In this paper, an Susceptible-Vaccinated-Infected-Recovered (SVIR) epidemic model incorporating relapse dynamics on a timescale was studied. Using the dynamic inequalities: $ \mathsf{S}(\mathtt{r})\le \alpha^\mathsf{U}/(\alpha^\mathsf{L}+ \gamma^\mathsf{L})+\epsilon, $ $ \mathsf{V}(\mathtt{r})\le \gamma^\mathsf{U}\ell_{11}/(\alpha^\mathsf{L} + \delta_1^\mathsf{L})+\epsilon, $ $ \mathsf{I}(\mathtt{r})\le\alpha^\mathsf{U}/\alpha^\mathsf{L}+\epsilon, $ $ \mathsf{R}(\mathtt{r})\le(\delta_1^\mathsf{U}\ell_{12}+\delta^\mathsf{U}\ell_{13})/(\alpha^\mathsf{L}+\mathsf{d}^\mathsf{L})+\epsilon, $ $ \mathsf{S}(\mathtt{r})\ge \alpha^\mathsf{L}/(\alpha^\mathsf{U} +\beta^\mathsf{U}\ell_1+ \gamma^\mathsf{U})+\epsilon, $ $ \mathsf{V}(\mathtt{r})\ge \gamma^\mathsf{L}\ell_0/(\alpha^\mathsf{U}+ \beta_1^\mathsf{U}\ell_1+\delta_1^\mathsf{U})+\epsilon, $ $ \mathsf{I}(\mathtt{r})\ge\mathsf{d}^\mathsf{L}\ell_{03}/(\delta^\mathsf{U}+\alpha^\mathsf{U})+\epsilon, $ $ \mathsf{R}(\mathtt{r})\ge\delta_1^\mathsf{L}\ell_{02}/(\alpha^\mathsf{U}+\mathsf{d}^\mathsf{U})+\epsilon, $ and constructing an appropriate Lyapunov functional, sufficient conditions were determined to guarantee the permanence of the system. Additionally, the existence, uniqueness, and uniform asymptotic stability of globally attractive, almost periodic positive solutions were derived. Furthermore, an in-depth analysis highlighted the significance of relapse dynamics. Numerical simulations were included to validate the system's permanence, demonstrating that the disease persists under certain conditions. These simulations revealed that vaccination and relapse dynamics played a crucial role in controlling the epidemic. Specifically, as long as the infected population remained smaller than the susceptible population, the infection was controlled, keeping both the infected and recovered populations low. Their oscillatory behavior suggested that periodic vaccinations may be key to stabilizing disease dynamics. This study underscored the applicability of the proposed model in providing a robust theoretical foundation for understanding and managing the spread of infectious diseases.
Citation: Sabbavarapu Nageswara Rao, Mahammad Khuddush, Ahmed H. Msmali, Ali H. Hakami. Persistence and stability in an SVIR epidemic model with relapse on timescales[J]. AIMS Mathematics, 2025, 10(2): 4173-4204. doi: 10.3934/math.2025194
In this paper, an Susceptible-Vaccinated-Infected-Recovered (SVIR) epidemic model incorporating relapse dynamics on a timescale was studied. Using the dynamic inequalities: $ \mathsf{S}(\mathtt{r})\le \alpha^\mathsf{U}/(\alpha^\mathsf{L}+ \gamma^\mathsf{L})+\epsilon, $ $ \mathsf{V}(\mathtt{r})\le \gamma^\mathsf{U}\ell_{11}/(\alpha^\mathsf{L} + \delta_1^\mathsf{L})+\epsilon, $ $ \mathsf{I}(\mathtt{r})\le\alpha^\mathsf{U}/\alpha^\mathsf{L}+\epsilon, $ $ \mathsf{R}(\mathtt{r})\le(\delta_1^\mathsf{U}\ell_{12}+\delta^\mathsf{U}\ell_{13})/(\alpha^\mathsf{L}+\mathsf{d}^\mathsf{L})+\epsilon, $ $ \mathsf{S}(\mathtt{r})\ge \alpha^\mathsf{L}/(\alpha^\mathsf{U} +\beta^\mathsf{U}\ell_1+ \gamma^\mathsf{U})+\epsilon, $ $ \mathsf{V}(\mathtt{r})\ge \gamma^\mathsf{L}\ell_0/(\alpha^\mathsf{U}+ \beta_1^\mathsf{U}\ell_1+\delta_1^\mathsf{U})+\epsilon, $ $ \mathsf{I}(\mathtt{r})\ge\mathsf{d}^\mathsf{L}\ell_{03}/(\delta^\mathsf{U}+\alpha^\mathsf{U})+\epsilon, $ $ \mathsf{R}(\mathtt{r})\ge\delta_1^\mathsf{L}\ell_{02}/(\alpha^\mathsf{U}+\mathsf{d}^\mathsf{U})+\epsilon, $ and constructing an appropriate Lyapunov functional, sufficient conditions were determined to guarantee the permanence of the system. Additionally, the existence, uniqueness, and uniform asymptotic stability of globally attractive, almost periodic positive solutions were derived. Furthermore, an in-depth analysis highlighted the significance of relapse dynamics. Numerical simulations were included to validate the system's permanence, demonstrating that the disease persists under certain conditions. These simulations revealed that vaccination and relapse dynamics played a crucial role in controlling the epidemic. Specifically, as long as the infected population remained smaller than the susceptible population, the infection was controlled, keeping both the infected and recovered populations low. Their oscillatory behavior suggested that periodic vaccinations may be key to stabilizing disease dynamics. This study underscored the applicability of the proposed model in providing a robust theoretical foundation for understanding and managing the spread of infectious diseases.
[1] |
H. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 1–15. https://doi.org/10.1155/2022/4247800 doi: 10.1155/2022/4247800
![]() |
[2] |
L. Chang, M. Duan, G. Sun, Z. Jin, Cross-diffusion-induced patterns in an SIR epidemic model on complex networks, Chaos, 30 (2020), 013147. https://doi.org/10.1063/1.5135069 doi: 10.1063/1.5135069
![]() |
[3] |
G. H. Li, Y. X. Zhang, Dynamic behaviors of a modified SIR model in epidemic diseases using nonlinear incidence and recovery rates, PloS One, 12 (2017), e0175789. https://doi.org/10.1371/journal.pone.0175789 doi: 10.1371/journal.pone.0175789
![]() |
[4] | S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988. |
[5] |
R. P. Agarwal, R. R. Mahmoud, S. H. Saker, C. Tunc, New generalizations of Nemeth-Mohapatra type inequalities on times cales, Acta. Math. Hung., 152 (2017), 383–403. https://doi.org/10.1007/s10474-017-0718-2 doi: 10.1007/s10474-017-0718-2
![]() |
[6] | M. Bohner, A. Peterson, Dynamic equations on time scales, an introduction with applications, Boston: Birkhauser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[7] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhauser, 2003. https://doi.org/10.1007/978-0-8176-8230-9 |
[8] | M. Khuddush, Fishing model with feedback control on time scales, In: Dynamic Equations on Time Scales and Applications, Chapman and Hall/CRC, 2024,310–324. https://doi.org/10.1201/9781003467908 |
[9] |
M. Khuddush, K. R. Prasad, Permanence and stability of multi-species nonautonomous Lotka-Volterra competitive systems with delays and feedback controls on time scales, Khayyam J. Math., 7 (2021), 241–256. https://doi.org10.22034/kjm.2021.220759.1725 doi: 10.22034/kjm.2021.220759.1725
![]() |
[10] | W. S. Jie, K. Bunwong, E. J. Moore, Qualitative behavior of SIS epidemic model on time scales, In: Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling (ASM'10), 2010,159–164. |
[11] | W. S. Jie, K. Bunwong, E. J. Moore, The effect of time scales on SIS epidemic model, WSEAS Trans. Math., 9 (2010), 757–767. |
[12] |
M. Bohner, S. Streipert, The SIS-model on time scales, Pliska Stud. Math., 26 (2016), 11–28. doi: 10.1016/j.nahs.2018.12.005
![]() |
[13] |
M. Bohner, S. Streipert, D. F. M. Torres, Exact solution to a dynamic SIR model, Nonlinear Anal.-Hybri., 32 (2019), 228–238. https://doi.org/10.1016/j.nahs.2018.12.005 doi: 10.1016/j.nahs.2018.12.005
![]() |
[14] |
Y. K. Li, C. Wang, Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales, Abstr. Appl. Anal., 2011 (2011), 341520. https://doi.org/10.1155/2011/341520 doi: 10.1155/2011/341520
![]() |
[15] |
T. Liang, Y. Yang, Y. Liu, L. Li, Existence and global exponential stability of almost periodic solutions to Cohen-Grossberg neural networks with distributed delays on time scales, Neurocomputing, 123 (2014), 207–215. https://doi.org/10.1016/j.neucom.2013.07.010 doi: 10.1016/j.neucom.2013.07.010
![]() |
[16] |
Q. Liao, B. Li, Y. Li, Permanence and almost periodic solutions for an $n$-species LotkaVolterra food chain system on time scales, Asian-Eur. J. Math., 8 (2014). https://doi.org/10.1142/S1793557115500278 doi: 10.1142/S1793557115500278
![]() |
[17] | M. Bohner, S. Streipert, An integrable SIS model on time scales, Difference Equations and Discrete Dynamical Systems with Applications, ICDEA 2018, Springer Proceedings in Mathematics & Statistics, Cham: Springer, 312 (2020). https://doi.org/10.1007/978-3-030-35502-9_7 |
[18] |
Y. Xing, H. X. Li, Almost periodic solutions for a SVIR epidemic model with relapse, AIMS Math., 18 (2021), 7191–7217. https://doi.org/10.3934/mbe.2021356 doi: 10.3934/mbe.2021356
![]() |
[19] |
M. Hu, L. L. Wang, Dynamic inequalities on time scales with applications in permanence of predator-prey system, Discrete Dyn. Nat. Soc., 2012 (2012), 281052. https://doi.org/10.1155/2012/281052 doi: 10.1155/2012/281052
![]() |
[20] |
F. Chen, M. You, Permanence, extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey, Nonlinear Anal.-Real, 9 (2008), 207–221. https://doi.org/10.1016/j.nonrwa.2006.09.009 doi: 10.1016/j.nonrwa.2006.09.009
![]() |
[21] |
X. Song, L. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 170 (2001), 173–186. https://doi.org/10.1016/S0025-5564(00)00068-7 doi: 10.1016/S0025-5564(00)00068-7
![]() |
[22] |
H. T. Zhang, Y. Li, Almost periodic solutions to dynamic equations on time scales, J. Egyptian Math. Soc., 21 (2013), 3–10. https://doi.org/10.1016/j.joems.2012.10.004 doi: 10.1016/j.joems.2012.10.004
![]() |
[23] | C. Y. He, Almost periodic differential equations, Beijing: Higher Education Press, 1992, (in Chinese). |
[24] |
H. Zhou, J. Alzabut, S. Rezapour, M. E. Samei, Uniform persistence and almost periodic solutions of a nonautonomous patch occupancy model, Adv. Differential Equ., 143 (2020). https://doi.org/10.1186/s13662-020-02603-2 doi: 10.1186/s13662-020-02603-2
![]() |
[25] |
Y. Li, C. Wang, Almost periodic solutions to dynamic equations on time scales and applications, J. Appl. Math., 2012, 463913. https://doi.org/10.1155/2012/463913 doi: 10.1155/2012/463913
![]() |
[26] |
M. Khuddush, K. R. Prasad, Positive almost periodic solutions for a time scale model of fishery with time varying variable delays and harvesting term, J. Appl. Nonlinear Dyn., 12 (2023), 257–271. https://doi.org/10.5890/JAND.2023.06.005 doi: 10.5890/JAND.2023.06.005
![]() |