Let $ \mathfrak{S} $ be a ring. The main objective of this paper is to analyze the structure of quotient rings, which are represented as $ \mathfrak{S}/\mathfrak{P} $, where $ \mathfrak{S} $ is an arbitrary ring and $ \mathfrak{P} $ is a prime ideal of $ \mathfrak{S} $. The paper aims to establish a link between the structure of these rings and the behaviour of traces of symmetric $ n $-derivations satisfying some algebraic identities involving prime ideals of an arbitrary ring $ \mathfrak{S} $. Moreover, as an application of the main result, we investigate the structure of the quotient ring $ \mathfrak{S}/\mathfrak{P} $ and traces of symmetric $ n $-derivations.
Citation: Shakir Ali, Amal S. Alali, Sharifah K. Said Husain, Vaishali Varshney. Symmetric $ n $-derivations on prime ideals with applications[J]. AIMS Mathematics, 2023, 8(11): 27573-27588. doi: 10.3934/math.20231410
Let $ \mathfrak{S} $ be a ring. The main objective of this paper is to analyze the structure of quotient rings, which are represented as $ \mathfrak{S}/\mathfrak{P} $, where $ \mathfrak{S} $ is an arbitrary ring and $ \mathfrak{P} $ is a prime ideal of $ \mathfrak{S} $. The paper aims to establish a link between the structure of these rings and the behaviour of traces of symmetric $ n $-derivations satisfying some algebraic identities involving prime ideals of an arbitrary ring $ \mathfrak{S} $. Moreover, as an application of the main result, we investigate the structure of the quotient ring $ \mathfrak{S}/\mathfrak{P} $ and traces of symmetric $ n $-derivations.
[1] | S. Ali, T. M. Alsuraiheed, N. Parveen, V. Varshney, Action of $n$-derivations and $n$-multipliers on ideals of (semi)-prime rings, AIMS Math., 8 (2023), 17208–17228. https://doi.org/10.3934/math.2023879 doi: 10.3934/math.2023879 |
[2] | F. A. A. Almahdi, A. Mamouni, M. Tamekkante, A generalization of Posner's theorem on derivations in rings, Indian J. Pure Appl. Math., 51 (2020), 187–194. https://doi.org/10.1007/s13226-020-0394-8 doi: 10.1007/s13226-020-0394-8 |
[3] | M. Ashraf, On symmetric bi-derivations in rings, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 31 (1999), 25–36. |
[4] | M. Ashraf, M. R. Jamal, Traces of permuting n-additive maps and permuting n-derivations of rings, Mediterr. J. Math., 11 (2014), 287–297. https://doi.org/10.1007/s00009-013-0298-5 doi: 10.1007/s00009-013-0298-5 |
[5] | M. Ashraf, N. Parveen, M. R. Jamal, Traces of permuting n-derivations and commutativity of rings, S. E. Asian B. Math., 38 (2014), 321–332. |
[6] | M. Ashraf, M. R. Jamal, M. R. Mozumder, On the traces of certain classes of permuting mappings in rings, Georgian Math. J., 23 (2016), 15–23, https://doi.org/10.1515/gmj-2015-0051. doi: 10.1515/gmj-2015-0051 |
[7] | M. Ashraf, A. Khan, M. R. Jamal, Traces of permuting generalized n-derivations of rings, Miskolc Math. Notes, 19 (2018), 731–740. https://doi.org/10.18514/MMN.2018.1851 doi: 10.18514/MMN.2018.1851 |
[8] | M. Bre$\hat{s}$ar, Commuting maps: a survey, Taiwanese J. Math., 8 (2004), 361–397. https://doi.org/10.11650/twjm/1500407660 doi: 10.11650/twjm/1500407660 |
[9] | Q. Deng, H. E. Bell, On derivations and commutativity in semiprime rings, Commun. Algebra, 23 (1995), 3705–3713. https://doi.org/10.1080/00927879508825427 doi: 10.1080/00927879508825427 |
[10] | M. A. Idrissi, L. Oukhtite Structure of a quotient ring $R/P$ with generalized derivations acting on the prime ideal $P$ and some applications, Indian J. Pure Appl. Math., 53 (2022), 792–800. https://doi.org/10.1007/s13226-021-00173-x doi: 10.1007/s13226-021-00173-x |
[11] | C. Lanski, Differential identities, Lie ideals and Posner's theorems, Pac. J. Math., 134 (1988), 275–297. https://doi.org/10.2140/pjm.1988.134.275 doi: 10.2140/pjm.1988.134.275 |
[12] | G. Maksa, A remark on symmetric bi-additive functions having nonnegative diagonalization, Glasnik Math., 15 (1980), 279–282. |
[13] | G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 303–307. |
[14] | A. Mamouni, L. Oukhtite, Z. Mohammed, On derivations involving prime ideals and commutativity in rings, São Paulo J. Math. Sci., 14 (2020), 675–6898. https://doi.org/10.1007/s40863-020-00187-z doi: 10.1007/s40863-020-00187-z |
[15] | K. H. Park, On prime and semi-prime rings with symmetric n-derivations, J. Chungcheong Math. Soc., 22 (2009), 451–458. https://doi.org/10.14403/jcms.2009.22.3.451 doi: 10.14403/jcms.2009.22.3.451 |
[16] | N. Parveen, Product of traces of symmetric bi-derivations in rings, Palest. J. Math., 11 (2022), 210–216. |
[17] | E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100. |
[18] | N. Rehman, H. Al-Noghashi, Action of prime ideals on generalized derivations, 2021. https://doi.org/10.48550/arXiv.2107.06769 |
[19] | J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 38 (1989), 245–254. https://doi.org/10.1007/BF01840009 doi: 10.1007/BF01840009 |
[20] | J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc., 109 (1990), 47–52. https://doi.org/10.2307/2048360 doi: 10.2307/2048360 |
[21] | J. Vukman, Two results concerning symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 40 (1990), 181–189. https://doi.org/10.1007/BF02112294 doi: 10.1007/BF02112294 |