Research article

New criteria for the oscillation of a class of third-order quasilinear delay differential equations

  • Received: 15 December 2024 Revised: 05 February 2025 Accepted: 12 February 2025 Published: 27 February 2025
  • MSC : 34C10, 34K11

  • This paper establishes new criteria for the oscillation of solutions to a specific class of third-order delay differential equations. These equations, which have numerous applications in the physical and biological sciences, pose intriguing analytical challenges. By employing novel ordering properties, the comparison principle, Riccati transformations, and other analytical techniques, we derive effective oscillation criteria. This approach addresses and overcomes several restrictions previously imposed on the coefficients of such equations. To demonstrate the novelty and practical relevance of our results, we include illustrative examples.

    Citation: Zuhur Alqahtani, Insaf F. Ben Saud, Areej Almuneef, Belgees Qaraad, Higinio Ramos. New criteria for the oscillation of a class of third-order quasilinear delay differential equations[J]. AIMS Mathematics, 2025, 10(2): 4205-4225. doi: 10.3934/math.2025195

    Related Papers:

  • This paper establishes new criteria for the oscillation of solutions to a specific class of third-order delay differential equations. These equations, which have numerous applications in the physical and biological sciences, pose intriguing analytical challenges. By employing novel ordering properties, the comparison principle, Riccati transformations, and other analytical techniques, we derive effective oscillation criteria. This approach addresses and overcomes several restrictions previously imposed on the coefficients of such equations. To demonstrate the novelty and practical relevance of our results, we include illustrative examples.



