Research article Special Issues

Smoothing properties of the fractional Gauss-Weierstrass semi-group in Morrey smoothness spaces

  • Received: 29 August 2024 Revised: 14 October 2024 Accepted: 24 October 2024 Published: 11 November 2024
  • MSC : 46E35, 46E30, 20M15, 41A30

  • In this paper we derive caloric smoothing estimates in Morrey smoothness spaces using decomposition techniques by means of wavelets and molecules. Our new estimate extends results for Gauss-Weierstrass, Cauchy-Poisson and fractional Gauss-Weierstrass semigroups.

    Citation: Franka Baaske, Romaric Kana Nguedia, Hans-Jürgen Schmeißer. Smoothing properties of the fractional Gauss-Weierstrass semi-group in Morrey smoothness spaces[J]. AIMS Mathematics, 2024, 9(11): 31962-31984. doi: 10.3934/math.20241536

    Related Papers:

  • In this paper we derive caloric smoothing estimates in Morrey smoothness spaces using decomposition techniques by means of wavelets and molecules. Our new estimate extends results for Gauss-Weierstrass, Cauchy-Poisson and fractional Gauss-Weierstrass semigroups.



    加载中


    [1] F. Baaske, H. J. Schmeißer, On a generalized nonlinear heat equation in Besov and Triebel-Lizorkin spaces, Math. Nachr., 290 (2017), 2111–2131. http://dx.doi.org/ 10.1002/mana.201600315 doi: 10.1002/mana.201600315
    [2] F. Baaske, H. J. Schmeißer, On the existence and uniqueness of mild and strong solutions of generalized heat equations, Z. Anal. Anwend., 38 (2019), 289–308. http://dx.doi.org/10.4171/ZAA/1638 doi: 10.4171/ZAA/1638
    [3] F. Baaske, H. J. Schmeißer, On the Cauchy problem for hyperdissipative Navier-Stokes equations in super-critical Besov and Triebel-Lizorkin spaces, Nonlinear Anal., 226 (2023), 113140. https://doi.org/10.1016/j.na.2022.113140 doi: 10.1016/j.na.2022.113140
    [4] F. Baaske, H. J. Schmeißer, H. Triebel, Fractional nonlinear heat equations and characterizations of some function spaces in terms of fractional Gauss-Weierstrass semi-groups, Rev. Math. Comput., 2024. https://doi.org/10.1007/s13163-024-00488-3
    [5] M. Cannone, G. Karch, About the regularized Navier-Stokes equation, J. Math. Fluid. Mech., 7 (2005), 1–28. https://doi.org/10.1007/s00021-004-0105-y doi: 10.1007/s00021-004-0105-y
    [6] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. Appl. math., SIAM, Philadelphia, 1992. https://doi.org/10.1137/1.9781611970104
    [7] Y. Ding, X. Sun, Strichartz estimates for parabolic equations with higher order differential operator, Sci. China Math., 85 (2015), 1047–1062. https://doi.org/10.1007/s11425-014-4869-0 doi: 10.1007/s11425-014-4869-0
    [8] M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal., 93 (1990), 30–170. https://doi.org/10.1016/0022-1236(90)90137-A doi: 10.1016/0022-1236(90)90137-A
    [9] M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS-AMS Regional Conf. Ser. 79, Amer. Math. Soc., Providence, RI, 1991.
    [10] D. D. Haroske, H. Triebel, Morrey smoothness spaces: A new approach, Sci. China Math., 66 (2023), 1301–1358. https://doi.org/10.1007/s11425-021-1960-0 doi: 10.1007/s11425-021-1960-0
    [11] V. Knopova, R. L. Schilling, Bochner's subordination and fractional caloric smoothing in Besov and Triebel-Lizorkin spaces, Math. Nachr., 295 (2022), 363–376. https://doi.org/10.1002/mana.202000061 doi: 10.1002/mana.202000061
    [12] [stable/24898558] H. Kozono, M. Yamazaki, The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Indiana Univ. Math. J., 44 (1995), 1307–1336. Available from: http://www.jstor.org/stable/24898558.
    [13] [ 10.4064/sm210127-23-3] F. Kühn, R. L. Schilling, Convolution inequalities for Besov and Triebel-Lizorkin spaces and applications to convolution semi-groups, Stud. Math., 262 (2022), 93–119. https://doi.org/ 10.4064/sm210127-23-3 doi: 10.4064/sm210127-23-3
    [14] Y. Meyer, Wavelets and operators, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9780511623820
    [15] C. Miao, Time-space estimates of solutions to general semilinear parabolic equations, Tokyo J. Math., 24 (2001), 245–276. http://dx.doi.org/10.3836/tjm/1255958327 doi: 10.3836/tjm/1255958327
    [16] [jpde/5572.html] C. Miao, Y. Gu, Space-time estimates for parabolic type operator and application to nonlinear parabolic equations, J. Partial Differ. Eq., 11 (1998), 301–312. Available from: http://global-sci.org/intro/article_detail/jpde/5572.html.
    [17] C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461–484. http://dx.doi.org/10.1016/j.na.2006.11.011 doi: 10.1016/j.na.2006.11.011
    [18] Y. Sawano, Theory of Besov spaces, volume 56 of Developments in Mathematics, Singapore: Springer, 2018. http://dx.doi.org/10.1007/978-981-13-0836-9
    [19] Y. Sawano, D. Yang, W. Yuan, New applications of Besov-type and Triebel-Lizorkin-type spaces, J. Math. Anal. Appl., 363 (2010), 73–85. https://doi.org/10.1016/j.jmaa.2009.08.002 doi: 10.1016/j.jmaa.2009.08.002
    [20] R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, volume 90(442), Memoirs AMS, Providence, RI, 1991. Available from: http://ams.org/memo-90-442.
    [21] H. Triebel, Theory of function spaces, Basel: Birkhäuser, 1983. http://dx.doi.org/10.1007/978-3-0346-0416-1
    [22] H. Triebel, Theory of function spaces II, Basel: Birkhäuser, 1992. http://dx.doi.org/10.1007/978-3-0346-0419-2
    [23] H. Triebel, Theory of function spaces III, Basel: Birkhäuser, 2006. http://dx.doi.org/10.1007/3-7643-7582-5
    [24] H. Triebel, Function spaces and wavelets on domains, Zürich: European Math. Soc. Publishing House, 2008. https://doi.org/10.4171/019
    [25] H. Triebel, Local function spaces, heat and Navier-Stokes equations, Zürich: European Math. Soc. Publishing House, 2013. https://doi.org/10.4171/123
    [26] H. Triebel, Hybrid function spaces, heat and Navier-Stokes equations, Zürich: European Math. Soc. Publishing House, 2014. https://doi.org/10.4171/150
    [27] H. Triebel, PDE models for Chemotaxis and hydrodynamics in supercritical function spaces, EMS, Series of Lectures in Mathematics, 2017. https://doi.org/10.4171/172
    [28] H. Triebel, Theory of function spaces IV, Monogr. Math., vol. 107, Basel: Birkhäuser, 2020. http://dx.doi.org/10.1007/978-3-030-35891-4
    [29] L. Tang, J. Xu, Some properties of Morrey-type Besov Triebel spaces, Math. Nachr., 278 (2005), 904–917. http://dx.doi.org/10.1002/mana.200310281 doi: 10.1002/mana.200310281
    [30] P. Wojtaszczyk, A mathematical introduction to wavelets, Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511623790
    [31] J. Wu, The generalized incompressible Navier-Stokes equations in Besov spaces, Dynam. Part. Differ. Eq., 1 (2004), 381–400. http://dx.doi.org/10.4310/DPDE.2004.v1.n4.a2 doi: 10.4310/DPDE.2004.v1.n4.a2
    [32] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Heidelberg: Springer 2010. http://dx.doi.org/10.1007/978-3-642-14606-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(94) PDF downloads(20) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog