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Abstract: In this paper, an Susceptible-Vaccinated-Infected-Recovered (SVIR) epidemic model
incorporating relapse dynamics on a timescale was studied. Using the dynamic inequalities: S(r) ≤
αU/(αL +γL) + ε, V(r) ≤ γU`11/(αL + δL

1) + ε, I(r) ≤ αU/αL + ε, R(r) ≤ (δU
1 `12 + δU`13)/(αL + dL) + ε,

S(r) ≥ αL/(αU + βU`1 + γU) + ε, V(r) ≥ γL`0/(αU + βU
1 `1 + δU

1 ) + ε, I(r) ≥ dL`03/(δU + αU) + ε,

R(r) ≥ δL
1`02/(αU +dU)+ε, and constructing an appropriate Lyapunov functional, sufficient conditions

were determined to guarantee the permanence of the system. Additionally, the existence, uniqueness,
and uniform asymptotic stability of globally attractive, almost periodic positive solutions were derived.
Furthermore, an in-depth analysis highlighted the significance of relapse dynamics. Numerical
simulations were included to validate the system’s permanence, demonstrating that the disease persists
under certain conditions. These simulations revealed that vaccination and relapse dynamics played
a crucial role in controlling the epidemic. Specifically, as long as the infected population remained
smaller than the susceptible population, the infection was controlled, keeping both the infected and
recovered populations low. Their oscillatory behavior suggested that periodic vaccinations may
be key to stabilizing disease dynamics. This study underscored the applicability of the proposed
model in providing a robust theoretical foundation for understanding and managing the spread of
infectious diseases.
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1. Introduction

Diseases caused by pathogens are triggered by harmful microbes, including bacteria, viruses, fungi,
and parasitic organisms, and can spread through direct or indirect contact between humans and animals.
Despite tremendous advances in medical knowledge, these diseases continue to be a major cause of
death globally and provide significant obstacles to economies and public health. In order to study the
spread of these diseases and direct the development of control measures, mathematical frameworks
have become extremely effective tools. Numerous studies have provided insightful information on
epidemic modeling, including the work of Alsakaji et al. [1], who analyzed the stochastic dynamics
of COVID-19 in the UAE using an extended SEIR epidemic model incorporating vaccination, time
delays, and random noise. Their study demonstrated that stochastic perturbations and time delays
significantly impact disease persistence and extinction. Chang et al. [2] investigated cross-diffusion-
induced patterns in an SIR epidemic model on complex networks, highlighting how susceptible
individuals avoid infected ones and providing insights into pattern formations and Turing instability
in epidemiological networks. Li and Zhang [3] explored the dynamic behaviors of a modified SIR
model with nonlinear incidence and recovery rates, revealing the existence of backward bifurcation
and showing that the basic reproduction number is not always a threshold parameter, emphasizing the
impact of hospital bed availability on disease control.

In recent years, various types of equations—differential, difference, and dynamic equations on
measure chains—have emerged as essential tools for modeling diverse processes. Among these,
dynamic equations on timescales, introduced by Stefan Hilger in his 1988 doctoral dissertation [4],
stand out for their versatility and unifying nature. This theory bridges the gap between continuous and
discrete systems, extending classical results while providing a framework for hybrid models.

Timescales, defined as closed, nonempty subsets of real numbers, generalize time into a single
domain where continuous and discrete phenomena coexist. For instance, T = R represents continuous
time, T = Z corresponds to discrete time, and hybrid combinations like T = R∪Z model systems with
both characteristics. This flexibility is invaluable for real-world applications where systems exhibit
hybrid temporal behaviors, such as in population dynamics, control systems, and financial modeling.
Central to this framework are the forward and backward jump operators, σ and ρ, which identify the
smallest and largest points in the timescale greater or smaller than a given point, respectively. These
operators are mathematically defined as

σ(t) = inf{ξ ∈ T : ξ > t}, ρ(t) = sup{ξ ∈ T : ξ < t}.

The graininess function, µ(t) = σ(t) − t, quantifies the spacing between consecutive points in the
timescale, enabling the characterization of its discrete or continuous nature.

For example, points in a timescale can be categorized based on their neighborhood. A point t ∈ T is
termed right-scattered if σ(t) > t, while it is left-scattered if ρ(t) < t. Conversely, a point is right-dense
if σ(t) = t and left-dense if ρ(t) = t. Points that are scattered on both sides are called isolated, while
those dense on both sides are termed dense. Such classifications are instrumental in analyzing the
behavior of dynamic systems on timescales.

In addition, the timescale’s structure can be refined through operations like removing maximal or
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minimal elements. For instance, the non-maximal subset, Tκ, is derived as follows:

Tκ =

T \ (ρ(supT), supT], if supT < ∞,
T, if supT = ∞.

Similarly, repeated derivations such as Tκ
2

and Tκ
n

provide a hierarchical structure for
analyzing timescales.

The graininess and backward graininess functions play a vital role in this theory. While the
graininess function µ(t) measures the forward spacing, the backward graininess function, defined
as ν(t) = t − ρ(t), captures the backward spacing, offering a comprehensive understanding of the
timescale’s geometry.

Furthermore, intervals within a timescale, such as [c, d]T = {t ∈ T : c ≤ t ≤ d}, allow for
precise definitions of domains over which dynamic equations are studied. This flexibility facilitates
the modeling of hybrid systems, where both continuous and discrete behaviors coexist seamlessly.

We also define the concept of delta differentiation. A function u is said to be delta differentiable at
t ∈ Tκ if there exists a number, denoted by u∆(t), such that for any ε > 0, there exists a neighborhood
U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) satisfying∣∣∣(u(σ(t)) − u(s)) − u∆(t)(σ(t) − s)

∣∣∣ ≤ ε|σ(t) − s|

for all s ∈ U. The number u∆(t) is called the delta derivative of u at t. Moreover, if u∆(t) exists for all
t ∈ Tκ, then u is delta differentiable on Tκ, and the function u∆ : Tκ → R is referred to as the (delta)
derivative of u on Tκ.

This unifying concept of differentiation extends the classical derivative to timescales, enabling
the study of systems that evolve continuously, discretely, or in hybrid forms. For instance, in
population dynamics, the growth of insect populations serves as a prime example. During favorable
seasons, insects grow and reproduce continuously, while in colder months, populations decline,
leaving dormant eggs that hatch in distinct, nonoverlapping generations. Classical differential or
difference equations cannot fully capture such phenomena. However, timescale calculus, with its
delta derivative, accommodates both continuous growth phases and discrete generational transitions
seamlessly, offering more accurate and meaningful models.

Since Hilger’s pioneering work, researchers have made notable contributions to this field [5–9].
Bohner and Peterson have advanced its theoretical foundations, while others have applied it to areas like
control theory, signal processing, and quantum mechanics. These advancements underscore the broad
applicability and potential of timescale calculus in addressing problems across scientific disciplines.

Jie et al. [10] investigated the qualitative dynamics of an Susceptible-Infected-Susceptible (SIS)
model in 2010 that was represented by the equations:

S∆(t) = I(t)
[
−

a
N

S(t) + b
]
, S(t) ≥ 0,

I∆(t) = I(t)
[ a
N

S(t) − b
]
, I(t) ≥ 0.

In a different study later that year [11], they showed that the dynamic behavior of the system might
change dramatically, going from relatively straightforward with steady-state solutions in continuous
time to more intricate and chaotic behavior in discrete-time situations.
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In 2016, Bohner and Streipert [12] analyzed an SIS model represented by the following system
of equations:

S∆(t) = I(t) [−aS(σ(t)) + b] , S(t) > 0,
I∆(t) = I(t) [aS(σ(t)) − b] , I(t) ≥ 0,

where a > 0 and b > 0. They focused on investigating the stability properties of the model’s steady
states. Subsequently, Bohner, Streipert, and Torres studied the stability analysis of a time-dependent
SIR system in [13], characterized by the following equations:

S∆(t) = −
a(t)S(t)I(σ(t))

S(t) + I(t)
,

I∆(t) =
a(t)S(t)I(σ(t))

S(t) + I(t)
− b(t)I(σ(t)),

R∆(t) = b(t)R(σ(t)), S(t), I(t) > 0.

In practical scenarios, the almost periodic changes in surroundings significantly influence various
living and ecological processes, often being more prevalent and encompassing than strictly periodic
fluctuations. The notion of almost periodic timescales was introduced by Li and Wang [14]. Further
studies on this concept can be found in [15, 16].

The stability analysis for a discrete SIS system, represented by the following system, was examined
by Bohner and Streipert [17] in a recent study:

∆S(t) = −a(t)S(t + 1)I(t) + b(t)I(t),
∆I(t) = a(t)S(t + 1)I(t) − b(t)I(t).

2. Model framework and basic concepts

Within this part, the mathematical framework that captures the dynamics of a population is
presented, considering the interactions between susceptible, vaccinated, infected, and recovered
individuals. The model accounts for various processes such as recruitment, disease transmission,
recovery, relapse, and immunity. Building upon the continuous model explored in earlier studies
like [18], we extend it to a timescale framework. This extension combines both continuous and discrete
time dynamics, offering a more flexible approach to understanding the population’s behavior over time.

The population dynamics are studied within the framework of the timescale domain T, where r ∈ T
denotes a variable representing time. The population is categorized into four groups: Susceptible
individuals S(r), vaccinated individuals V(r), infected individuals I(r), and recovered individuals R(r).
The dynamics governing the transitions between these groups are depicted in Figure 1.

Taking into account the previous discussion, the following postulates are made regarding the group
and the progression of the disease:

(1) The disease is transmitted through both direct contact between susceptible and infected
individuals, as well as through vaccinated individuals, where the effectiveness of vaccination
is modulated by β1(r).

(2) The recruitment rate α(r) and recovery rate γ(r) are assumed to be periodic and can change
over time.
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Figure 1. The transmission diagram.

(3) The rate of disease transmission β(r) is assumed to depend on both the susceptible and infected
populations, while β1(r) represents the transmission rate between vaccinated individuals and
infected individuals.

(4) The recovery and immunity development processes are governed by δ(r) and δ1(r), which
represent the rates of recovery for infected individuals and the rate at which vaccinated individuals
gain immunity, respectively.

(5) The relapse rate d(r) is incorporated to account for the potential recurrence of the disease in
recovered individuals.

The transition dynamics between these compartments are governed by the following system of dynamic
equations on timescales:

AIMS Mathematics Volume 10, Issue 2, 4173–4204.
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S∆(r) = α(r) − β(r)S(r)I(r) −

(
α(r) + γ(r)

)
S(r),

V∆(r) = γ(r)S(r) − β1(r)V(r)I(r) −
(
α(r) + δ1(r)

)
V(r),

I∆(r) = β(r)S(r)I(r) + β1(r)V(r)I(r) − δ(r)I(r) − α(r)I(r) + d(r)R(r),
R∆(r) = δ1(r)V(r) + δ(r)I(r) − α(r)R(r) − d(r)R(r),

(2.1)

for r ∈ T, with initial conditions is that all variables S(0), V(0), I(0), and R(0) are positive at r = 0.
Also, α(r),β(r),β1(r),γ(r), δ(r), and δ1(r) are positive almost periodic functions for r ∈ T.

2.1. Motivation of relapse dynamics on timescales in the SVIR model

The inclusion of relapse dynamics in the SVIR model on timescales is motivated by both
epidemiological realities and mathematical generalizations that aim to enhance the model’s flexibility
and applicability. Below is the rationale for our consideration:

2.1.1. Epidemiological motivation

Relapse dynamics are critical in capturing the behavior of certain infectious diseases where
individuals, after recovery, may lose immunity and become susceptible or reinfected. Examples include
diseases like tuberculosis, malaria, and certain viral infections. The relapse process is influenced by
factors such as incomplete immunity, genetic variability of pathogens, or re-exposure. Modeling this
phenomenon allows for a realistic representation of the disease dynamics, particularly in settings where
relapses significantly contribute to the overall infection prevalence.

2.1.2. Timescale framework

Extending the model to timescales combines continuous and discrete dynamics, enabling the study
of disease progression in environments where interactions occur at irregular intervals. For instance:

• Continuous time: Used to model real-time disease spread in densely populated areas.
• Discrete time: Captures periodic interventions like vaccination campaigns, health awareness

programs, or seasonal variations in disease dynamics.

By incorporating timescales, the model can simulate hybrid scenarios, such as populations
with continuous interactions punctuated by discrete interventions or fluctuations in environmental
conditions that influence relapse rates.

2.1.3. Mathematical formulation of relapse dynamics

In the proposed system, the term d(r)R(r) accounts for the transition of individuals from the
recovered compartment back to the infected compartment due to relapse. The function d(r) represents
the relapse rate, which is considered to be an almost periodic function on the timescale. This
assumption allows the relapse rate to vary systematically over time, reflecting periodic factors such
as seasonal changes, environmental influences, or treatment effectiveness.

2.1.4. Significance in stability and permanence analysis

The inclusion of relapse dynamics adds complexity to the model but is essential for accurately
capturing the long-term behavior of the epidemic. Specifically:
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• Stability: The model investigates conditions under which the population
compartments (susceptible, vaccinated, infected, and recovered) achieve a stable distribution.
Relapse dynamics influence this stability by affecting the balance between infection and
recovery rates.
• Permanence: The persistence of the disease in the population is strongly tied to relapse rates. By

analyzing d(r), we provide insights into thresholds that determine whether the disease dies out or
remains endemic.

2.1.5. Impact on control strategies

The relapse dynamics highlight the necessity of considering recovered individuals in vaccination
and intervention strategies. For example:

• If relapse rates are high, boosting immunity through periodic vaccination or post-recovery
treatment becomes critical.
• Relapse dynamics underscore the importance of reducing d(r) through medical advancements or

behavioral changes.

The inclusion of relapse dynamics in the SVIR model provides a robust framework for studying the
long-term behavior of epidemics and formulating effective control strategies. This addition underscores
the importance of accounting for relapse in understanding disease dynamics on timescales.

The ecological meaning of the almost periodic functions is provided in Figure 2.

Figure 2. Ecological interpretations of key functions in the model, describing various rates
and interactions within the population dynamics.
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Remark 1. To explore the existence of almost periodic solutions for the SVIR model, which
incorporates relapsed cases and periodic incidence rates alongside a relapsed treatment function, it
is essential to examine both dynamic equations on continuous domains and their discrete analogs. By
bridging these approaches, the study can be extended to a unified framework on timescales. However,
this requires significant advancements in timescale theory, as analyzing (2.1) within this broader
context is quite demanding.

Let C = C([−k, 0]T,R4) denote the Banach space of continuous functions defined on the timescale
interval [−k, 0]T with values in R4. Each function f ∈ C satisfies:

f : [−k, 0]T → R4,

where [−k, 0]T is a closed and bounded subset of the timescale T, and R4 represents the four-
dimensional Euclidean space.

The norm on C is defined as:
‖ f ‖C = sup

t∈[−k,0]T
‖ f (t)‖R4 ,

where ‖ f (t)‖R4 denotes the Euclidean norm of f (t) in R4.
Equipped with this norm, C is a Banach space, as it is complete with respect to the norm ‖ · ‖C.
Assume the initial conditions for (2.1) are given as follows:

S(ι̇) = ψ1(ι̇), V(ι̇) = ψ2(ι̇), I(ι̇) = ψ3(ι̇), R(ι̇) = ψ4(ι̇), ι̇ ∈ [−k, 0]T,

where the functions satisfy ψj(ι̇) ≥ 0 for ι̇ ∈ [−k, 0]T, and ψj(ι̇) is positive at ι̇ = 0 for each index
j=1,2,3,4. The tuple (ψ1, ψ2, ψ3, ψ4) belongs to the space C.

To describe bounds for a function h(r) defined on T, we use the following notations:

hL = min{h(r) : r ∈ T}, hU = max{h(r) : r ∈ T}.

Throughout the paper, we take the following to be true:

• Let the bounded and almost periodic functions α,β,β1,γ, δ, δ1, and d : T → [0,∞] be defined,
which satisfy 0 < xL ≤ x(r) ≤ xU for x ∈ {α,β,β1,γ, δ, δ1, d}.

Next, we present a few important definitions and results that will be instrumental in the
subsequent discussions.

3. Basics of timescales

This section introduces the foundational concepts of timescale calculus, adapted from the primer
in [6]. In many dynamic systems, processes evolve continuously over time but are also subject
to discrete changes. Traditional models, such as ordinary differential equations (ODEs), excel at
describing continuous-time dynamics, while discrete processes are used to capture step-wise changes.
However, real-world systems often exhibit a blend of these behaviors, necessitating a unified approach
to effectively model and analyze them.

The theory of timescales provides such a unification by generalizing the concept of time to
encompass both continuous and discrete domains. This approach not only bridges the gap between
these two paradigms but also opens new avenues for studying systems with hybrid dynamics, enabling
more robust and flexible modeling frameworks.
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Definition 3.1. A function p : T → R is called regressive if 1 + µ(t)p(t) , 0 for all t ∈ Tκ. The set of
all regressive and rd-continuous functions p : T→ R is denoted by

R = R(T) = R(T,R).

We further define the subset

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

Definition 3.2. For p ∈ R, the exponential function ep(t, t0) on the timescale T is defined as

ep(t, t0) = exp
(∫ t

t0
ξµ(s)(p(s)) ∆s

)
,

with

ξh(z) =


Log(1 + hz)

h
if h > 0,

z if h = 0,

where Log is the principal logarithm function.

Definition 3.3. For functions α, β ∈ R(T,R), unconventional operations are defined as follows:

α ⊕ β := α + β + µαβ, 	α :=
−α

1 + µα
, α 	 β := α ⊕ (	β).

Lemma 3.4. Assume that q : T→ R is a regressive function, then

• e0(α, β) ≡ 1 for all α, β ∈ T.
• eq(α, β) = e	q(β, α).
• eq(α, β) = 1

eq(β,α) .
• eq(α, γ)eq(γ, β) = eq(α, β).

Lemma 3.5. [19] Assume that α > 0, b > 0, and −α ∈ R+. If

y∆(p) ≥ (≤)b − αyσ(p), y(t) > 0, p ∈ [p0,∞)T,

then

y(p) ≥ (≤)
b
α

(
1 +

αy(t0)
b
− 1

)
e−α(p, p0), p ∈ [p0,∞)T.

Comparable results for ODEs are presented in [20, 21].

Definition 3.6. A timescale T is called an almost periodic timescale if∏
= {ζ ∈ R : r + ζ ∈ T, for all r ∈ T},

such that
∏
, {0}. The set

∏
is referred to as the translation set of T.
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Characteristics of almost periodic timescales:

(1) Translation Invariance: A timescale T is almost periodic if it remains invariant under translations
by elements of

∏
. That is, shifting all points of T by ζ ∈

∏
does not remove any points from T.

(2) Non-triviality of
∏

: The condition
∏
, {0} ensures that the timescale exhibits a nondegenerate

structure with translational symmetry, beyond a simple or purely discrete configuration.
(3) Connection to Periodicity: An almost periodic timescale generalizes the idea of periodicity.

For example: If
∏

= {nT : n ∈ Z} for some fixed T > 0, then T is strictly periodic with period
T . For an almost periodic timescale,

∏
may include irregular spacings, accommodating a more

generalized repetitive structure.
(4) Relation to Infimum and Supremum: For an almost periodic timescale T, the bounds satisfy

inf T = −∞ and supT = ∞,

reflecting the unbounded nature of such timescales.

Almost periodic timescales are particularly useful in the study of dynamic equations where solutions
or behaviors exhibit quasi-periodicity or generalized repetitive structures, such as in control systems,
biological models, and signal processing.

Example 3.7. Consider the timescale T defined as

T =
⋃
n∈Z

(
n(p + q), n(p + q) + q

)
,

where p , −q. Then, the forward jump operator ρ(t) and the graininess function ν(t) are expressed as:

ρ(t) =


t if t ∈

∞⋃
n=0

(
n(p + q), n(p + q) + q

)
,

t + p if t ∈
∞⋃

n=0

{n(p + q) + q},

ν(t) =


0 if t ∈

∞⋃
n=0

(
n(p + q), n(p + q) + q

)
,

p if t ∈
∞⋃

n=0

{n(p + q) + q}.

Here, p + q ∈ Ω \ {0}, which confirms that T is an almost periodic timescale. If q = 0 and p = 1, then
S corresponds to Z. On the other hand, if q = 1 and p = 0, then T represents R.

Definition 3.8. Let T be an almost periodic timescale. A function x ∈ C(T,Rn) is called an almost
periodic function if the ε-translation set of x, that is,

E{ε, x} = {τ ∈
∏

: |x(r + ζ) − x(r)| < ε for all r ∈ T},

is a relatively dense set in T for all ε > 0, and there exists a constant l(ε) > 0 such that each interval of
length l(ε) contains a ζ ∈ E{ε, x} for which |x(r + ζ) − x(r)| < ε for all r ∈ T. The value τ is known as
the ε-translation number of x, and l(ε) is called the inclusion length of E{ε, x}.
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Definition 3.9. Let D be an open set in Rn and let T be a positive almost periodic timescale. A function
f ∈ C(T×D,Rn) is called an almost periodic function in r ∈ T uniformly for x ∈ D if the ε-translation
set of f ,

E{ε, f , S } = {τ ∈
∏

: | f (r + ζ, x) − f (r, x)| < ε, for all (r, x) ∈ T × S },

is a relatively dense set in T for all ε > 0. Moreover, for each compact subset S of D, there exists a
constant l(ε, S ) > 0 such that each interval of length l(ε, S ) contains a ζ(ε, S ) ∈ E{ε, f , S } for which

| f (r + ζ, x) − f (r, x)| < ε, for all (r, x) ∈ T × S .

Next, consider the following system:

z∆(r) = g(r, z), r ∈ T+, (3.1)

where g : T+ × SM → R, SM = {z ∈ Rn : ‖z‖ < M}, ‖z‖ = supr∈T |z(r)|, T+ is a nonempty closed subset of
R+ = [0,+∞), and M is a positive real number. The function g(r, z) is assumed to be almost periodic in
r, uniformly for z ∈ SM, and continuous in z. To solve the Eq (3.1), we consider the following system
of equations as the product system:

z∆(r) = g(r, z), y∆(r) = g(r, y),

The question of existence of a unique almost periodic solution φ(r) ∈ S of (3.1), which is uniformly
asymptotically stable, is investigated [22]. For our model, we obtain the following result.

Lemma 3.10. [22] LetV(r, z, y) be a Lyapunov function defined on T+ × SM × SM, which satisfies the
following conditions:

(i) a
(
‖z − y‖

)
≤ V(r, z, y) ≤ b

(
‖z − y‖

)
, where a, b ∈ P, and P = {g : R+ → R+ | g is continuous,

increasing, and g(0) = 0}.
(ii) A constant L > 0 exists such that for all z, z1, y, y1, the inequality∣∣∣V(r, z, y) −V(r, z1, y1)

∣∣∣ ≤ L(
‖z − z1‖ + ‖y − y1‖

)
,

holds true.
(iii) The functionV satisfies the following differential inequality:

D+V∆(r, z, y) ≤ −λV(r, z, y),

where λ > 0 is a constant and −λ ∈ R+.

Furthermore, if the system (3.1) admits a solution z(r) ∈ S for r ∈ T+, where S ⊂ SM is
compact, then the system has a unique almost periodic solution p(r) ∈ S. This solution is uniformly
asymptotically stable. Additionally, if g(r, z) is uniformly periodic in r for all z ∈ SM, then the solution
p(r) is periodic as well.

Comparable results for ODEs are presented in [23, 24].
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4. Permanence and uniform asymptotic stability

We begin by introducing the notion of permanence of solutions.

Definition 4.1. Let `0, `1 be positive real numbers such that

`0 ≤ lim inf
r→∞

S(r) ≤ lim sup
r→∞

S(r) ≤ `1, `0 ≤ lim inf
r→∞

V(r) ≤ lim sup
r→∞

V(r) ≤ `1,

`0 ≤ lim inf
r→∞

I(r) ≤ lim sup
r→∞

I(r) ≤ `1, `0 ≤ lim inf
r→∞

R(r) ≤ lim sup
r→∞

R(r) ≤ `1,

for any solution
(
S(r),V(r), I(r),R(r)

)
of system (2.1). Then, the system (2.1) is called permanent.

Lemma 4.2. Assume that
(
S(r),V(r), I(r),R(r)

)
is a positive solution of system (2.1). If −αL, −(αL +

γL), (αL + δL
1),−(αL + dL) ∈ R+, there are I4 > 0 and `1 > 0 for which

S(r) ≤ `1, V(r) ≤ `1, I(r) ≤ `1, R(r) ≤ `1 f or r ∈ [I4,∞)T.

Proof. Suppose
(
S(r),V(r), I(r),R(r)

)
represents any positive solution of (2.1). Then, the first

equation of system (2.1) implies that

S∆(r) = α(r) − β(r)S(r)I(r) −
(
α(r) + γ(r)

)
S(r)

≤ α(r) −
(
α(r) + γ(r)

)
S(r)

≤ αU −
(
αL + γL)S(r).

Consequently, invoking Lemma 3.5, for any positive number ε as small as desired, one can identify a
value I1 > 0 satisfying:

S(r) ≤
αU

αL + γL
+ ε = `11, r ∈ [I1,∞)T. (4.1)

Proceeding further, based on the second equation of system (2.1) along with (4.1), the condition
remains valid for r ∈ [I1,∞) :

V∆(r) = γ(r)S(r) − β1(r)V(r)I(r) −
(
α(r) + δ1(r)

)
V(r)

≤ γ(r)S(r) −
(
α(r) + δ1(r)

)
V(r)

≤ γU`11 −
(
αL + δL

1
)
V(r).

According to Lemma 3.5, for any ε > 0, no matter how small, one can find a I2 > I1 meeting the
condition that

V(r) ≤
γU`11

αL + δL
1

+ ε = `12, r ∈ [I2,∞)T. (4.2)

Let N(r) = S(r) + V(r) + I(r) + R(r). Then, first order forward Hilger derivative of N(r) with respect
to r is

N∆(r) = S∆(r) + V∆(r) + I∆(r) + R∆(r).

Adding all the equations of (2.1), we get

S∆(r) + V∆(r) + I∆(r) + R∆(r) = α(r) − α(r)
(
S(r) + V(r) + I(r) + R(r)

)
.
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Therefore,
N∆(r) =α(r) − α(r)N(r)

≤αU − αLN(r).

By Lemma 3.5, we get

lim sup
r→∞

N(r) ≤
αU

αL
:= K3.

It is evident that
lim sup
r→∞

I(r) ≤ lim sup
r→∞

N(r).

So, we get
lim sup
r→∞

I(r) ≤ `13.

Thus, there exists a sufficiently small ε > 0, and we can find a I3 > I2 satisfying

I(r) ≤ `13, r ∈ [I3,∞)T. (4.3)

Lastly, from the last equation of system (2.1), and using (4.1)–(4.3) for r ∈ [I3,∞),

R∆(r) = δ1(r)V(r) + δ(r)I(r) − α(r)R(r) − d(r)R(r)
≤ δU

1 `12 + δU`13 −
(
αL + dL)R(r).

According to Lemma 3.5, for any ε > 0 that is sufficiently close to zero, a value I4 can be found with
I4 > I3, which satisfies:

R(r) ≤
δU

1 `12 + δU`13

αL + dL
+ ε = K4, r ∈ [I4,∞).

Let `1 > max{`11, `12, `13, `14}, then

S(r) ≤ `1, V(r) ≤ `1, I(r) ≤ `1, R(r) ≤ `1 f or r ∈ [I4,∞)T.

Therefore, the argument is concluded. �

Lemma 4.3. Let
(
S(r),V(r), I(r),R(r)

)
be a positive solution to the system described in (2.1). If the

following conditions hold for the parameters:

−(αU + dU), −(δU + αU), −(αU + βU`1 + γU), −(αU + βU
1 `1 + δU

1 ) ∈ R+,

then there exist constants I8 > 0 and `0 > 0 for which, for all r ∈ [I8,∞)T, the following inequalities
are satisfied:

S(r) ≥ `0, V(r) ≥ `0, I(r) ≥ `0, R(r) ≥ `0.

Proof. Consider the tuple
(
S(r),V(r), I(r),R(r)

)
as a positive solution to system (2.1). Referring to the

initial equation in system (2.1) and leveraging the results established in Lemma 4.2, we deduce that for
all r ∈ [I4,∞):

S∆(r) = α(r) − β(r)S(r)I(r) −
(
α(r) + γ(r)

)
S(r)

≥ αL − βUS(r)`1 −
(
αU + γU)S(r)

= αL −
(
αU + βU`1 + γU)S(r).
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By Lemma 3.5, for any ε > 0 chosen as small as desired, one can find an I5 > 0 satisfying

S(r) ≥
αL

αU + βU`1 + γU
+ ε = `01, r ∈ [I5,∞)T. (4.4)

From (2.1), we find that

V∆(r) = γ(r)S(r) − β1(r)V(r)I(r) −
(
α(r) + δ1(r)

)
V(r)

≥ γL`0 − β
U
1 V(r)`1 −

(
αU + δU

1
)
V(r)

= γL`0 −
(
αU + βU

1 `1 + δU
1
)
V(r).

By Lemma 3.5, for any ε > 0 chosen as small as desired, one can find an I6 > I5 satisfying

V(r) ≥
γL`0

αU + βU
1 `1 + δU

1

+ ε = `02, r ∈ [I6,∞)T. (4.5)

From the final equation of system (2.1), in conjunction with (4.4) and (4.5), it follows that for
r ∈ [I6,∞), we obtain

R∆(r) = δ1(r)V(r) + δ(r)I(r) − α(r)R(r) − d(r)R(r)
≥ δ1(r)V(r) −

(
α(r) + d(r)

)
R(r)

≥ δL
1`02 −

(
αU + dU)R(r). (4.6)

From (4.6) and by Lemma 3.5, for any ε > 0 chosen as small as desired, one can determine an I7 > I6

fulfilling the condition that r ∈ [I7,∞) :

R(r) ≥
δL

1`02

αU + dU
+ ε = `03.

From the third equation of (2.1), we have for r ∈ [I7,∞),

I∆(r) = β(r)S(r)I(r) + β1(r)V(r)I(r) − δ(r)I(r) − α(r)I(r) + d(r)R(r)
≥ d(r)R(r) −

(
δ(r) + α(r)

)
I(r)

≥ dL`03 −
(
δU + αU)I(r).

By Lemma 3.5, for any ε > 0 chosen as small as desired, one can determine an I8 > I7 fulfilling the
condition that r ∈ [I8,∞) :

I(r) ≥
dL`03

δU + αU
+ ε = `04.

Let 0 < `0 < min{`01, `02, `03, `04}, then

S(r) ≥ `0, V(r) ≥ `0, I(r) ≥ `0, R(r) ≥ `0

for r ∈ [I8,∞)T. �

Theorem 4.4. Suppose the hypotheses of Lemmas 4.2 and 4.3 are satisfied. Under these assumptions,
system (2.1) exhibits permanence.
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Proof. In combination with Lemmas 4.2 and 4.3, the intended conclusion can be derived.
Define

f =
{(

S(r),V(r), I(r),R(r)
)

:
(
S(r),V(r), I(r),R(r)

)
to be a solution of (2.1),

0 < S− ≤ S(r) ≤ S+, 0 < V− ≤ V(r) ≤ V+, 0 < I− ≤ I(r) ≤ I+, 0 < r− ≤ R(r) ≤ r+
}
.

It is evident that f remains invariant under the dynamics of system (2.1). �

Lemma 4.5. If the conditions of Lemmas 4.2 and 4.3 are satisfied, it follows that f is nonempty.

Proof. Since the conditions of Lemmas 4.2 and 4.3 are satisfied, it follows from Theorem 4.4 that f is
nonempty. �

Now, we establish sufficient conditions for the existence of a unique positive almost periodic
solution to system (2.1) that is uniform asymptotically stable.
Consider the following assumption, which will hold in the next result:

(A ) Let the bounded and almost periodic functions α,β,β1,γ, δ, δ1, and d : T → [0,∞] be defined,
which satisfy 0 < xL ≤ x(r) ≤ xU for x ∈ {α,β,β1,γ, δ, δ1, d}.

(B) There exist a positive constant λ > 0 and −λ ∈ R+, where λ = min{λ1, λ2, λ3, λ4} and

λ1 =αL + βL + γL − γU − βUI+,

λ2 =αL + βL
1I− + δL

1 − β
U
1 I+ − δU

1 ,

λ3 =αL − βUS+ − βU
1 V+ + δL + βLS− + δL

1V− − δU,

λ4 =αL + dL − dU.

Theorem 4.6. Let (A ) and (B) hold, then the dynamic system (2.1) admits a unique almost periodic
solution

(
S(r),V(r), I(r),R(r)

)
contained in f, which is uniformly asymptotically stable.

Proof. Based on Theorem 4.4 and Lemma 4.5, any solution of the system (2.1), denoted as(
S(r),V(r), I(r),R(r)

)
, satisfies the following bounds:

0 < S− ≤ S(r) ≤ S+,

0 < V− ≤ V(r) ≤ V+,

0 < I− ≤ I(r) ≤ I+,

0 < r− ≤ R(r) ≤ r+.

Consequently, the absolute values of these components are constrained as follows:

|S(r)| ≤ J1, |V(r)| ≤ J2, |I(r)| ≤ J3, |R(r)| ≤ J4,

where the constants J1, J2, J3, and J4 are given by:

J1 = max{|S−|, |S+|},

J2 = max{|V−|, |V+|},

J3 = max{|I−|, |I+|},
J4 = max{|r−|, |r+|}.
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This ensures that the solutions of the system are bounded within well-defined intervals for
each component.

Denote ‖
(
S(r),V(r), I(r),R(r)

)
‖ = sup

r∈T+

|S(r)| + sup
r∈T+

|V(r)| + sup
r∈T+

|I(r)| + sup
r∈T+

|R(r)|.

Let any two positive solutions of (2.1) be y =
(
S(r),V(r), I(r),R(r)

)
, ŷ =

(
Ŝ(r), V̂(r),̂ I(r), R̂(r)

)
. Then

‖y‖ ≤ J1 + J2 + J3 + J4 and ‖̂y‖ ≤ J1 + J2 + J3 + J4.

From the structure of the system (2.1), it follows that

S∆(r) = α(r) − β(r)S(r)I(r) −
(
α(r) + γ(r)

)
S(r),

V∆(r) = γ(r)S(r) − β1(r)V(r)I(r) −
(
α(r) + δ1(r)

)
V(r),

I∆(r) = β(r)S(r)I(r) + β1(r)V(r)I(r) − δ(r)I(r) − α(r)I(r) + d(r)R(r),
R∆(r) = δ1(r)V(r) + δ(r)I(r) − α(r)R(r) − d(r)R(r),

Ŝ∆(r) = α(r) − β(r)Ŝ(r)̂I(r) −
(
α(r) + γ(r)

)
Ŝ(r),

V̂∆(r) = γ(r)Ŝ(r) − β1(r)V̂(r)̂I(r) −
(
α(r) + δ1(r)

)
V̂(r),

Î∆(r) = β(r)Ŝ(r)̂I(r) + β1(r)V̂(r)̂I(r) − δ(r)̂I(r) − α(r)̂I(r) + d(r)R̂(r),

R̂∆(r) = δ1(r)V̂(r) + δ(r)̂I(r) − α(r)R̂(r) − d(r)R̂(r).



(4.7)

Let the Lyapunov functionV(r, y, ŷ) be defined on T+ ×f ×f as

V(r, y, ŷ) = |S(r) − Ŝ(r)| + |V(r) − V̂(r)| + |I(r) − Î(r)| + |R(r) − R̂(r)|.

Define the norm

‖y(r) − ŷ(r)‖ = sup
r∈T+

|S(r) − Ŝ(r)| + sup
r∈T+

|V(r) − V̂(r)|

+ sup
r∈T+

|I(r) − Î(r)| + sup
r∈T+

|R(r) − R̂(r)|. (4.8)

It can be readily observed that there are two constants l > 0, m > 0 for which

l‖y(r) − ŷ(r)‖ ≤ V(r, y, ŷ) ≤ m‖y(r) − ŷ(r)‖.

ConsiderB, ` ∈ C(R+,R+) to be defined asB(z) = lz and `(z) = mz. With these definitions, condition (i)
of Lemma 3.10 is fulfilled. Furthermore, we observe that
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4189∣∣∣V(
r,y(r), ŷ(r)

)
−V

(
r, y?(r), ŷ?(r)

)∣∣∣
=

∣∣∣|S(r) − Ŝ(r)| + |V(r) − V̂(r)| + |I(r) − Î(r)| + |R(r) − R̂(r)|

− |S?(r) − Ŝ?(r)| − |V?(r) − V̂?(r)| − |I?(r) − Î?(r)| − |r?(r) − R̂?(r)|
∣∣∣

≤
∣∣∣|S(r) − Ŝ(r)| − |S?(r) − Ŝ?(r)|

∣∣∣ +
∣∣∣|V(r) − V̂(r)| − |V?(r) − V̂?(r)|

∣∣∣
+

∣∣∣|I(r) − Î(r)| − |I?(r) − Î?(r)|
∣∣∣ +

∣∣∣|R(r) − R̂(r)| − |r?(r) − R̂?(r)|
∣∣∣

≤
∣∣∣[S(r) − Ŝ(r)] − [S?(r) − Ŝ?(r)]

∣∣∣ +
∣∣∣[V(r) − V̂(r)] − [V?(r) − V̂?(r)]

∣∣∣
+

∣∣∣[I(r) − Î(r)] − [I?(r) − Î?(r)]
∣∣∣ +

∣∣∣[R(r) − R̂(r)] − [r?(r) − R̂?(r)]
∣∣∣

≤
∣∣∣[S(r) − S?(r)] − [Ŝ(r) − Ŝ?(r)]

∣∣∣ +
∣∣∣[V(r) − V?(r)] − [V̂(r) − V̂?(r)]

∣∣∣
+

∣∣∣[I(r) − I?(r)] − [̂I(r) − Î?(r)]
∣∣∣ +

∣∣∣[R(r) − r?(r)] − [R̂(r) − R̂?(r)]
∣∣∣

≤ |S(r) − S?(r)| + |̂S(r) − Ŝ?(r)| + |V(r) − V?(r)| + |̂V(r) − V̂?(r)|

+ |I(r) − I?(r)| + |̂I(r) − Î?(r)| + |R(r) − r?(r)| + |R̂(r) − R̂?(r)|
≤ |S(r) − S?(r)| + |V(r) − V?(r)| + |I(r) − I?(r)| + |R(r) − R?(r)|

+ |̂S(r) − Ŝ?(r)| + |̂V(r) − V̂?(r)| + |̂I(r) − Î?(r)| + |R̂(r) − R̂?(r)|

≤
[

sup
r∈T+

|S(r) − S?(r)| + sup
r∈T+

|V(r) − V?(r)| + sup
r∈T+

|I(r) − I?(r)| + sup
r∈T+

|R(r) − R?(r)|
]

+
[

sup
r∈T+

|̂S(r) − Ŝ?(r)| + sup
r∈T+

|̂V(r) − V̂?(r)| + sup
r∈T+

|̂I(r) − Î?(r)| + sup
r∈T+

|R̂(r) − R̂?(r)|
]
.

From the definition of the Norm (4.8), we get∣∣∣V(
r, y(r), ŷ(r)

)
−V

(
r, y?(r), ŷ?(r)

)∣∣∣ ≤ L
[
‖y − y?‖ + ‖̂y − ŷ?‖

]
,

where L = 1, so condition (ii) of Lemma 3.10 is satisfied. Now consider a functionW(r) =W1(r) +

W2(r) +W3(r) +W4(r), where

W1(r) = |S(r) − Ŝ(r)|, W2(r) = |V(r) − V̂(r)|,

W3(r) = |I(r) − Î(r)|, W4(r) = |R(r) − R̂(r)|.

For r ∈ T+, calculating the Dini derivative and using [25, Lemma 4.2], it follows that D+W1(r)∆ of
W1(r) along system (4.7),
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D+W∆
1 (r) ≤ sign

(
S(σ(r)) − Ŝ(σ(r))

)[
S(r) − Ŝ(r)

]∆

≤ sign
(
S(σ(r)) − Ŝ(σ(r))

)[(
α(r) − β(r)S(r)I(r) −

(
α(r) + γ(r)

)
S(r)

)
−

(
α(r) − β(r)Ŝ(r)̂I(r) −

(
α(r) + γ(r)

)
Ŝ(r)

)]
≤ sign

(
S(σ(r)) − Ŝ(σ(r))

)[
β(r)Ŝ(r)̂I(r) − β(r)S(r)I(r)

−
(
α(r) + γ(r)

)(
S(r) − Ŝ(r)

)]
≤ sign

(
S(σ(r)) − Ŝ(σ(r))

)[
− β(r)

(
S(r) − Ŝ(r)

)
I(r) − β(r)Ŝ(r)

(
I(r) − Î(r)

)
−

(
α(r) + γ(r)

)(
S(r) − Ŝ(r)

)]
≤ sign

(
S(σ(r)) − Ŝ(σ(r))

)[
−

(
α(r) + β(r) + γ(r)

)(
S(r) − Ŝ(r)

)
− β(r)Ŝ(r)

(
I(r) − Î(r)

)]
≤ −

[
αL + βL + γL

] ∣∣∣S(r) − Ŝ(r)
∣∣∣ − βLS−

∣∣∣I(r) − Î(r)
∣∣∣.

Similarly,

D+W∆
2 (r) ≤ sign

(
V(σ(r)) − V̂(σ(r))

)[
V(r) − V̂(r)

]∆

≤ sign
(
V(σ(r)) − V̂(σ(r))

)[
γ(r)S(r) − β1(r)V(r)I(r) −

(
α(r) + δ1(r)

)
V(r)

−
(
γ(r)Ŝ(r) − β1(r)V̂(r)̂I(r) −

(
α(r) + δ1(r)

)
V̂(r)

)]
≤ sign

(
V(σ(r)) − V̂(σ(r))

)[
γ(r)

(
S(r) − Ŝ(r)

)
− β1(r)V(r)I(r)

+ β1(r)V̂(r)̂I(r) −
(
α(r) + δ1(r)

)(
V(r) − V̂(r)

)]
≤ sign

(
V(σ(r)) − V̂(σ(r))

)[
γ(r)

(
S(r) − Ŝ(r)

)
− β1(r)I(r)

(
V(r) − V̂(r)

)
− β1(r)V̂(r)

(
I(r) − Î(r)

)
−

(
α(r) + δ1(r)

)(
V(r) − V̂(r)

)]
≤ γU

∣∣∣S(r) − Ŝ(r)
∣∣∣ − (αL + βL

1I− + δL
1)
∣∣∣V(r) − V̂(r)

∣∣∣ − δL
1V−

∣∣∣I(r) − Î(r)
∣∣∣.
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D+W∆
3 (r) ≤ sign

(
I(σ(r)) − Î(σ(r))

)[
I(r) − Î(r)

]∆

≤ sign
(
I(σ(r)) − Î(σ(r))

)[(
β(r)S(r)I(r) + β1(r)V(r)I(r) − δ(r)I(r)

− α(r)I(r) + d(r)R(r)
)
−

(
β(r)Ŝ(r)̂I(r) + β1(r)V̂(r)̂I(r)

− δ(r)̂I(r) − α(r)̂I(r) + d(r)R̂(r)
)]

≤ sign
(
V(σ(r)) − V̂(σ(r))

)[
β(r)

(
S(r)I(r) − Ŝ(r)̂I(r)

)
+ β1(r)

(
V(r)I(r) − V̂(r)̂I(r)

)
−

(
α(r) + δ(r)

)(
I(r) − Î(r)

)
+ d(r)

(
R(r) − R̂(r)

)]
≤ sign

(
V(σ(r)) − V̂(σ(r))

)[
β(r)I(r)

(
S(r) − Ŝ(r)

)
+ β(r)Ŝ(r)

(
I(r) − Î(r)

)
+ β1(r)I(r)

(
V(r) − V̂(r)

)
+ β1(r)V̂(r)

(
I(r) − Î(r)

)
−

(
α(r) + δ(r)

)(
I(r) − Î(r)

)
+ d(r)

(
R(r) − R̂(r)

)]
≤ sign

(
V(σ(r)) − V̂(σ(r))

)[
β(r)I(r)

(
S(r) − Ŝ(r)

)
−

(
α(r) − β(r)Ŝ(r) − β1(r)V̂(r)

+ δ(r)
)(

I(r) − Î(r)
)

+ β1(r)I(r)
(
V(r) − V̂(r)

)
+ d(r)

(
R(r) − R̂(r)

)]
≤ βUI+

∣∣∣S(r) − Ŝ(r)
∣∣∣ + βU

1 I+
∣∣∣V(r) − V̂(r)

∣∣∣ − (
αL − βUS+ − βU

1 V+ + δL)∣∣∣I(r) − Î(r)
∣∣∣

+ dU
∣∣∣R(r) − R̂(r)

∣∣∣,
and

D+W∆
4 (r) ≤ sign

(
R(σ(r)) − R̂(σ(r))

)[
R(r) − R̂(r)

]∆

≤ sign
(
R(σ(r)) − R̂(σ(r))

)[(
δ1(r)V(r) + δ(r)I(r) − α(r)R(r)

− d(r)R(r)
)
−

(
δ1(r)V̂(r) + δ(r)̂I(r) − α(r)R̂(r) − d(r)R̂(r)

)]
≤ sign

(
R(σ(r)) − R̂(σ(r))

)[
δ1(r)

(
V(r)−)V̂(r)

)
+ δ(r)

(
I(r) − Î(r)

)
−

(
α(r) + d(r)

)(
R(r) − R̂(r)

)]
≤ δU

1

∣∣∣V(r) − V̂(r)
∣∣∣ + δU

∣∣∣I(r) − Î(r)
∣∣∣ − (

αL + dL)∣∣∣R(r) − R̂(r)
∣∣∣.
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Given thatV(r) ≤ W(r) for r ∈ T+ and based on condition (B), it can be inferred as a result

D+(V(r)
)∆
≤ D+(W(r)

)∆
= D+(V1(r) +V2(r) +V3(r) +V4(r)

)∆

≤ −
[
αL + βL + γL

] ∣∣∣S(r) − Ŝ(r)
∣∣∣ − βLS−

∣∣∣I(r) − Î(r)
∣∣∣

+ γU
∣∣∣S(r) − Ŝ(r)

∣∣∣ − (αL + βL
1I− + δL

1)
∣∣∣V(r) − V̂(r)

∣∣∣ − δL
1V−

∣∣∣I(r) − Î(r)
∣∣∣

+ βUI+
∣∣∣S(r) − Ŝ(r)

∣∣∣ + βU
1 I+

∣∣∣V(r) − V̂(r)
∣∣∣ − (

αL − βUS+ − βU
1 V+ + δL)∣∣∣I(r) − Î(r)

∣∣∣
+ dU

∣∣∣R(r) − R̂(r)
∣∣∣ + δU

1

∣∣∣V(r) − V̂(r)
∣∣∣ + δU

∣∣∣I(r) − Î(r)
∣∣∣

−
(
αL + dL)∣∣∣R(r) − R̂(r)

∣∣∣
≤ −

[
αL + βL + γL − γU − βUI+

] ∣∣∣S(r) − Ŝ(r)
∣∣∣

−
[
αL + βL

1I− + δL
1 − β

U
1 I+ − δU

1

] ∣∣∣V(r) − V̂(r)
∣∣∣

−
(
αL − βUS+ − βU

1 V+ + δL + βLS− + δL
1V− − δU)∣∣∣I(r) − Î(r)

∣∣∣
−

(
αL + dL − dU)∣∣∣R(r) − R̂(r)

∣∣∣
≤ −λ1

∣∣∣S(r) − Ŝ(r)
∣∣∣ − λ2

∣∣∣V(r) − V̂(r)
∣∣∣ − λ3

∣∣∣I(r) − Î(r)
∣∣∣ − λ4

∣∣∣R(r) − R̂(r)
∣∣∣

≤ −λV(r).

Condition (B) ensures that Condition (iii) of Lemma 3.10 holds. Consequently, by Lemma 3.10,
there exists a unique uniformly asymptotically stable almost periodic solution

(
S(r),V(r), I(r),R(r)

)
within f. Therefore, the argument is complete. �

5. Numerical simulations

In this section, numerical simulations are presented to illustrate the results obtained in the preceding
sections on two different almost periodic timescales:
(1) Let b1, b2 > 0 and consider the timescale

Pb1,b2 =

∞⋃
j=0

[j(b1 + b2), j(b1 + b2) + b1] .

This timescale remains unchanged under translation by integer multiples of b1 + b2, meaning its
translation set is

∏
= {k(b1 + b2) | k ∈ Z}. It includes the point 0 and is frequently employed in

modeling the population behavior of species with defined lifespans, where the lifespan parameters are
denoted by b1 and b2.
(2) Consider a timescale T = {tn : tn = nT, n ∈ Z}, where T is a constant. This timescale consists of
discrete points that are spaced periodically by T . The translation set in this case will be

∏
= {T }, as

adding T to any point results in another valid point in the timescale.

Example 5.1. Consider the dynamic SVIR model (2.1) with relapse on timescale:
S∆(r) = α(r) − β(r)S(r)I(r) −

(
α(r) + γ(r)

)
S(r),

V∆(r) = γ(r)S(r) − β1(r)V(r)I(r) −
(
α(r) + δ1(r)

)
V(r),

I∆(r) = β(r)S(r)I(r) + β1(r)V(r)I(r) − δ(r)I(r) − α(r)I(r) + d(r)R(r),
R∆(r) = δ1(r)V(r) + δ(r)I(r) − α(r)R(r) − d(r)R(r),

(5.1)
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where α(r) = 10 + 0.1| sin
√

5r|, β = 3 + | cos
√

2r|, β1(r) = 0.04 + | sin(πr)|, γ(r) = 0.01 + | sin(4πr)|,
δ(r) = 3 × 10−3 + 2 × 10−4| cos((π/3)r)|, δ1(r) = 0.02 + 2| sin(5πr)|, d(r) = 0.01 + | cos(7πr)|.

We have adopted periodic functions similar to those used in [26], where the specific functional
forms and properties were detailed.

By direct calculations, we obtain αL = 10,αU = 10.1,βL = 3,βU = 4,βL
1 = 0.04,βU

1 = 1.04,
γL = 0.01,γU = 1.01, δL = 3×10−3, δU = 3×10−3+2×10−4, δL

1 = 0.02, δU
1 = 2.02, dL = 0.01, dU = 1.01.

Thus, S+ ≈ 1.009,V+ ≈ 0.1017, I+ ≈ 1.01, r+ ≈ 0.0208,S− ≈ 0.66,V− ≈ 0.0005, r− ≈ 9.02203149 ×
10−7, and I− ≈ 8.92987518031 × 10−10. Therefore, by Theorem 4.4, (5.1) is permanent.

Using the above values, we find λ1 = 7.96, λ2 = 6.9496, λ3 = 7.8383, λ4 = 9. So, λ =

min{λ1, λ2, λ3, λ4} = λ2 > 0. By Theorem 4.6, (5.1) has a unique almost periodic solution(
S(r),V(r), I(r),R(r)

)
∈ f and is uniformly asymptotically stable. From Figure 3, it is evident that

system (5.1) admits a positive almost periodic solution, represented by
(
S?(r),V?(r), I?(r), r?(r)

)
.

Furthermore, Figure 4 illustrates that any positive solution
(
S(r),V(r), I(r),R(r)

)
converges to this

almost periodic solution
(
S?(r),V?(r), I?(r), r?(r)

)
.

Additionally, Figure 4 demonstrate that varying initial conditions lead the disease dynamics to
approach different almost periodic solutions. These results are analyzed on the timescale Pb1,b2

with parameters b1 = 0, b2 = 2, and intervals j = 10. This suggests that, in addition
to implementing appropriate control strategies, modifying initial conditions could influence the
progression of the disease.

Figure 3. The plot highlights the relative stability of the compartments and the dominant
role of the susceptible group with initial conditions V(0) = 0, I(0) = 0.0009, R(0) = 0.
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Figure 4. Uniform asymptotic stability of the SVIR model (5.1). The time series of
(S(r),V(r), I(r),R(r)) and (S?(r),V?(r), I?(r),R?(r)) with initial values S(0) = 1,V(0) =

0, I(0) = 0.05,R(0) = 0.002, and S?(0) = 0.9,V?(0) = 0.1, I?(0) = 0.2, r?(0) = 0.11.

Observations

Susceptible Population S(r): The blue curve in the Figure 5 shows a periodic oscillations in the
susceptible population. In the zoomed high range (top panel), the amplitude oscillates slightly
below 1.0 but remains above 0.9, indicating most of the population remains susceptible. The
oscillations suggest periodic variations in susceptibility, possibly due to external factors like seasonal
changes or intervention measures.

Vaccinated Population V(r): The green curve in the Figure 6 represents the vaccinated population.
In the zoomed low range (bottom panel), the amplitude is much lower compared to S(r), oscillating
between 0.02 and 0.07. This indicates a smaller proportion of the population is vaccinated, with
periodic variations implying vaccination campaigns or waning immunity.

Infectious Population I(r): The red curve in the Figure 7 representing the infectious population, is
near zero in the bottom panel. Minimal infections suggest successful control measures, like vaccination
or immunity.

Recovered Population R(r): The purple curve for recovered individuals also shows a low amplitude
in the bottom panel in the Figure 8. Recovery oscillates minimally, indicating either a low infection
rate or strong immunity within the vaccinated population.
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Figure 5. The plot illustrates the dynamics of the susceptible population over time, showing
oscillations converging to an almost periodic positive solution with the initial condition
S(0) = 1.

Figure 6. The plot depicts the growth and stabilization of the vaccinated population over
time, converging to an almost periodic positive solution with the initial condition V(0) = 0.
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Figure 7. The plot shows the transient behavior of the infected population, which
decreases and stabilizes into an almost periodic positive solution with the initial condition
I(0) = 0.0009.

Figure 8. The plot highlights the evolution of the recovered population over time, stabilizing
into an almost periodic positive solution with the initial condition R(0) = 0.
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Broken Y-axis plot

• The combined plot with a broken y-axis distinctly separates the behavior of different
compartments.
• It highlights the dominant role of the susceptible group and emphasizes the relative stability of

other compartments in maintaining almost periodic behavior.

