This paper mainly discusses the problems raised in Kalmbach's book: When are the $ p $-ideals of an irreducible orthomodular lattice well ordered under set inclusion? We give three classes of orthomodular lattices whose $ p $-ideals set is a chain under set inclusion. Furthermore, this article also provides a sufficient and necessary condition for the $ p $-ideals set of orthomodular lattices to be a chain under set inclusion from the perspective of $ L $-algebras, which gives a new point to solve the questions. Moveover, we also give some characterizations about central elements of orthomodular lattice.
Citation: Ziteng Zhao, Jing Wang, Yali Wu. Note on $ p $-ideals set of orthomodular lattices[J]. AIMS Mathematics, 2024, 9(11): 31947-31961. doi: 10.3934/math.20241535
This paper mainly discusses the problems raised in Kalmbach's book: When are the $ p $-ideals of an irreducible orthomodular lattice well ordered under set inclusion? We give three classes of orthomodular lattices whose $ p $-ideals set is a chain under set inclusion. Furthermore, this article also provides a sufficient and necessary condition for the $ p $-ideals set of orthomodular lattices to be a chain under set inclusion from the perspective of $ L $-algebras, which gives a new point to solve the questions. Moveover, we also give some characterizations about central elements of orthomodular lattice.
[1] | P. D. Finch, Congruence relations in orthomodular lattices, J. Aust. Math. Soc., 6 (1966), 46–54. https://doi.org/10.1017/s1446788700003992 doi: 10.1017/s1446788700003992 |
[2] | G. Kalmbach, Orthomodular lattices, Cambridge: Cambridge University Press, 1983. |
[3] | W. Rump, L-Algebras, self-similarity, and l-groups, J. Algebra, 320 (2008), 2328–2348. https://doi.org/10.1016/j.jalgebra.2008.05.033 doi: 10.1016/j.jalgebra.2008.05.033 |
[4] | W. Rump, Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation, J. Algebra, 439 (2015), 470–510. https://doi.org/10.1016/j.jalgebra.2015.04.045 doi: 10.1016/j.jalgebra.2015.04.045 |
[5] | W. Rump, The L-algebra of Hurwitz primes, J. Number Theory, 190 (2018), 394–413. https://doi.org/10.1016/j.jnt.2018.03.004 doi: 10.1016/j.jnt.2018.03.004 |
[6] | W. Rump, Von Neumann algebras, L-algebras, Baer $\ast$-monoids, and Garside groups, Forum Math., 30 (2018), 973–995. https://doi.org/10.1515/forum-2017-0108 doi: 10.1515/forum-2017-0108 |
[7] | Y. L. Wu, Y. C. Yang, Orthomodular lattices as L-algebras, Soft Comput., 24 (2020), 14391–14400. https://doi.org/10.1007/s00500-020-05242-7 doi: 10.1007/s00500-020-05242-7 |
[8] | G. Birkhoff, Lattice theory, Providence: American Mathematical Society, 1967. |
[9] | R. Cignoli, Deductive systems and congruence relations in ortholattices, Bulletin of the Section of Logic, 7 (1978), 87–88. |
[10] | J. D. Monk, B. Robert, Handbook of Boolean algebras, Netherlands: North-Holland, 1989. |
[11] | W. Rump, L-Algebras and topology, J. Algebra Appl., 22 (2023), 2350034. https://doi.org/10.1142/S0219498823500342 doi: 10.1142/S0219498823500342 |
[12] | W. Rump, Symmetric quantum sets and $L$-algebras, Int. Math. Res. Notices, 2022 (2022), 1770–1810. https://doi.org/10.1093/imrn/rnaa135 doi: 10.1093/imrn/rnaa135 |
[13] | W. Rump, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, J. Algebra Appl., 7 (2008), 471–490. https://doi.org/10.1142/S0219498808002904 doi: 10.1142/S0219498808002904 |
[14] | W. Rump, X. Zhang, L-Effect algebras, Stud. Logica, 108 (2020), 725–750. https://doi.org/10.1007/s11225-019-09873-2 doi: 10.1007/s11225-019-09873-2 |
[15] | W. Rump, L. Vendramin, The prime spectrum of an L-algebra, Proc. Amer. Math. Soc., 152 (2024), 3197–3207. https://doi.org/10.1090/proc/16802} doi: 10.1090/proc/16802 |
[16] | Y. L. Wu, J. Wang, Y. C. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Set. Syst., 369 (2019), 103–113. https://doi.org/10.1016/j.fss.2018.08.013 doi: 10.1016/j.fss.2018.08.013 |
[17] | W. Rump, Prime L-algebras and right-angled Artin groups, Semigroup Forum, 106 (2023), 481–503. https://doi.org/10.1007/s00233-023-10343-4 doi: 10.1007/s00233-023-10343-4 |
[18] | P. T. Johnstone, Stone spaces, Cambridge: Cambridge University Press, 1982. |