In the framework of $ G_{b} $-metric spaces, we introduce the concept of a generalized Ćirić-type contraction and obtain several fixed-point theorems for this contraction. First, we present a significant lemma, which is used to ensure that the Picard sequence is a Cauchy sequence. Using this lemma, we establish three fixed-point theorems satisfying different conditions. Second, we construct new examples to illustrate our results. As applications, we deduce the famous Ćirić fixed-point theorem in terms of $ b $-metric spaces using our results. In addition, we obtain Reich-type contraction fixed-point theorems in such a space using the aforementioned lemma. Our results improve and complement many recent findings. In particular, we substantially enlarge the range of the contraction constant in our results. Finally, we consider the existence and uniqueness of solutions for integral equation applying our new results.
Citation: Yunpeng Zhao, Fei He, Shumin Lu. Several fixed-point theorems for generalized Ćirić-type contraction in $ G_{b} $-metric spaces[J]. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089
In the framework of $ G_{b} $-metric spaces, we introduce the concept of a generalized Ćirić-type contraction and obtain several fixed-point theorems for this contraction. First, we present a significant lemma, which is used to ensure that the Picard sequence is a Cauchy sequence. Using this lemma, we establish three fixed-point theorems satisfying different conditions. Second, we construct new examples to illustrate our results. As applications, we deduce the famous Ćirić fixed-point theorem in terms of $ b $-metric spaces using our results. In addition, we obtain Reich-type contraction fixed-point theorems in such a space using the aforementioned lemma. Our results improve and complement many recent findings. In particular, we substantially enlarge the range of the contraction constant in our results. Finally, we consider the existence and uniqueness of solutions for integral equation applying our new results.
[1] | I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal., 30 (1989), 26–37. |
[2] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Math. Fis. Univ. Modena, 46 (1998), 263–276. |
[3] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
[4] | N. V. Dung, V. T. L. Hang, On relaxations of contraction constants and Caristi's theorem in $b$-metric spaces, J. Fixed Point Theory Appl., 18 (2016), 267–284. https://doi.org/10.1007/s11784-015-0273-9 doi: 10.1007/s11784-015-0273-9 |
[5] | J. Wu, F. He, S. Li, A fixed point theorem for generalized Ćirić-type contraction in Kaleva-Seikkala's type fuzzy $b$-metric spaces, Axioms, 12 (2023), 616. https://doi.org/10.3390/axioms12070616 doi: 10.3390/axioms12070616 |
[6] | P. Wang, F. He, X. Liu, Answers to questions on Kannan's fixed point theorem in strong $b$-metric spaces, AIMS Math., 9 (2024), 3671–3684. https://doi.org/10.3934/math.2024180 doi: 10.3934/math.2024180 |
[7] | K. M. Pankaj, S. Shweta, S. K. Banerjee, Some fixed point theorems in $b$-metric space, Turkish J. Anal. Number Theory, 2 (2014), 19–22. https://doi.org/10.12691/tjant-2-1-5 doi: 10.12691/tjant-2-1-5 |
[8] | T. Suzuki, Basic inequality on a $b$-metric space and its applications, J. Inequal. Appl., 2017 (2017), 256. https://doi.org/10.1186/s13660-017-1528-3 doi: 10.1186/s13660-017-1528-3 |
[9] | H. Afshari, H. Aydi, Erdal Karapınar, On generalized $\alpha$-$\psi$-Geraghty contractions on $b$-metric spaces, Georgian Math. J., 27 (2020), 9–21. https://doi.org/10.1515/gmj-2017-0063 doi: 10.1515/gmj-2017-0063 |
[10] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex A., 7 (2006), 289–297. |