    加载中


    [1] R. Agarwal, S. Grace, T. Smith, Oscillation of certain third-order functional differential equations, Adv. Math. Sci. Appl., 16 (2006), 69–94.
    [2] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0
    [3] A. Al-Jaser, B. Qaraad, H. Ramos, S. Serra-Capizzano, New conditions for testing the oscillation of solutions of second-order nonlinear differential equations with damped term, Axioms, 13 (2024), 105. https://doi.org/10.3390/axioms13020105 doi: 10.3390/axioms13020105
    [4] S. R. Grace, J. Džurina, I. Jadlovska, T. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 2018 (2018), 193. https://doi.org/10.1186/s13660-018-1767-y doi: 10.1186/s13660-018-1767-y
    [5] A. Al Themairi, B. Qaraad, O. Bazighifan, K. Nonlaopon, Third-order neutral differential equations with damping and distributed delay: New asymptotic properties of solutions, Symmetry, 14 (2022), 2192. https://doi.org/10.3390/sym14102192 doi: 10.3390/sym14102192
    [6] F. A. Rihan, Delay differential equations and applications to biology, Singapore: Springer Nature Singapore Pte Ltd., 2021. https://doi.org/10.1007/978-981-16-0626-7
    [7] T. S. Hassan, Oscillation of third-order nonlinear delay dynamic equations on time scales, Math. Comput. Model., 49 (2009), 1573–1586. https://doi.org/10.1016/j.mcm.2008.12.011 doi: 10.1016/j.mcm.2008.12.011
    [8] S. Saker, J. Džurina, On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem., 135 (2010), 225–237. https://doi.org/10.21136/MB.2010.140700 doi: 10.21136/MB.2010.140700
    [9] M. T. Senel, N. Utku, Oscillation criteria for third-order neutral dynamic equations with continuously distributed delay, Adv. Differ. Equ., 2014 (2014), 220. https://doi.org/10.1186/1687-1847-2014-220 doi: 10.1186/1687-1847-2014-220
    [10] C. G. Fraser, Isoperimetric problems in the variational calculus of Euler and Lagrange, Hist. Math., 19 (1992), 4–23. https://doi.org/10.1016/0315-0860(92)90052-D doi: 10.1016/0315-0860(92)90052-D
    [11] G. Jayaraman, N. Padmanabhan, R. Mehrotra, Entry flow into a circular tube of slowly varying cross-section, Fluid Dyn. Res., 1 (1986), 131–144. https://doi.org/10.1016/0169-5983(86)90013-4 doi: 10.1016/0169-5983(86)90013-4
    [12] H. P. McKean Jr., Nagumo's equation, Adv. Math., 4 (1970), 209–223. https://doi.org/10.1016/0001-8708(70)90023-X doi: 10.1016/0001-8708(70)90023-X
    [13] M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, New oscillation theorems for second-order superlinear neutral differential equations with variable damping terms, Symmetry, 15 (2023), 1630. https://doi.org/10.3390/sym15091630 doi: 10.3390/sym15091630
    [14] B. Novák, J. Tyson, Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol., 9 (2008), 981–991. https://doi.org/10.1038/nrm2530 doi: 10.1038/nrm2530
    [15] Z. Li, Q. Yang, Systems and synthetic biology approaches in understanding biological oscillators, Quant. Biol., 6 (2018), 1–14. https://doi.org/10.1007/s40484-017-0120-7 doi: 10.1007/s40484-017-0120-7
    [16] F. Masood, O. Moaaz, G. AlNemer, H. El-Metwally, More effective criteria for testing the asymptotic and oscillatory behavior of solutions of a class of Third-Order functional differential equations, Axioms, 12 (2023), 1112. https://doi.org/10.3390/axioms12121112 doi: 10.3390/axioms12121112
    [17] N. Omar, O. Moaaz, G. AlNemer, E. M. Elabbasy, New results on the oscillation of solutions of Third-Order differential equations with multiple delays, Symmetry, 15 (2023), 1920. https://doi.org/10.3390/sym15101920 doi: 10.3390/sym15101920
    [18] B. Almarri, B. Batiha, O. Bazighifan, F. Masood, Third-Order neutral differential equations with Non-Canonical forms: Novel oscillation theorems, Axioms, 13 (2024), 755. https://doi.org/10.3390/axioms13110755 doi: 10.3390/axioms13110755
    [19] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, A Philos-type theorem for third-order nonlinear retarded dynamic equations, Appl. Math. Comput., 249 (2014), 527–531. https://doi.org/10.1016/j.amc.2014.08.109 doi: 10.1016/j.amc.2014.08.109
    [20] R. P. Agarwal, S. R. Grace, D. O'Regan, On the oscillation of certain functional differential equations via comparison methods, J. Math. Anal. Appl., 286 (2003), 577–600. https://doi.org/10.1016/S0022-247X(03)00494-3 doi: 10.1016/S0022-247X(03)00494-3
    [21] B. Baculíková, J. Džurina, Oscillation of third-order nonlinear differential equations, Appl. Math. Lett., 24 (2011), 466–470. https://doi.org/10.1016/j.aml.2010.10.043 doi: 10.1016/j.aml.2010.10.043
    [22] T. Li, C. Zhang, B. Baculíková, J. Džurina, On the oscillation of third-order quasi-linear delay differential equations, Tatra Mt. Math. Publ., 48 (2011), 117–123. https://doi.org/10.2478/v10127-011-0011-7 doi: 10.2478/v10127-011-0011-7
    [23] S. R. Grace, R, P. Agarwal, R. Pavani, E, Thandapani, On the oscillation of certain thirdorder nonlinear functional differential equations, Appl. Math. Comput., 202 (2008), 102–112. https://doi.org/10.1016/j.amc.2008.01.025 doi: 10.1016/j.amc.2008.01.025
    [24] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwan. J. Math., 17 (2013), 545–558. https://doi.org/10.11650/tjm.17.2013.2095 doi: 10.11650/tjm.17.2013.2095
    [25] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, New York: Marcel Dekker, 1987.
    [26] H. Wu, L. Erbe, A. Peterson, Oscillation of solution to second-order half-linear delay dynamic equations on time scales, Electron. J. Differ. Equ., 2016 (2016), 71.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(56) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog