A new class of nonlocal boundary value problems consisting of multi-term delay fractional differential equations and multipoint-integral boundary conditions is studied in this paper. We derive a more general form of the solution for the given problem by applying a fractional integral operator of an arbitrary order $ \beta_{\xi} $ instead of $ \beta_{1} $; for details, see Lemma 2. The given problem is converted into an equivalent fixed-point problem to apply the tools of fixed-point theory. The existence of solutions for the given problem is established through the use of a nonlinear alternative of the Leray-Schauder theorem, while the uniqueness of its solutions is shown with the aid of Banach's fixed-point theorem. We also discuss the stability criteria, icluding Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized Ulam-Hyers-Rassias stability, for solutions of the problem at hand. For illustration of the abstract results, we present examples. Our results are new and useful for the discipline of multi-term fractional differential equations related to hydrodynamics. The paper concludes with some interesting observations.
Citation: Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh. Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions[J]. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
A new class of nonlocal boundary value problems consisting of multi-term delay fractional differential equations and multipoint-integral boundary conditions is studied in this paper. We derive a more general form of the solution for the given problem by applying a fractional integral operator of an arbitrary order $ \beta_{\xi} $ instead of $ \beta_{1} $; for details, see Lemma 2. The given problem is converted into an equivalent fixed-point problem to apply the tools of fixed-point theory. The existence of solutions for the given problem is established through the use of a nonlinear alternative of the Leray-Schauder theorem, while the uniqueness of its solutions is shown with the aid of Banach's fixed-point theorem. We also discuss the stability criteria, icluding Ulam-Hyers, generalized Ulam-Hyers, Ulam-Hyers-Rassias, and generalized Ulam-Hyers-Rassias stability, for solutions of the problem at hand. For illustration of the abstract results, we present examples. Our results are new and useful for the discipline of multi-term fractional differential equations related to hydrodynamics. The paper concludes with some interesting observations.
[1] | J. Sabatier, O. P. Agarwal, J. A. Ttenreiro Machado, Advances in fractional calculus, theoretical developments and applications in physics and engineering, New York: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[2] | H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Calculus and fractional processes with applications to financial economics, theory and application, London: Academic Press, 2017. |
[3] | D. Kusnezov, A. Bulgac, G. Dang, Quantum Levy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136–11399. https://doi.org/10.1103/PhysRevLett.82.1136 doi: 10.1103/PhysRevLett.82.1136 |
[4] | F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Phil. Trans. R. Soc. A, 371 (2013), 20120155. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155 |
[5] | V. M. Bulavatsky, Mathematical models and problems of fractional-differential dynamics of some relaxation filtration processes, Cybern. Syst. Anal., 54 (2018), 727–736. https://doi.org/10.1007/s10559-018-0074-4 doi: 10.1007/s10559-018-0074-4 |
[6] | G. Alotta, M. Di Paola, F. P. Pinnola, M. Zingales, A fractional nonlocal approach to nonlinear blood flow in small-lumen arterial vessels, Meccanica, 55 (2020), 891–906. https://doi.org/10.1007/s11012-020-01144-y doi: 10.1007/s11012-020-01144-y |
[7] | A. N. Chatterjee, B. Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Soliton Fract., 147 (2021), 110952. https://doi.org/10.1016/j.chaos.2021.110952 doi: 10.1016/j.chaos.2021.110952 |
[8] | C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Proces. Lett., 55 (2023), 6125–6151. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y |
[9] | P. Li, R. Gao, C. Xu, Y. Li, A. Akgül, D. Baleanu, Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton system, Chaos Soliton Fract., 166 (2023), 112975. https://doi.org/10.1016/j.chaos.2022.112975 doi: 10.1016/j.chaos.2022.112975 |
[10] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[11] | B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, Hackensack: World Scientific, 2021. https://doi.org/10.1142/12102 |
[12] | R. P. Agarwal, V. Lupulescu, D. O'Regan, G. Rahman, Multi-term fractional differential equations in a nonreflexive Banach space, Adv. Differ. Equ., 2013 (2013), 302. https://doi.org/10.1186/1687-1847-2013-302 doi: 10.1186/1687-1847-2013-302 |
[13] | B. Ahmad, N. Alghamdi, A. Alsaedi, S. K. Ntouyas, A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions, Fract. Calc. Appl. Anal., 22 (2019), 601–618. https://doi.org/10.1515/FCA-2019-0034 doi: 10.1515/FCA-2019-0034 |
[14] | M. Delkhosh, K. Parand, A new computational method based on fractional Lagrange functions to solve multi-term fractional differential equations, Numer. Algorithms, 88 (2021), 729–766. https://doi.org/10.1007/s11075-020-01055-9 doi: 10.1007/s11075-020-01055-9 |
[15] | B. Ahmad, M. Alblewi, S. K. Ntouyas, A. Alsaedi, Existence results for a coupled system of nonlinear multi-term fractional differential equations with anti-periodic type coupled nonlocal boundary conditions, Math. Methods Appl. Sci., 44 (2021), 8739–8758. https://doi.org/10.1002/mma.7301 doi: 10.1002/mma.7301 |
[16] | B. Ahmad, A. Alsaedi, N. Alghamdi, S. K. Ntouyas, Existence theorems for a coupled system of nonlinear multi-term fractional differential equations with nonlocal boundary conditions, Kragujevac J. Math., 46 (2022), 317–331. https://doi.org/10.46793/KgJMat2202.317A doi: 10.46793/KgJMat2202.317A |
[17] | A. Diop, Existence of mild solutions for multi-term time fractional measure differential equations, J. Anal., 30 (2022), 1609–1623. https://doi.org/10.1007/s41478-022-00420-2 doi: 10.1007/s41478-022-00420-2 |
[18] | H. Gou, On the $S$-asymptotically $\omega$-periodic mild solutions for multi-term time fractional measure differential equations, Topol. Methods Nonlinear Anal., 62 (2023), 569–590. https://doi.org/10.1080/17442508.2023.2300290 doi: 10.1080/17442508.2023.2300290 |
[19] | C. Chen, L. Liu, Q. Dong, Existence and Hyers-Ulam stability for boundary value problems of multi-term Caputo fractional differential equations, Filomat, 37 (2023), 9679–9692. https://doi.org/10.1186/s13662-018-1903-5 doi: 10.1186/s13662-018-1903-5 |
[20] | Y. S. Kang, S. H. Jo, Spectral collocation method for solving multi-term fractional integro-differential equations with nonlinear integral, Math. Sci., 18 (2024), 91–106. https://doi.org/10.1007/s40096-022-00487-9 doi: 10.1007/s40096-022-00487-9 |
[21] | M. Dieye, E. H. Lakhel, M. A. McKibben, Controllability of fractional neutral functional differential equations with infinite delay driven by fractional Brownian motion, IMA J. Math. Control Inform., 38 (2021), 929–956. https://doi.org/10.1093/imamci/dnab020 doi: 10.1093/imamci/dnab020 |
[22] | R. Chaudhary, V. Singh, D. N. Pandey, Controllability of multi-term time-fractional differential systems with state-dependent delay, J. Appl. Anal., 26 (2020), 241–255. https://doi.org/10.1515/jaa-2020-2016 doi: 10.1515/jaa-2020-2016 |
[23] | H. Zhao, J. Zhang, J. Lu, J. Hu, Approximate controllability and optimal control in fractional differential equations with multiple delay controls, fractional Brownian motion with Hurst parameter in $0 < H < \frac{1}{2}$, and Poisson jumps, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107636. https://doi.org/10.1016/j.cnsns.2023.107636 doi: 10.1016/j.cnsns.2023.107636 |
[24] | H. Boulares, A. Ardjouni, Y. Laskri, Existence and uniqueness of solutions to fractional order nonlinear neutral differential equations, Fract. Differ. Calc., 7 (2017), 247–263. https://doi.org/10.7153/fdc-2017-07-10 doi: 10.7153/fdc-2017-07-10 |
[25] | Y. Guo, X. B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1 < \beta < 2$, Bound. Value Probl., 2019 (2019), 59. https://doi.org/10.1186/s13661-019-1172-6 doi: 10.1186/s13661-019-1172-6 |
[26] | X. Wang, D. Luo, Q. Zhu, Ulam-Hyers stability of Caputo type fuzzy fractional differential equations with time-delays, Chaos Soliton Fract., 156 (2022), 111822. https://doi.org/10.1016/j.chaos.2022.111822 doi: 10.1016/j.chaos.2022.111822 |
[27] | R. Chaharpashlou, A. M. Lopes, Hyers-Ulam-Rassias stability of a nonlinear stochastic fractional Volterra integro-differential equation, J. Appl. Anal. Comput., 13 (2023), 2799–2808. https://doi.org/10.11948/20230005 doi: 10.11948/20230005 |
[28] | C. Chen, L. Liu, Q. Dong, Existence and Hyers-Ulam stability for boundary value problems of multi-term Caputo fractional differential equations, Filomat, 37 (2023), 9679–9692. https://doi.org/10.2298/FIL2328679C doi: 10.2298/FIL2328679C |
[29] | G. Rahman, R. P. Agarwal, D. Ahmad, Existence and stability analysis of $n$th order fractional delay differential equation, Chaos Soliton Fract., 155 (2022), 111709. https://doi.org/10.1016/j.chaos.2021.111709 doi: 10.1016/j.chaos.2021.111709 |
[30] | P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615 |
[31] | F. Mainardi, P. Pironi, F. Tampieri, On a generalization of the Basset problem via fractional calculus, In: Proceedings 15th Canadian congress of applied mechanics, 2 (1995), 836–837. |
[32] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |