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1. Introduction

The concept of orthomodular lattices (referred to as OML for convenience) originated from von
Neumann algebraic theory. In 1936, Birkhoff and von Neumann proposed using lattices of closed
subspaces in Hilbert spaces as the fundamental mathematical model for studying quantum mechanics.
However, the projection lattice of a Hilbert space is modular only if the Hilbert space is finite
dimensional. However, the projection lattice of type II von Neumann algebras related to continuous
geometries—especially those favoured by John von Neumann—is modular. Therefore, if the projection
lattice is required to be a modular lattice, the case of infinite-dimensional Hilbert spaces is excluded.
As a remedy, Husimi proposed to study the following orthomodular law instead:

p ≤ q⇒ q = p ∨ (p′ ∧ q),

this law, indeed, holds in arbitrary Hilbert spaces.
Finch [1] shows that a congruence relation in an OML L is completely determined by its kernel and

that an ideal I of L is called a p-ideal or orthomodular ideal. Let IP(L) denote the set of all p-ideals of
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an orthomoular lattice. Then, Ip(L) is a complete distributive lattice. In the literature [2], it is raised:
when are p-ideals of an irreducible orthomodular lattice well ordered under set inclusion? In the paper,
we exhibit three big classes of orthomodular lattices where the answer is positive.

During the past decade, L-algebras occurred in various contexts, including algebraic logic,
combinatorial group theory, operator algebras, and number theory (see, e.g., [3–6]). Wu and Yang
provide a succinct description of orthomodular lattices [7], which is called OM-L-algebra. The ideals
of an OM-L-algebra L are equivalent to p-filters of orthomodular L. The paper provides a sufficient
and necessary condition for the p-ideals set of orthomodular lattices to be a chain under set inclusion
from the perspective of L-algebra.

The paper is organized as follows: In Section 2, we recall some basic definitions and facts related to
OML L and we exhibit three big classes of OMLs where its p-ideals are set to be a chain under the set
inclusion relation. In Section 3, we focus on the OM-L-algebras. A sufficient and necessary condition
for the L-ideals set of OM-L-algebra to be a chain is given.

2. P-Ideals set of orthomodular lattices

At the beginning of this section, we introduce our basic terminology and present some results.

Definition 2.1. [2] An ortholattice is a structure (L,≤,′ , 0, 1), where (L,≤,′ , 0, 1) is a lattice with
maximum 1 and minimum 0, and ′ is a unary operation on L such that the following conditions are
satisfied:

(Involutive law) a = a′′;
(Antitony) i f a ≤ b, then b′ ≤ a′;

(Exclude middle law) a ∨ a′ = 1;
(Non − contradiction law) a ∧ a′ = 0.

An orthomodular lattice (OML) is an ortholattice (L,≤,′ , 0, 1), that satisfies the following condition
for ∀ a, b ∈ L:

(Orthomodular identity) i f a ≤ b, then b = a ∨ (a′ ∧ b). (2.1)

In an ortholattice L, we write aCb (in words, a commutes with b) if a = (a ∧ b) ∨ (a ∧ b′), a, b ∈ L.
Let L be an OML. It follows that aCb, aCb′, a′Cb and a′Cb′ are equivalent. In particular, aCb is
characterized by a = (a∨b)∧ (a∨b′). Let L be a lattice. For x, y, z ∈ L, we call {x, y, z} is a distributive
triple, if the elements of a triple {x, y, z} can generate a distributive sublattice. In any orthomodular
lattice L, let aCb and aCc. Then {a, b, c} generate a distributive sublattice of L [8]. If M is a subset
of an orthomodular lattice L, the set C(M) = {x ∈ L | xCb,∀b ∈ M} is called the commutant of M in
L. The elements of C(L) are called central and C(L) the centre of L. For every subset M of L, the set
C(M) is a subalgebra of L containing arbitrary joins and meets, provided they exist in L. In an OML
L, x ∈ L, then x has a unique complement if and only if x ∈ C(L) [2].

Definition 2.2. Let a, b be elements of an orthomodular lattice L [2].

(i). a, b ∈ L, a is said to be perspective to b, a ∼ b, if a and b have a common complement, i.e., if
there exists c in L such that a∨c = 1 = b∨c, a∧c = 0 = b∧c hold; elements a, b are said to be strongly

AIMS Mathematics Volume 9, Issue 11, 31947–31961.



31949

perspective, a ∼s b, if a and b have a common complement c in the sublattice [0, a ∨ b], the element
c then is called a relative complement of a and b; it is easy to see that strong perspectivity implies
perspectivity. Note, by [2] (the parallelogram law for ∼), we have ∀a, b ∈ L, a∧ (a′ ∨ b) ∼ b∧ (b′ ∨ a).

(ii). x is projective to y, denoted x ≈ y, if there exists a sequence of elements x1, ..., xn such that
x1 = x, xn = y, and xi ∼ xi+1 hold for 1 ≤ i ≤ n − 1.

(iii). A p-ideal in L is an ideal I closed under perspectivity, i.e., a ∈ I and a ∼ b imply b ∈ I.
Dually, a p-filter in L is a filter F closed under perspectivity, i.e., a ∈ F and a ∼ b imply b ∈ F.

Let L be an OML; a, b, c ∈ L. [2] presents: If c ≤ a and a ∼ b, then there exists d ∈ L such that
d ≤ b and c ∼ d holds. Dual, we have the following result:

Lemma 2.1. Let L be an orthomodular lattice. Assume that a, b, c ∈ L satisfies c ∼ a and a ≤ b. Then,
there exists d such that c ≤ d and d ∼ b holds.

Proof. Let y be the common complement of c and a, satisfy y ∨ c = y ∨ a = 1, y ∧ c = y ∧ a = 0.
Define z = y ∧ (b′ ∨ y′) ≤ y, d = c ∨ (c′ ∧ z′) ≥ c. Then, z is the common complement of d and b, i.e.,
d∨z = b∨z = 1, d∧z = b∧z = 0. In fact, d∨z = (c∨(c′∧z′))∨z = (c∨z)∨(c′∧z′) = (c∨z)∨(c∨z)′ = 1.
Since b′, y′ ≤ b′ ∨ y′, {b, y, b′ ∨ y′} is a distributive triple. We have b ∨ z = b ∨ (y ∧ (b′ ∨ y′)) =
(b∨ y)∧ (b′∨ y′∨b) = b∨ y ≥ a∨ y = 1, so b∨ z = 1. Since c′∧ z′ ≤ c′, z′, {c, z, c′∧ z′} is a distributive
triple. We have d ∧ z = (c ∨ (c′ ∧ z′)) ∧ z = (c ∧ z) ∨ (c′ ∧ z′ ∧ z) = (c ∧ z) ∨ 0 = c ∧ z ≤ c ∧ y = 0,
b ∧ z = b ∧ (y ∧ (b′ ∨ y′)) = (b ∧ y) ∧ (b′ ∨ y′) = (b ∧ y) ∧ (b ∧ y)′ = 0. □

Corollary 2.1. Let L be an orthomodular lattice. For a, b, c ∈ L with a ≈ b ≤ c. Then, there exists d
such that a ≤ d ≈ c holds.

Proof. Assume first that a ≈ b ≤ c. There exist z1, z2, · · · , zn such that a = z1 ∼ · · · ∼ zn−2 ∼ zn−1 ∼ zn =

b ≤ c. For zn−1 ∼ zn = b ≤ c. By Lemma 2.1, ∃ dn ∈ L, we have a = z1 ∼ · · · ∼ zn−2 ∼ zn−1 ≤ dn ∼ c.
Repeat to use the lemma 2.1, ∃ dn−1, dn−2, · · · , d2, such that a = z1 ≤ d2 · · · ∼ dn−2 ∼ dn−1 ∼ dn ∼ c, i.e.,
∃ d = d2, a ≤ d ≈ c. □

Let L be an orthomodular lattice. In [1], Finch shows that Con(L) is isomorphic to Ip(L), where
Con(L) represents the set of all congruence relations on L, Ip(L) represents the set of all p-ideals on L,
i.e., congruence relations in an OML L is completely determined by its kernel, and an ideal I of L is
the kernel of a congruence relation if and only if it is p-ideal (or orthomodular ideal). There are a lot
of other conditions that can be used to define p-ideal. More precisely, we have:

Lemma 2.2. [2] If I is an ideal of orthomodular latticeL, then, the following statements are equivalent:

(i) I is a p-ideal;
(ii) a ∈ I implies x ∧ (x′ ∨ a) ∈ I for all x ∈ L.
Dual to Lemma 2.2, we have the following result:

Lemma 2.3. [9] If F is a filter of orthomodular lattice L, then, the following statement are equivalent:

(i) F is a p-filter;
(ii) a ∈ F implies x ∨ (x′ ∧ a) ∈ F for all x ∈ L.

Remark 2.1. Let L be an orthomodular lattice. If I be an ideal of L, I′ = {x′ ∈ L | x ∈ I}, by Lemmas
2.2 and 2.3, we can obtain I is a p-ideal of L if and only if I′ is a p-filter of L, and vice versa.
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Lemma 2.4. Let L be an orthomodular lattice, y ∈ L. Then, [0, y] is a p-ideal if and only if y ∈ C(L).

Proof. Let y ∈ C(L). Clearly, [0, y] is the principle ideal of L. Set a ∈ [0, y], i.e., 0 ≤ a ≤ y. Since
y ∈ C(L), then ∀x ∈ L, xCy. Then, 0 ≤ x∧ (x′∨a) ≤ x∧ (x′∨ y) ≤ (x∨ y)∧ (x′∨ y) = y. Consequently,
x ∧ (x′ ∨ a) ∈ [0, y]. By Lemma 2.2, we have [0, y] is a p-ideal.

Conversely, if [0, y] is a p-ideal, ∀x ∈ L, since x′, y ≤ x′ ∨ y, then x′C(x′ ∨ y), yC(x′ ∨ y). Then,
we have (x′ ∨ y)Cx, (x′ ∨ y)Cy, so {x, y, x′ ∨ y} is a distributive triple; hence, (x′ ∨ y) ∧ (x ∨ y) =
((x′ ∨ y)∧ x)∨ ((x′ ∨ y)∧ y) = ((x′ ∨ y)∧ x)∨ y. Since [0, y] is a p-ideal and y ∈ [0, y], by Lemma 2.2,
we have x ∧ (x′ ∨ y) ∈ [0, y], i.e., x ∧ (x′ ∨ y) ≤ y. So, (x′ ∨ y) ∧ (x ∨ y) = ((x′ ∨ y) ∧ x) ∨ y = y, i.e.,
y ∈ C(L). □

The properties of commute listed above, together with Lemma 2.4, imply.

Corollary 2.2. Let L be an orthomodular lattice, [y, 1] is a p-filter if and only if y ∈ C(L).

Proposition 2.1. Let L be an orthomodular lattice. Then, c ∈ C(L) if and only if ∀a ∈ L, c ∼ a implies
a = c.

Proof. Let c ∈ C(L), c ∼ a. Then, a and c have a common complement c′ ∈ L. Since aCc ⇔ a =
(c ∨ a) ∧ (c′ ∨ a) = (c ∨ a) ∧ 1 = c ∨ a, then c ≤ a. Similarly, cCa ⇔ c = (c ∨ a) ∧ (c ∨ a′) =
(c ∨ a) ∧ (c′ ∧ a)′ = (c ∨ a) ∧ 0′ = (c ∨ a) ∧ 1 = c ∨ a, which implies a ≤ c. Thus, a = c.

Conversely, assuming c < C(L), we have c′ < C(L). Then, c′ has at least two different complements,
a, c. Obviously, if c ∼ a, which is contrary to a = c. Hence, c ∈ C(L). □

Corollary 2.3. Let L be an orthomodular lattice. Then, c ∈ C(L) if and only if ∀a ∈ L, c ≈ a implies
a = c.

Proof. Let c ∈ C(L) and c ≈ a. Then, ∃ d1, d2, ..., dn ∈ L, c = d1 ∼ d2 ∼ ... ∼ dn = a. Since c ∼ d2, By
proposition 2.1, we have c = d2, and repeat to use proposition 2.1, we have c = d1 = d2 = ... = dn = a.

Conversely, Let ∀a ∈ L, c ≈ a implies a = c and c < C(L). Proposition 2.1 yields ∃ a ∈ L, c ∼ a
and a , c. Clearly, c ∼ a implies c ≈ a, it can be inferred that a = c, which is a contradiction. Hence,
c ∈ C(L). □

An order ideal in a lattice L is a subset I, such that x ∈ L, y ∈ I, and x ≤ y imply x ∈ I.

Lemma 2.5. [2] Let L be an orthomodular lattice and M be an order ideal of L that is closed under
perspectivity:

(i) The smallest p-ideal containing M is the set B = {c ∈ L |, there exists a finite subset C of M with
c=
∨

C} ,
(ii) The set Na = {d ∈ L | d ≈ e, e ≤ a} is an order ideal and is closed under perspectivity. Pa

denotes the smallest p-ideal containing Na.

Proposition 2.2. Let L be an orthomodular lattice. Then, c ∈ C(L) if and only if Nc = [0, c].

Proof. Let c ∈ C(L). Lemma 2.5 gives [0, c] ⊆ Nc. Let ∀d ∈ Nc. Then, ∃ e ≤ c, d ≈ e. By Corollary
2.1, we have ∃ d1 ∈ L, d ≤ d1 and d1 ≈ c. By Corollary 2.3, we have d1 = c. Hence, d ≤ d1 = c, and
then d ∈ [0, c], hence Nc ⊆ [0, c], so Nc = [0, c].

If c < C(L), we have c′ < C(L). Then, c′ has at least two different complements a, c, whence
a ∈ Nc = [0, c]. Thus, a ≤ c, whence aCc. Then, a = (a∨ c)∧ (a∨ c′) = (a∨ c)∧ 1 = c∨ a = c, which
is a contradiction. Hence, c ∈ C(L). □
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Proposition 2.3. Let L be an orthomodular lattice. Then, Nc ∩ Nc′ = {0} if and only if c ∈ C(L).

Proof. Let c ∼ a. Then, c′ ∼ a′. Since a ∼ c ∈ Nc, a′ ∼ c′ ∈ Nc′ . By Lemma 2.5, we have
a ∈ Nc, a′ ∈ Nc′ . Then, c∧ (c′ ∨ a′) ∼ a′ ∧ (a∨ c), since a′ ∧ (a∨ c) ≤ a′ ∈ Nc′ , then c∧ (c′ ∨ a′) ∈ Nc′ .
c∧(c′∨a′) ≤ c yields c∧(c′∨a′) ∈ Nc. Thus, c∧(c′∨a′) ∈ Nc∩Nc′ . Similarly, a∧(a′∨c′) ∈ Nc∩Nc′ = {0}.
Then, c ∧ (c′ ∨ a′) = c ∧ (c ∧ a)′ = 0, since Nc ∩ Nc′ = {0}. Then, c ≤ a. Similarly, a ≤ c, i.e., a = c.
Thus, proposition 2.1 implies that c ∈ C(L).

Conversely, let c ∈ C(L). By Proposition 2.2, we get Nc = [0, c],Nc′ = [0, c′]. Assume that
d ∈ Nc ∩ Nc′ , then d ≤ c, c′ ⇔ d ≤ c ∧ c′ = 0, i.e., d = 0. Hence, Nc ∩ Nc′ = {0}. □

Proposition 2.4. Let L be an orthomodular lattice. M and N are order ideals and closed under
perspectivity; PM and PN are the smallest p-ideals containing M and N, respectively. Then, M ∩ N =
{0} ⇔ PM ∩ PN = {0}.

Proof. Let d ∈ PM ∩ PN; we have d ∈ PM, PN . Then, Lemma 2.5 yields that there exists a finite subset
C of M, with d = ∨C. Let ei ∈ C,∀i ∈ I, then ei ≤ ∨C = d ∈ PM ∩ PN . Since PM ∩ PN is an ideal,
then ei ∈ PM ∩ PN ⊆ PN . By Lemma 2.5, there exists a finite subset Di of N, with ei = ∨Di. Let
fi j ∈ Di,∀ j ∈ J, we have fi j ∈ Di ⊆ N and fi j ≤ ∨Di = ei ∈ C ⊆ M. Then, fi j ∈ M ∩ N = {0}, i.e.,
fi j = 0. Hence, d = ∨C = ∨

i∈I
ei = ∨

i∈I
∨
j∈J

fi j = 0. Therefore, PM ∩ PN = {0}.

Conversely, since M ⊆ PM, N ⊆ PN , M ∩ N ⊆ PM ∩ PN = {0}. So, M ∩ N = {0}. □

Recall that a poset P satisfies the ascending condition (ACC) and is called Noetherian when every
nonvoid subset of P has a maximal element. It satisfies the descending chain condition (DCC) when its
dual satisfies the ACC. Nonvoid chains that satisfy the DCC are called well-ordered sets. The length
l(P) of a poset P is defined as the least upper bound of the lengths of the chains in P. When l(P) is
finite, P is said to be finite length. A poset P is chain-finite if all chains in L are finite. It is easy to
show that a finite length lattice must be chain-finite; a chain-finite lattice must be Noetherian. The dual
of a poset P is that poset P̃ defined by the converse partial ordering relation on the same elements.

Lemma 2.6. [8] The following conditions about a poset P are equivalent:
(i) P is Noetherian,
(ii) every chain in the dual P̃ of P is well-ordered,
(iii) every well-ordered subset of P is finite.

Lemma 2.7. [10] In every infinite boolean algebra, there is an infinite pairwise disjoint family, a
strictly increasing infinite sequence is and a strictly decreasing infinite sequence.

Next, we give a characterization of Noetherian orthomodular lattice and boolean lattice.

Proposition 2.5. Let L be a boolean lattice. Then, L is Noetherian if and only if it is finite.

Proof. Let L be a Noetherian boolean lattice. Assume that L is infinite. By Lemma 2.7, L has a strictly
increasing sequence A. Since L is a Noetherian lattice, then A′ = {x ∈ L|x′ ∈ A} is also a Noetherian
lattice. Let B be any subset of A, then B′ is a subset of A′, so B′ has a maximal element b′, which is
equivalent to B having a minimal element, i.e., A satisfies the descending chain condition, thus A is
well-ordered. By Lemma 2.6, A is finite, which is a contradiction. Thus, L is finite. Conversely, any
well ordered subset of a finite lattice is finite. By Lemma 2.6, a finite lattice is a Noetherian lattice. □
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Proposition 2.6. Let L be an orthomodular lattice. Then, L is Noetherian if and only if it is chain-finite.

Proof. Assume that L has an infinite chain, say A. Then A generates a boolean subalgebra B of L; B
is also Noetherian. By Proposition 2.5, B is finite; it follows that A is finite, which is a contradiction.
Then L is chain-finite. The converse is trivial. □

Corollary 2.4. Let L be an orthomodular lattice. Then, L is Noetherian⇔ L satisfies DCC.

Proof. L is Noetherian⇔ L is chain-finite⇔ L̃ is chain-finite⇔ L̃ is Noetherian⇔ L satisfies DCC.
□

Let (P;≤) be a partially ordered set, a, b ∈ P and a ≤ b. If a < b and [a, b] = {a, b}, then b covers a
(or a is covered by b). We use the symbol b ≻ a (or a ≺ b )to indicate that b covers a (or a is covered by
b). Let P have a minimum element of 0. We call a ∈ L an atom of P if 0 ≺ a. Let L be a lattice. if for
all x ∈ L \ {0}, there exists an atom a of L such that a ≤ x. Then, L is called an atomic lattice. Dually,
let L be a lattice with a maximum element 1. And we call b ∈ L is a coatom of L if b ≺ 1. For all
y ∈ L\{1}, there exists a coatom b of L such that y ≤ b. Then, L is called a coatomic lattice. Let L be an
atomic orthomodular lattice. For ∀x ∈ L − {1}, we have x =

∨
{a ∈ L | a ≤ x, a is an atom}. Dually, let

L be a coatomic orthomodular lattice. For ∀y ∈ L − {0}, we have x =
∧
{b ∈ L | b ≥ x, b is a coatom}.

An element b of an atomic orthomodular lattice is finite if it is the join of finitely many atoms.

Corollary 2.5. Let L be a Noetherian orthomodular lattice. Then, L is atomic.

Proof. L is Noetherian. Corollary 2.4 implies that L satisfies DCC (Descending Chain Condition), i.e.,
every nonvoid subset of P has a minimal element. Thus, for ∀x ∈ L and 0 < x, (0, x] has a minimal
element, which is an atom. This proves that L is atomic. □

We are now ready to have a look at the p-ideals set of irreducible OML. First, however, we shall
need some additional machinery.

Definition 2.3. [2] Every orthomodular lattice L is irreducible, i.e., L is isomorphism to a product
M × N of orthomodular lattices implies that |M| = 1 or |N| = 1, where |M| denotes cardinality of M.

Remark 2.2. It is easy to see that C(L) = {0, 1} is equivalent to the irreducibility of L.

Lemma 2.8. [2] Let L be an orthomodular lattice. If L is chain-finite. Then, Con(L) is isomorphic to
C(L). In particular, Con(L) is a boolean algebra.

Theorem 2.1. Let L be an irreducible orthomodular lattice and Noetherian. Then, the p-ideals are
well ordered under set inclusion.

Proof. Let L be Noetherian. Proposition 2.6 implies that L is chain-finite. Since L is irreducible,
Remark 2.2 implies that C(L) = {0, 1}. By Lemma 2.8 and the fact that Con(L) and Ip(L) are
isomorphic, we have Ip(L) = {{0}, L}, Hence, the p-ideals set is well ordered under set inclusion. □

Next, we introduce our basic terminology and notations, which are borrowed from [2]:
Let L be an OML. The binary relation ∇, S 0, S 1, S∞ are defined in an orthomodular lattice L by:

a▽b if (a ∨ x) ∧ b = x ∧ b for all x ∈ L.

aS 0b if c ≤ a, d ≤ b and c ∼s d imply c = 0 = d.
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aS b if a ∧ b = 0 and a ∈ C([0, a ∨ b]).
aS 1b if c ≤ a, d ≤ b and c ∼ d imply c = 0 = d.

aS∞b if c ≤ a, d ≤ b and c ≈ d imply c = 0 = d.

Immediately, we can obtain aS∞b⇒ aS 1b⇒ aS 0b. Furthermore, we have the following results:

Lemma 2.9. [2] Let L be an orthomodular lattice. For ∀a, b ∈ L, aS 0b⇔ aS b.

Lemma 2.10. [2] For elements a, b of an orthomodular lattice L, the following statements are
equivalent:

(i) a∇b,
(ii) aS 1b,
(iii) a ∨ x = 1 implies b ≤ x,
(iv) (a ∨ x) ∧ (b ∨ x) = x,∀x ∈ L.

Proposition 2.7. Let L be an orthomodular lattice, a, b ∈ L. Then, Na ∩ Nb = {0} if and only if aS∞b.

Proof. For c, d ∈ L, let c ≤ a, d ≤ b, c ≈ d, then c, d ∈ Na ∩Nb = {0}, whence c = 0 = d. Hence, aS∞b.
Conversely, let d ∈ Na ∩ Nb. There exists c, e, such that d ≈ c ≤ a, d ≈ e ≤ b. Then, c ≈ e. Since

aS∞b, we have c = 0 = e. Thus, d = 0, which proves that Na ∩ Nb = {0}. □

Corollary 2.6. Let L be an orthomodular lattice, a ∈ L. Then, a∇a′ ⇔ aS 1a′ ⇔ aS 0a′ ⇔ aS a′ ⇔
aS∞a′ ⇔ a ∈ C(L).

Proof. By Lemma 2.9, we have aS 0b ⇔ aS b. By Lemma 2.10, this gives a∇a′ ⇔ aS 1a′ ⇔ a ∈ C(L)
and aS∞b ⇒ aS 1b ⇒ aS 0b. It suffices to prove a ∈ C(L) ⇒ aS∞a′ and aS a′ ⇒ a ∈ C(L).
For a ∈ C(L) ⇒ aS∞a′, by Propositions 2.3 and 2.7. We have Na ∩ Na′ = {0} and aS∞a′, then
a ∈ C(L)⇒ aS∞a′. Let aS a′, we obtain a ∈ C([0, a ∨ a′]) = C([0, 1]) = C(L). So, aS∞a′ ⇒ aS 0a′ ⇒
aS a′ ⇒ a ∈ C(L). □

Let L be an orthomodular lattice, a ∈ L, M = {z ∈ C(L) | a ≤ z}. If the infimum of M exists, we
denote v(a) =

∧
M and say v(a) is the center cover of a. If for ∀a ∈ L, C([0, a]) = {a ∧ c | c ∈ C(L)},

we say that the relative centre property holds.

Lemma 2.11. [2] Assume that the orthomodular lattice L has the relative centre property. For elements
a, b of L, the following statements are equivalent:

(i) There exists c ∈ C(L) with a ≤ c and b ≤ c′,
(ii) aS 1b,
(iii) aS 0b.

Lemma 2.12. [2] Let L be a complete orthomodular lattice. For ∀a, b ∈ L, there exists c, d, e, f ∈ L
such that the following conditions hold:

(i) a = c ∨ d, b = e ∨ f ,
(ii) c ≤ d′, e ≤ f ′,
(iii) c ∼s e,
(iv) dS 0 f .
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Theorem 2.2. Let L be a complete irreducible orthomodular lattice with the relative centre property.
Then, the p-ideals set Ip(L) is a chain under set inclusion.

Proof. If L is irreducible, then by Remark 2.2, we get C(L) = {0, 1}. If L has the relative centre
property, by Lemma 2.11, we have aS 0b ⇔ a = 0 or b = 0. Next, we prove ∀a, b , 0, 1, Pa ⊆ Pb

or Pb ⊆ Pa. In fact, Lemma 2.12 implies that there exists c = a, d = 0, b = e ∨ f , e ≤ f ′, c ∼s e, or
b = e, f = 0, a = c ∨ d, c ≤ d′, c ∼s e. In the first case, a = c ∼ e ≤ b implies a ∈ Nb and thus
Na ⊆ Nb. Similarly, Nb ⊆ Na, which yields Pa ⊆ Pb or Pb ⊆ Pa. Let I, J ∈ Ip(L), I ⊈ J, J ⊈ I. Then,
∃ x ∈ I − J, y ∈ J − I. If Px ⊆ Py, we have x ∈ Py ⊆ J, thus x ∈ J, which is a contradiction; if Py ⊆ Px,
we obtain y ∈ Px ⊆ I, which is impossible. Then, Ip(L) is a chain. □

Now, we consider the OML with exchange axiom, which states the following:
We say that the atomic orthomodular lattice L satisfies the exchange axiom if one of the equivalent

conditions of the following conditions holds for L:
(i) For atoms p, q of L, the conditions p ≤ q ∨ a and p ∧ a = 0 imply q ≤ p ∨ a;
(ii) If for an atom p of L holds p , a, then p ∨ a covers a;
(iii) If a covers a ∧ b, then a ∨ b covers b.

Lemma 2.13. [2] Let L be an atomic complete orthomodular lattice satisfying the exchange axiom.
Then, L is irreducible if and only if every two atoms of L are perspective.

Theorem 2.3. Let L be an atomic irreducible complete orthomodular lattice satisfying the exchange
axiom. Then 1 is finite⇔ Pr = L⇔ ∀x ∈ L, x is finite, where ∀r ∈ A(L), A(L) is the set of all atoms of
L. In particular, in the case, Ip(L) is well ordered under set inclusion relations.

Proof. First, we show that p is an atom, p ∼ q, then q is an atom. In fact, let a be a common
complement of p, q. Then, p ∧ a = 0 ≺ p ⇒ a ≺ p ∨ a = 1 = q ∨ a ⇒ 0 = q ∧ a ≺ q, i.e., q is
an atom. Then, ∀r ∈ A(L), Nr = {x|x ≈ d ≤ r} = {0} ∪ A(L). By Lemma 2.5, we have Pr = {x =
q1∨q2∨· · ·∨qn|qi ∈ A(L), i = 1, 2, · · · , n}. Then, 1 is finite⇒ 1 ∈ Pr ⇒ Pr = L⇒ ∀x ∈ L, x ∈ Pr ⇒ x
is finite⇒ 1 is finite. For ∀0 , a ∈ L,∀r ∈ A(L), we have r ∈ Na. In fact, since 0 < a, then ∃ s ∈ A(L),
s ≤ a. Thus, r ∼ s ≤ a implies r ∈ Na. It is a routine to show Pr ⊆ Pa,∀0 , a ∈ L,∀r ∈ A(L). So,
Ip(L) = {{0}, L} is well ordered, as desired. □

3. L-Ideals set of OM-L-algebras

Definition 3.1. [7] An L-algebra is an algebra (L,→, 1) of type (2, 0) satisfying:

x→ x = x→ 1 = 1, 1→ x = x. (3.1)
(x→ y)→ (x→ z) = (y→ x)→ (y→ z). (3.2)
x→ y = y→ x = 1⇒ x = y. (3.3)

For ∀x, y, z ∈ L, condition (3.1) states that 1 is a logical unit. Note that a logical unit is always
unique. There is a partial ordering by [7, P. 2332, Prop.2].

x ≤ y⇔ x→ y = 1. (3.4)
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Let L be an L-algebra. By [3], x ≤ y implies that z→ x ≤ z→ y for ∀x, y, z ∈ L. An L-algebra L is
a KL-algebra. If it satisfies:

x ≤ y→ x. (3.5)

Definition 3.2. [11] Let L be an L-algebra. A subset Y of L is said to be an L-subalgebra if ∀x, y ∈ Y
implies x→ y ∈ Y. If x→ y ∈ Y holds for ∀x ∈ L, y ∈ Y, we call Y an invariant L-subalgebra.

Definition 3.3. [3] Let (L,→, 1) be an L-algebra. We call I ⊆ L an ideal if the following holds for all
x, y ∈ L:

1 ∈ I, (I0)
x, x→ y ∈ I ⇒ y ∈ I, (I1)

x ∈ I ⇒ (x→ y)→ y ∈ I, (I2)
x ∈ I ⇒ y→ x ∈ I, y→ (x→ y) ∈ I. (I3)

We call the ideal of L-algebra is an L-ideal. For an element x ∈ L, ⟨x⟩ represents the L-ideal
generated by x. We will use I(L) to denote the set of all L-ideals of an L-algebra L.

Regarding the relevant background of L-algebra, we refer to [3].
We call an L-algebra (L,→, 1) self-similar if, for ∀x ∈ L, the left multiplication εx : y 7→ x → y

induces a bijection ↓ x → L. The inverse of εx gives rise to a multiplication xy := ε−1
y (x) that happens

to be associative. This allows to describe a self-similar L-algebra equationally as a monoid with an
operation→ satisfying:

a→ ba = b, (3.6)
ab→ c = a→ (b→ c), (3.7)

(a→ b)a = (b→ a)b. (3.8)

Axiom (3.6) implies that as a monoid; a self-similar L-algebra is right cancellative. Let L be a
self-similar L-algebra. For a, b ∈ L, we define

a ∧ b := (a→ b)a. (3.9)

Then, (3.9) is an infimum, and for a, b, c ∈ L, we have

a→ (b ∧ c) = (a→ b) ∧ (a→ c). (3.10)

Let L be a self-similar L-algebra. Then L satisfies

a→ bc = ((c→ a)→ b)(a→ c). (3.11)

Every L-algebra L admits a self-similar closure, a self-similar L-algebra S (L) with L as an L-
subalgebra such that as a monoid, S (L) is generated by L. Up to isomorphism of left hoops, S (L)
is the unique self-similar closure of L.

In this article, we regard (L,→, 1, 0) as OM-L-algebra; S (L) is the self-similar closure of L; for
∀a ∈ S (L), define a′ = a→ 0. We call C(L) = {a ∈ L | ab = ba,∀b ∈ L} the centre of L.

AIMS Mathematics Volume 9, Issue 11, 31947–31961.



31956

Definition 3.4. [7] We call (L,→) an OM-L-algebra if it is an L-algebra with 0 (i.e., L admits the
smallest element 0) and satisfies the following condition, where x′ := x→ 0.

x′ ≤ y⇒ y→ x = x. (3.12)

Lemma 3.1. [7] Let L be an OM-L-algebra. Then, L is an orthomodular lattice and satisfies the
following conditions, where x′ := x→ 0.

x ∧ y = (x→ (x→ y)′)′. (3.13)
x ∨ y = (x′ → y′)→ x. (3.14)

According to the proof process of [7], (3.12) is equivalent to x′ ≤ y ⇔ x → y = y ⇔ y → x = x.
In particular, ∀x, y ∈ L, x′ ≤ x → y ⇔ x′ → (x → y) = 1, whence x → (x → y) = x → y, and
(x→ y)→ x = x. This shows that OM-L-algebra is sharp [12].

Lemma 3.2. [7] Every orthomodular lattice L gives rise to an OM-L-algebra (L,→, 1, 0), where

x→ y := x′ ∨ (x ∧ y). (3.15)

Lemma 3.3. [7] Let L be an OM-L-algebra. Then, 0 ≤ a⇔ a ∈ L.

Lemma 3.4. [7] Let L be an OM-L-algebra, a, b ∈ L. The equivalence aCb⇔ ab = ba is valid.

Lemma 3.5. [7] Let L be an OM-L-algebra. a, b ∈ L. The equivalence ab = ba ⇔ a ⩽ b → a holds.
In particular, a ≤ b implies ab = ba.

Lemma 3.6. [7] Let L be an OM-L-algebra. For all a, b ∈ L, the following are satisfied:

a ≤ b→ a⇔ b→ a = a′ → b′. (3.16)
a ≤ b→ a⇔ b ≤ a′ → b. (3.17)
a ≤ b→ a⇒ (b→ a)→ a = a ∨ b = (a→ b)→ b. (3.18)

Remark 3.1. Let L be an OM-L-algebra. Then, for all a, x ∈ L, a ≤ x → a or a ∥ x → a, where x ∥ y
denotes x, y are incomparable, i.e., x ≰ y and y ≰ x. In fact, if not, then there exists b ∈ L such that
b→ a < a, i.e., b′ ∨ (b∧ a) < a, which implies b′ < a. Thus, a > b′ ∨ (b∧ a) = a, which is impossible.

Proposition 3.1. Let L be an OM-L-algebra. For x, y, z ∈ L, we have the following properties:

(i) Let x ≤ y, z and y→ x = z→ x. Then, y = z.
(ii) Let x ≤ y. Then, there exists a unique element z ∈ L such that x ⩽ z and y = z→ x.

Proof. (i) Set x ⩽ y, z and y → x = z → x; we have (y → x) → x = (z → x) → x. Then, Lemma 3.5
and (3.18) imply that y = z.

(ii) Set x ≤ y. By Lemma 3.5, we get xy = yx ⇔ x ≤ y → x. Then, ∃ z = y → x, such that x ≤ z.
(3.18) yields y = (y→ x)→ x = z→ x. By (i), the uniqueness holds. □

Definition 3.5. [13] We define a semibrace A to be a commutative monoid (A, ∧) with an additional
binary operation A × A→̇A such that
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a · (b ∧ c) = (a · b) ∧ (a · c) a · 1 = 1; (3.19)
(a ∧ b) · c = (a · b) · (a · c) 1 · a = a. (3.20)

Let L be an L-algebra. We define a ∧-closure of L to be an L-algebra θ(L), which is a semibrace
such that L is an L-subalgebra of θ(L), and every a ∈ θ(L) is of the form a = x1 ∧ · · · ∧ xn with xi ∈ L.

Definition 3.6. [14] We call an L-algebra L ∧-closed if L = θ(L).

Proposition 3.2. Every OM-L-algebra is a ∧-closed L-algebra.

Proof. It suffices to prove that the intersection in L is consistent with the intersection in S (L). For
∀x, y ∈ L, by (3.11), we have 0 → (x → y)x = ((x → 0) → (x → y))(0 → x) = ((0 → x) → (0 →
y)) = 1, then 0 ≤ (x → y)x. By Lemma 3.3 and (3.9), we have x ∧ y = (x → y)x ∈ L. Thus, every
OM-L-algebra is a ∧-closed L-algebra. □

Lemma 3.7. [15] Let L be a ∧-closed L-algebra. x, y ∈ L. Then, the following are satisfied.

⟨x⟩ ∨ ⟨y⟩ = ⟨x ∧ y⟩. (3.21)
⟨x⟩ ∨ ⟨x→ y⟩ = ⟨x ∧ y⟩. (3.22)

Corollary 3.1. Let L be a ∧-closed L-algebra. a, b ∈ L. If a ∧ b = 0 and ⟨a⟩ ⊆ ⟨b⟩. Then, ⟨b⟩ = L.

Proof. By (3.21), we have ⟨b⟩ = ⟨a⟩ ∨ ⟨b⟩ = ⟨a ∧ b⟩ = ⟨0⟩ = L. □

Proposition 3.3. Let L be an L-algebra. For ∀I ∈ I(L). Then, I =
⋃
i∈I0

{⟨xi⟩ | ∀xi ∈ I}, where I0

represents the index set.

Proof. For ∀t ∈ I, we have t ∈ ⟨t⟩ ⊆
⋃
i∈I0

{⟨xi⟩ | ∀xi ∈ I}. Then, I ⊆
⋃
i∈I0

{⟨xi⟩ | ∀xi ∈ I}. For

∀t ∈
⋃
i∈I0

{⟨xi⟩ | ∀xi ∈ I}, ∃ x0 ∈ I, such that t ∈ ⟨x0⟩ ⊆ I, which yields
⋃
i∈I0

{⟨xi⟩ | ∀xi ∈ I} ⊆ I. Thus,

I =
⋃
i∈I0

{⟨xi⟩ | ∀xi ⊆ I}. □

Definition 3.7. Let L be an L-algebra. L is irreducible if L is isomorphic to a product L1 × L2 of
L-algebra implies that |L1| = 1 or |L2| = 1. |L1|, |L2|, respectively, the cardinality of L-algebras L1 and
L2.

Proposition 3.4. Let L be an irreducible OM-L-algebra. Assume that a ∈ L; a is an atom. Then,
⟨a⟩ = L.

Proof. Let a be an atom, and L is irreducible. Lemma 3.5 and Remark 3.1 imply that there exists
x0 ∈ L and x0 , 0, 1, such that ax0 , x0a ⇔ a ⩽̸ x0 → a ⇔ (x0 → a) ∥ a. Since a is an atom, then
a ∧ (x0 → a) = 0. Since a, x0 → a ∈ ⟨a⟩, then 0 = a ∧ (x0 → a) ∈ ⟨a⟩, thus ⟨a⟩ = L. □

Let L be an OM-L-algebra, a subset I ⊆ L. By [16] and [11], we obtain that I is an L-ideal if and
only if I is an invariant L-subalgebra satisfying (I1). Next, we will prove the p-filters in L (L as an
orthomodular lattice) are consistent with the L-ideals (L as OM-L-algebra).
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Proposition 3.5. Let L be an OM-L-algebra. The p-filter of orthomodular lattice L is the same as the
L-ideals of OM-L-algebra L.

Proof. Let F be a p-filter of L. We need to prove that F satisfies (I1) and is an invariant L-subalgebra
of L. Let x, x → y ∈ F. Since x → y = x′ ∨ (x ∧ y) ∈ F and F is a p-filter, we have x ∧ (x → y) ∈ F.
Then, x ∧ (x → y) = (x → (x → y))x = (x → y)x = x ∧ y ≤ y ∈ F. So y ∈ F. For ∀y ∈ L, x ∈ F, we
get y→ x = y′ ∨ (y ∧ x) ∈ F, whence F is an invariant L-subalgebra of L.

Conversely, let I be an L-ideal of an OM-L-algebra L. Set a, b ∈ I. We have a → b ∈ I. Then,
(a → b) → (a ∧ b) = (a → b) → (a → b)a = ((a → (a → b)) → (a → b))((a → b) → a) = ((a →
b)→ (a→ b))a = 1a = a ∈ I. By (I1), a∧b ∈ I. Let a ∈ I, b ∈ L, a ≤ b. Then a→ b = 1 ∈ I. By (I1),
we have b ∈ I. Then, I is a filter. If a ∈ I, for ∀x ∈ L, by (3.15), we obtain x∨ (x′∧a) = x′ → a ∈ I. □

Proposition 3.6. Let L be an OM-L-algebra. a ∈ L, a ∈ C(L) if and only if a↑ = {x→ a | ∀x ∈ X}.

Proof. Let a be the central element; ∀y ∈ a↑, a ≤ y. By Proposition 3.1, there exists a unique element
z ∈ L such that a ≤ z and y = z → a. Then, y ∈ {x → a | ∀x ∈ L}. Hence, a↑ ⊆ {x → a | ∀x ∈ L}. Set
∀y ∈ {x → a | ∀x ∈ L}, there exists x0 ∈ L, such that y = x0 → a. Since a is the central element, then
Lemma 3.4 implies that ax0 = x0a. Since x0a ≤ a⇔ ax0 ≤ a⇔ a ≤ x0 → a = y, we have y ∈ a↑, then
{x→ a | ∀x ∈ L} ⊆ a↑. This shows that a↑ = {x→ a | ∀x ∈ L}.

Conversely, if a↑ = {x → a | ∀x ∈ L}, for ∀x ∈ L, we have a ≤ x → a. Lemma 3.5 implies ∀x ∈ L ,
a ≤ x→ a⇔ ax = xa. Thus, a ∈ C(L). □

Proposition 3.7. Let L be an OM-L-algebra, a ∈ L. Then, a ∈ C(L) if and only if ⟨a⟩ = a↑.

Proof. If a ∈ C(L), by Corollary 2.2 and Proposition 3.5, a↑ = [a, 1] is an L-ideal. Since a ∈ a↑, we
have ⟨a⟩ ⊆ a↑. For ∀y ∈ a↑, we obtain a ≤ y. Since ⟨a⟩ is an upper set, it follows that y ∈ ⟨a⟩. Hence,
a↑ ⊆ ⟨a⟩. Thus, we have ⟨a⟩ = a↑.

Conversely, if a < C(L), then ∃ x0 ∈ L, such that ax0 , x0a ⇔ a ≰ x0 → a, which is impossible
since x0 → a ∈ ⟨a⟩ = a↑. Thus, a ∈ C(L) . □

Definition 3.8. [17] An element p of an L-algebra L is said to be prime. If p < 1 and x ≤ p or
x→ p ≤ p for all x ∈ L.

Definition 3.9. [17] We call an L-algebra prime if all of its elements p < 1 are prime.

Remark 3.2. Let Ω be a partially ordered set with the greatest element 1. By [3],

x→ y :=

1, i f x ≤ y,

y, i f x ≰ y,
(3.23)

makes Ω into an L-algebra which, satisfies the inequality (3.5). Thus, Ω is a prime KL-algebra. Note
that for any KL-algebra, x→ p ≤ p implies that x→ p = p.

A prime KL-algebra L is completely determined by its underlying partial order. So, the above
example shows that there is a unique prime KL-algebra for each partially ordered set with greatest
element 1.

Definition 3.10. [11] We call an element x of an L-algebra L spatial if x =
∧
{p ∈ P(L) | x ≤ p} holds

in θ(L). If all x ∈ L are spatial, we say that L has enough primes.
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Definition 3.11. [11] We define a closure L-algebra to be an L-algebra L such that for each x ∈ L,
the meet x̄ :=

∧
{p ∈ P(L) | p ≥ x} exists in θ(L) and belongs to L. We call an L-algebra L complete if

L = θ(L) and its underlying ∧-semilattice is a complete lattice.

Definition 3.12. [11] We call an L-algebra L distributive if its lattice of ideals is distributed.

Lemma 3.8. [17] The lattice of ideals of an L-algebra L is distributive.

Definition 3.13. [18] A complete lattice is said to be a locale if it satisfies the infinite distributive law

a ∧
∨
i∈I

ai =
∨
i∈I

(a ∧ ai). (3.24)

Lemma 3.9. [11] For the distributive L-algebra L. The ideal lattice I(L) is spatial locale, and the
operation on I(L) is

I → J = {x ∈ L | ⟨x⟩ ∩ I ⊆ J} , (3.25)

where ⟨x⟩ represents the ideal generated by x. Then, ∀I, J,K ∈ I(L). We have

I ∩ J ⊆ K ⇔ ∀x ∈ I : ⟨x⟩ ∩ J ⊆ K ⇔ I ⊆ J → K, (3.26)

and

I → (J ∩ K) = (I → J) ∩ (I → K). (3.27)

Theorem 3.1. Let L be an L-algebra. Then, I(L) is a chain under the set inclusion if and only if I(L)
is a bounded prime KL-algebra.

Proof. Let I(L) be a chain, I ∈ I(L), J ∈ I(L). If J ⊆ I. Then, J → I = L. If J ⊈ I, since I(L) is a chain,
then I ⫋ J. Let ∀x ∈ J → I, we have ⟨x⟩ ⊆ J → I, by (3.26), ⟨x⟩ ⊆ J → I ⇔ ⟨x⟩ ∩ J ⊆ I. Then, by
Lemma 3.8, we can obtain I = I∨ (⟨x⟩∩ J) = (I∨⟨x⟩)∩ (I∨ J) = (I∨⟨x⟩)∩ J. If J ⊆ J → I, by (3.26),
we get J = J ∩ J ⊆ I, which is a contradiction. Then, x ∈ J → I ⊆ J. Obviously, x ∈ ⟨x⟩ ⊆ I ∨ ⟨x⟩,
we have x ∈ (I ∨ ⟨x⟩) ∩ J = I, i.e., J → I ⊆ I. Since I(L) is a KL-algebra, we have I ⊆ J → I, then
I = J → I. Remark 3.2 gives I(L) is a prime KL-algebra. Clearly, I(L) is bounded. Thus, I(L) is a
bounded prime KL-algebra.

Conversely, assume that I, J ∈ I(L) is incomparable. Since I ∥ J, we obtain I , I ∩ J, i.e., I ⊈ I ∩ J.
Since I(L) is a bounded prime KL-algebra, by Remark 3.2, we have I → J = J and I → (I∩ J) = I∩ J.
By (3.27), we have J = L → J = (I → I) → (I → J) = I → (I ∩ J) = I ∩ J ⊆ I, which is a
contradiction. Thus, I(L) is a chain under the set inclusion. □

It immediately, we have:

Corollary 3.2. Let L be an OML. Then, Ip(L) is a chain under the set inclusion relationship if and only
if Ip(L) is a bounded prime KL-algebra.

Proof. By Lemma 3.2, Proposition 3.5, Remark 2.1, and Theorem 3.1, it clearly. □
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4. Conclusions

This paper aims to give an answer to the question raised in Kalmbach’s book: When are the p-ideals
of an irreducible orthomodular lattice well ordered under set inclusion? For irreducible orthomodular
lattice L, we prove that if L is Noetherian or completely with the relative central properties or complete
atomic satisfying the exchange axiom, then the p-ideal sets of L are a chain (or well ordered) under
set inclusion. In Section 3, from the perspective of L-algebra, we obtain that L-ideals lattice is a chain
under the set inclusion if and only if L-ideals lattice is a bounded prime KL-algebra. Remarkably,
this paper only partially answers the issues mentioned above. Therefore, we look forward to a more
in-depth study about it.
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