Model implications

• Permanence: The bounded and oscillatory nature of all compartments confirms the permanence
of the epidemic system under the given conditions.
• Vaccination Efficiency: The periodicity in V(r) suggests a consistent vaccination strategy

significantly impacts the control of the infection.
• Stability: The uniform oscillatory nature and lack of divergence in the population dynamics

suggest uniform asymptotic stability. This stability is likely influenced by the chosen parameter
values, including transmission rates, recovery rates, and vaccination rates. The specific
parameters used ensure that the system remains within a bounded region of the phase space,
thereby maintaining equilibrium-like behavior.
• Epidemic Control: Lower values in I(r) and R(r), coupled with the interaction between S(r) and

V(r), highlight the importance of vaccination and relapse reduction in controlling disease spread.
• Parameter Sensitivity: The observed stability and permanence are potentially sensitive to

variations in model parameters. Future work should explore parameter ranges and their effects on
system behavior to confirm the robustness of these results.

Uniform asymptotic stability of almost periodic solutions:
The plot demonstrates that all compartments: S(r),V(r), I(r), and R(r) stabilize into periodic or
almost periodic oscillations after transient fluctuations. This behavior validates the uniform asymptotic
stability of almost periodic solutions, as each compartment consistently returns to a regular oscillatory
pattern despite initial deviations.

In previous analyses, the system was studied on the timescale Pb1,b2 , where the dynamic behavior
of the epidemic compartments exhibited bounded oscillations, indicating permanence, stability, and
the impact of periodic vaccination strategies. To further analyze the epidemic dynamics under discrete
periodic time steps, we now examine the system on the discrete timescale T = {tn : tn = nT, n ∈ Z},
where each time point is spaced by a fixed interval T = 1.5.

This formulation allows us to study how the epidemic evolves when disease transmission,
vaccination, and recovery occur at discrete intervals rather than continuously, reflecting real-world
scenarios such as periodic health interventions or time-structured contact patterns. Unlike previous
results on Pb1,b2 , where the system was analyzed over a generalized timescale, the discrete structure
here ensures that all solution trajectories align exactly with the timescale points.
Susceptible Population: The plot of S(tn) in the Figure 9 exhibits a damped initial peak followed by
oscillatory behavior with small fluctuations around a nearly steady state. The pattern suggests quasi-
periodic variations, indicating a tendency toward almost periodicity.
Vaccination Efficiency: From the Figure 10, the periodic fluctuations in V(tn) suggest that consistent
vaccination efforts significantly impact infection control. The interaction between S(tn) and V(tn)
highlights the role of vaccination in shaping long-term epidemic trends on this timescale.
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Figure 9. The plot illustrates the dynamics of the susceptible population over time, showing
oscillations converging to an almost periodic positive solution with the initial condition
S(0) = 0.947.

Figure 10. The periodic nature of V(tn) with the initial condition V(0) = 0.048 suggests
a stable vaccination impact, with fluctuations influenced by both vaccination rates and
disease prevalence.
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Infected Population: The plot of I(tn) in the Figure 11 shows an initial sharp decline followed by
persistent oscillations with small amplitude variations. This pattern suggests a dynamic equilibrium
with quasi-periodic fluctuations, indicating an almost periodic tendency.

Recovered Population: The plot of R(tn) in the Figure 12 initially increases and then exhibits sustained
oscillations with alternating peaks and troughs. This repeating pattern suggests a long-term dynamic
balance with almost periodic variations.

Stability: From the Figure 13, the uniform oscillatory nature of the solutions and the absence of
divergence confirm uniform asymptotic stability. The bounded trajectories indicate that the system
remains within a constrained region of phase space, preventing uncontrolled outbreaks or disease
extinction under the given parameter choices.

Permanence: The bounded and oscillatory nature of all compartments confirms the persistence of
the epidemic system over the discrete timescale. The system does not collapse to zero or diverge,
indicating that the disease remains present in a dynamic but controlled manner.

Epidemic Control: The interaction between S(tn), V(tn), and the lower oscillatory values of I(tn) and
R(tn) emphasize the importance of vaccination and relapse reduction in disease control. The discrete
nature of the model demonstrates how periodic interventions influence infection levels at each step.

Parameter Sensitivity: The observed stability and permanence suggest that the system’s behavior
is sensitive to changes in model parameters (e.g., transmission rates, vaccination rates, and recovery
rates). Future research should analyze the effects of varying these parameters to assess the robustness
of these findings under different epidemic conditions.

Figure 11. The oscillatory but non-divergent behavior of I(tn) with the initial condition I(0) =

0.0009 confirms disease persistence and stability, influenced by vaccination and relapse
mechanisms. The periodic pattern suggests structured outbreaks that recur at fixed intervals.
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Figure 12. The bounded oscillations indicate that recovery and reinfection mechanisms
interact cyclically, reinforcing the system’s long-term stability under the given parameters.

Figure 13. Plot showing the uniform asymptotic stability of the system with different initial
conditions for the susceptible (S), vaccinated (V), infected (I), and recovered (R) populations.
The results demonstrate the system’s tendency to return to equilibrium over time, with slight
variations in initial conditions.
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6. Conclusions

Throughout this study, we developed and analyzed a timescale dynamic SVIR epidemic model
incorporating relapse dynamics. By investigating the interplay between vaccination, infection,
recovery, and relapse, we provided a rigorous theoretical framework for understanding the system’s
behavior over time. The model’s mathematical analysis demonstrated the existence of almost periodic
solutions and established their uniform asymptotic stability, highlighting the system’s ability to
maintain predictable, long-term dynamics under certain conditions.

Our numerical simulations confirmed the theoretical results, illustrating the system’s permanence
and revealing the critical roles played by vaccination and relapse dynamics in epidemic control.
Notably, we observed that as long as the infected population remains smaller than the susceptible
population, the infection can be effectively controlled, keeping both the infected and recovered
populations at relatively low levels. These findings emphasize the importance of periodic vaccinations,
which contribute to stabilizing disease dynamics through their influence on oscillatory behaviors.

Figures demonstrated the almost periodic solutions for each compartment, with periodic oscillations
suggesting the stabilization of the system over time. The oscillatory behavior reflects the dynamic
nature of disease spread and control. A combined plot of all four compartments emphasized the
dominant role of the susceptible population, with other compartments exhibiting relative stability.
Furthermore, the convergence of the system toward the almost periodic solution confirmed the uniform
asymptotic stability of the model, ensuring that the system’s behavior stabilizes regardless of initial
conditions.

While this study develops substantial insight into the dynamics of the SVIR model with relapse,
several avenues for further research remain open:

1. Extension to Multi-Strain Models: One of the future works might consider the extension of
the present model by considering multi-strains of disease with their respective relapse and vaccination
parameters. This will help in modeling more complicated disease systems, for instance, those involving
antigenic variation or multiple types of vaccines.

2. Incorporation of Stochastic Elements: The model presented here assumes deterministic
dynamics, while real-world systems are often governed by uncertainty and randomness. Incorporating
stochastic elements into the model could provide a more realistic representation of disease
transmission, especially in small or heterogeneous populations.

3. Impact of External Interventions: Further extensions could be made for external interventions
such as quarantine measures, travel restrictions, or behavioral changes—say, keeping a distance
from each other. The study of stability of such systems and the efficacy of diseases in view of
these interventions would be an interesting area of future research. Spatial heterogeneity might give
more insights, taking into consideration the spatial dynamics where individuals are distributed across
different regions with different infection rates and vaccination strategies. In fact, this might be really
useful for modeling pandemics across countries or even continents.

This finally brings us to the end of our insight into the study of the SVIR model with relapse,
which provides further understanding in epidemic dynamics, especially on vaccination and relapse.
Periodic control measures are of immense importance, and it gives an example for future disease
management strategies. Future work will expand these results in more complex models and with
real-world applications.
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