[11] | Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete $G$-metric spaces, Fixed Point Theory Appl., 2008 (2008), 189870. https://doi.org/10.1155/2008/189870 doi: 10.1155/2008/189870 |
[12] | Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete metric spaces, Fixed point theory Appl., 2009 (2009), 917175. https://doi.org/10.1155/2009/917175 doi: 10.1155/2009/917175 |
[13] | T. V. An, N. V. Dung, V. T. L. Hang, A new approach to fixed point theorems on $G$-metric spaces, Topology Appl., 160 (2013), 1486–1493. https://doi.org/10.1016/j.topol.2013.05.027 doi: 10.1016/j.topol.2013.05.027 |
[14] | H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for$(\psi, \phi)$-weakly contractive mappings in ordered $G$-metric spaces, Comput. Math. Appl., 63 (2012), 298–309. https://doi.org/10.1016/j.camwa.2011.11.022 doi: 10.1016/j.camwa.2011.11.022 |
[15] | M. Abbas, A. Hussain, B. Popovic, S. Radenovic, Istratescu-Suzuki-Ćirić type fixed points results in the framework of $G$-metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 6077–6095. https://doi.org/10.22436/jnsa.009.12.15 doi: 10.22436/jnsa.009.12.15 |
[16] | M. Jaradat, Z. Mustafa, S. U. Khan, M. Arshad, J. Ahmad, Some fixed point results on $G$-metric and $G_{b}$-metric spaces, Demonstr. Math., 50 (2017), 190–207. https://doi.org/10.1515/dema-2017-0018 doi: 10.1515/dema-2017-0018 |
[17] | A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generallized weak contractive mappings in partially ordered $G_{b}$-metric spaces, Filomat, 28 (2014), 1087–1101. https://doi.org/10.2298/FIL1406087A doi: 10.2298/FIL1406087A |
[18] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.2307/2040075 doi: 10.2307/2040075 |
[19] | N. Lu, F. He, W. S. Du, Fundamental questions and new counterexamples for $b$-Metric spaces and fatou property, Mathematics, 7 (2019), 1107. https://doi.org/10.3390/math7111107 doi: 10.3390/math7111107 |
[20] | P. Kumam, N. V. Dung, K. Sitthithakerngkiet, A generalization of Ćirić fixed point theorems, Filomat, 29 (2015), 1549–1556. https://doi.org/10.2298/FIL1507549K doi: 10.2298/FIL1507549K |
[21] | F. He, X. Zhao, Y. Sun, Cyclic quasi-contractions of Ćirić type in b-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 1075–1088. https://doi.org/10.22436/jnsa.010.03.18 doi: 10.22436/jnsa.010.03.18 |
[22] | A. Amini-Harandi, D. Mihet, Quasi-contractive mappings in fuzzy metric spaces, Iran. J. Fuzzy Syst., 12 (2015), 147–153. https://doi.org/10.22111/IJFS.2015.2090 doi: 10.22111/IJFS.2015.2090 |
[23] | F. Vetro, S. Radenovic, Nonlinear $\psi$-quasi-contractions of Ćirić-type in partial metric spaces, Appl. Math. Comput., 219 (2012), 1594–1600. https://doi.org/10.1016/j.amc.2012.07.061 doi: 10.1016/j.amc.2012.07.061 |
[24] | A. H. Ansari, M. A. Barakat, H. Aydi, New approach for common fixed point theorems via $C$-class functions in $G_{p}$-metric spaces, J. Funct. Space., 2017 (2017), 2624569. https://doi.org/10.1155/2017/2624569 doi: 10.1155/2017/2624569 |
[25] | M. Liang, C. Zhu, C. Chen, Z. Wu, Some new theorems for cyclic contractions in $G_{b}$-metric spaces and some applications, Appl. Math. Comput., 346 (2019), 545–558. https://doi.org/10.1016/j.amc.2018.10.028 doi: 10.1016/j.amc.2018.10.028 |
[26] | H. Aydi, D. Rakic, A. Aghajani, T. Dosenovic, M. S. M. Noorani, H. Qawaqneh, On fixed point results in $G_{b}$-metric spaces, Mathematics, 7 (2019), 617. https://doi.org/10.3390/math7070617 doi: 10.3390/math7070617 |
[27] | V. Gupat, O. Ege, R. Saini, M. D. L. Sen, Various fixed point results in complete $G_{b}$-metric spaces, Dynam. Syst. Appl., 30 (2021), 277–293. https://doi.org/10.46719/dsa20213028 doi: 10.46719/dsa20213028 |