Research article Special Issues

Quasi self-dual codes over non-unital rings from three-class association schemes

  • Received: 04 May 2023 Revised: 12 June 2023 Accepted: 12 June 2023 Published: 17 July 2023
  • MSC : 94B05, 16D10, 05E30

  • Let $ E $ and $ I $ denote the two non-unital rings of order 4 in the notation of (Fine, 93) defined by generators and relations as $ E = \langle a, b \mid 2a = 2b = 0, a^2 = a, b^2 = b, ab = a, ba = b\rangle $ and $ I = \langle a, b \mid 2a = 2b = 0, a^2 = b, ab = 0\rangle $. Recently, Alahmadi et al classified quasi self-dual (QSD) codes over the rings $ E $ and $ I $ for lengths up to 12 and 6, respectively. The codes had minimum distance at most 2 in the case of $ I $, and 4 in the case of $ E $. In this paper, we present two methods for constructing linear codes over these two rings using the adjacency matrices of three-class association schemes. We show that under certain conditions the constructions yield QSD or Type Ⅳ codes. Many codes with minimum distance exceeding 4 are presented. The form of the generator matrices of the codes with these constructions prompted some new results on free codes over $ E $ and $ I $.

    Citation: Adel Alahmadi, Asmaa Melaibari, Patrick Solé. Quasi self-dual codes over non-unital rings from three-class association schemes[J]. AIMS Mathematics, 2023, 8(10): 22731-22757. doi: 10.3934/math.20231158

    Related Papers:

  • Let $ E $ and $ I $ denote the two non-unital rings of order 4 in the notation of (Fine, 93) defined by generators and relations as $ E = \langle a, b \mid 2a = 2b = 0, a^2 = a, b^2 = b, ab = a, ba = b\rangle $ and $ I = \langle a, b \mid 2a = 2b = 0, a^2 = b, ab = 0\rangle $. Recently, Alahmadi et al classified quasi self-dual (QSD) codes over the rings $ E $ and $ I $ for lengths up to 12 and 6, respectively. The codes had minimum distance at most 2 in the case of $ I $, and 4 in the case of $ E $. In this paper, we present two methods for constructing linear codes over these two rings using the adjacency matrices of three-class association schemes. We show that under certain conditions the constructions yield QSD or Type Ⅳ codes. Many codes with minimum distance exceeding 4 are presented. The form of the generator matrices of the codes with these constructions prompted some new results on free codes over $ E $ and $ I $.



    加载中


    [1] A. Alahmadi, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib, P. Solé, Quasi Type Ⅳ codes over a non-unital ring, Appl. Algebr. Eng. Comm., 32 (2021), 217–228. https://doi.org/10.1007/s00200-021-00488-6 doi: 10.1007/s00200-021-00488-6
    [2] A. Alahmadi, A. Altassan, W. Basaffar, H. Shoaib, A. Bonnecaze, P. Solé, Type Ⅳ codes over a non-unital ring, J. Algebra Appl., 21 (2022), 2250142. https://doi.org/10.1142/S0219498822501420 doi: 10.1142/S0219498822501420
    [3] A. Alahmadi, A. Altassan, H. Shoaib, A. Alkathiry, A. Bonnecaze, P. Solé, The build-up construction of quasi self-dual codes over a non-unital ring, J. Algebra Appl., 21 (2022), 2250143. https://doi.org/10.1142/S0219498822501432 doi: 10.1142/S0219498822501432
    [4] A. Alahmadi, A. Alkathiry, A. Altassan, A. Bonnecaze, H. Shoaib, P. Solé, The build-up construction over a commutative non-unital ring, Design. Code. Cryptogr., 90 (2022), 3003–3010. https://doi.org/10.1007/s10623-022-01044-0 doi: 10.1007/s10623-022-01044-0
    [5] A. Alahmadi, A. Melaibari, P. Solé, Self-orthogonal codes over a non-unital ring from two class association schemes, submitted for publication.
    [6] M. Bilal, J. Borges, S. T. Dougherty, C. Fernández-Córdoba, Self-dual codes from 3-class association schemes, Appl. Algebr. Eng. Comm., 26 (2015), 227–250. https://doi.org/10.1007/s00200-014-0238-z doi: 10.1007/s00200-014-0238-z
    [7] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
    [8] A. R. Calderbank, E. M. Rains, P. M. Shor, N. J. Sloane, Quantum error correction via codes over $GF(4)$, IEEE T. Inform. Theory, 44 (1998), 1369–1387. https://doi.org/10.1109/18.681315 doi: 10.1109/18.681315
    [9] A. R. Calderbank, N. J. Sloane, Double circulant codes over $\mathbb{Z}_4$ and even unimodular lattices, J. Algebr. Comb., 6 (1997), 119–131. https://doi.org/10.1023/A:1008639004036 doi: 10.1023/A:1008639004036
    [10] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10 (1973).
    [11] S. T. Dougherty, J. L. Kim, P. Solé, Double circulant codes from two class association schemes, Adv. Math. Commun., 1 (2007), 45–64. https://doi.org/10.3934/amc.2007.1.45 doi: 10.3934/amc.2007.1.45
    [12] B. Fine, Classification of finite rings of order $p^2$, Math. Mag., 66 (1993), 248–252. https://doi.org/10.1080/0025570X.1993.11996133 doi: 10.1080/0025570X.1993.11996133
    [13] P. Gaborit, Quadratic double circulant codes over fields, J. Comb. Theory A, 97 (2002), 85–107.
    [14] C. D. Godsil, Algebraic combinatorics, New York: Routledge, 1993. https://doi.org/10.1201/9781315137131
    [15] A. Hanaki, I. Miyamoto, Classification of association schemes with small vertices, Shinshu University: Department of Mathematical Sciences Website, 2019. Available from: http://math.shinshu-u.ac.jp/hanaki/as/.
    [16] E. Nomiyama, Classification of association schemes with at most ten vertices, Kyushu J. Math., 49 (1995), 163–195. https://doi.org/10.2206/kyushujm.49.163 doi: 10.2206/kyushujm.49.163
    [17] M. Shi, S. Wang, J. L. Kim, P. Solé, Self-orthogonal codes over a non-unital ring and combinatorial matrices, Design. Code. Cryptogr., 91 (2023), 677–689. https://doi.org/10.1007/s10623-021-00948-7 doi: 10.1007/s10623-021-00948-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1200) PDF downloads(88) Cited by(1)

Article outline

Figures and Tables

Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog