The goal of this study is to bring out the following conclusion. Let $ R $ be a noncommutative prime ring with $ 2(m+n)! $ torsion freeness and let $ m $ and $ n $ be fixed, non-negative integers and $ d, g $ be Jordan derivations on $ R $. If $ x^{m+n}d(x)+x^mg(x)x^n\in Z(R) $ or $ d(x)x^{m+n}+x^mg(x)x^n\in Z(R) $ or $ x^{n}d(x)x^{m}+x^mg(x)x^n\in Z(R) $ then $ d = g = 0 $ follows for every $ x\in R $.
Citation: Abu Zaid Ansari, Faiza Shujat, Ahlam Fallatah. Generalized differential identities on prime rings and algebras[J]. AIMS Mathematics, 2023, 8(10): 22758-22765. doi: 10.3934/math.20231159
The goal of this study is to bring out the following conclusion. Let $ R $ be a noncommutative prime ring with $ 2(m+n)! $ torsion freeness and let $ m $ and $ n $ be fixed, non-negative integers and $ d, g $ be Jordan derivations on $ R $. If $ x^{m+n}d(x)+x^mg(x)x^n\in Z(R) $ or $ d(x)x^{m+n}+x^mg(x)x^n\in Z(R) $ or $ x^{n}d(x)x^{m}+x^mg(x)x^n\in Z(R) $ then $ d = g = 0 $ follows for every $ x\in R $.
[1] | S. Ali, N. A. K. Ali, A. M. Ansari, On $*$-differential identities in prime rings with involution, Hacet. J. Math. Stat., 49 (2020), 708–715. https://doi.org/10.15672/hujms.588726 doi: 10.15672/hujms.588726 |
[2] | J. Cusack, Jordan derivations on rings, P. Am. Math. Soc., 53 (1975), 321–324. |
[3] | B. Felzenswalb, Derivations in prime rings, P. Am. Math. Soc., 84 (1982), 16–20. https://doi.org/10.1090/S0002-9939-1982-0633268-6 doi: 10.1090/S0002-9939-1982-0633268-6 |
[4] | B. L. M. Ferreira, W. Feng, Mixed $*$-Jordan-type derivations on $*$-algebras, J. Algebra Appl., 22 (2023), 2350100. https://doi.org/10.1142/S0219498823501001 doi: 10.1142/S0219498823501001 |
[5] | B. L. M. Ferreira, H. Guzzo, R. N. Ferreira, F. Wei, Jordan derivations of alternative rings, Commun. Algebra, 48 (2020), 717–723. https://doi.org/10.1080/00927872.2019.1659285 doi: 10.1080/00927872.2019.1659285 |
[6] | I. N. Herstein, Jordan derivations of prime rings, P. Am. Math. Soc., 8 (1957), 1104–1110. |
[7] | I. N. Herstein, A theorem on derivations of prime rings with involution, Can. J. Math., 34 (1982), 356–369. https://doi.org/10.4153/CJM-1982-023-x doi: 10.4153/CJM-1982-023-x |
[8] | B. E. Johnson, A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Am. J. Math., 90 (1968), 1067–1073. https://doi.org/10.2307/2373290 doi: 10.2307/2373290 |
[9] | C. Lanski, Differential identities in prime rings with involution, T. Am. Math. Soc., 291 (1985), 765–787. https://doi.org/10.2307/2000109 doi: 10.2307/2000109 |
[10] | T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad., 20 (1992), 27–38. Available from: http://140.112.114.62/handle/246246/121932. |
[11] | M. Mathieu, G. J. Murphy, Derivations mapping into the radical, Arch. Math., 57 (1991), 469–474. https://doi.org/10.1007/BF01246745 doi: 10.1007/BF01246745 |
[12] | M. Mathieu, V. Runde, Derivations mapping into the radical, II, B. Lond. Math. Soc., 24 (1992), 485–487. https://doi.org/10.1112/blms/24.5.485 doi: 10.1112/blms/24.5.485 |
[13] | E. C. Posner, Derivations in prime rings, P. Am. Math. Soc., 8 (1957), 1093–1100. |
[14] | A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebra, P. Am. Math. Soc., 24 (1970), 209–214. https://doi.org/10.1090/S0002-9939-1970-0250069-3 doi: 10.1090/S0002-9939-1970-0250069-3 |
[15] | A. M. Sinclair, Automatic continuity of linear operators, Cambridge University Press, 1976. https://doi.org/10.1017/CBO9780511662355 |
[16] | I. M. Singer, J. Werner, Derivations on commutative normed algebras, Math. Ann., 129 (1955), 2–6. |
[17] | M. P. Thomas, The image of a derivation is contained in the radical, Ann. Math., 128 (1988), 435–460. https://doi.org/10.2307/1971432 doi: 10.2307/1971432 |
[18] | M. P. Thomas, Primitive ideals and derivations on noncommutative Banach algebras, Pac. J. Math., 159 (1993), 139–152. |
[19] | F. Wei, Z. Xiao, Generalized derivations on (semi-) Prime rings and non commutative Banach algebras, Rend. Semin. Mat. U. Pad., 122 (2009), 171–189. https://doi.org/10.4171/RSMUP/122-11 doi: 10.4171/RSMUP/122-11 |