032-009-0098-3 doi: 10.1007/s00032-009-0098-3 |
[22] | J. E. M. Rivera, M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, J. Math. Anal. Appl., 326 (2007), 691–707. https://doi.org/10.1016/j.jmaa.2006.03.022 doi: 10.1016/j.jmaa.2006.03.022 |
[23] | J. E. M. Rivera, M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second order systems with memory, Appl. Math. Lett., 23 (2010), 743–746. https://doi.org/10.1016/j.aml.2010.02.016 doi: 10.1016/j.aml.2010.02.016 |
[24] | D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339–358. https://doi.org/10.1006/jmaa.1993.1071 doi: 10.1006/jmaa.1993.1071 |
[25] | T. J. Xiao, J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differ. Equations, 254 (2013), 2128–2157. https://doi.org/10.1016/j.jde.2012.11.019 doi: 10.1016/j.jde.2012.11.019 |