Research article Special Issues

Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions

  • Received: 29 December 2021 Revised: 04 February 2022 Accepted: 17 February 2022 Published: 28 February 2022
  • MSC : 34A08, 34B15

  • In this paper, we introduce a new class of nonlocal multipoint-integral boundary conditions with respect to the sum and difference of the governing functions and analyze a coupled system of nonlinear Caputo fractional differential equations equipped with these conditions. The existence and uniqueness results for the given problem are proved via the tools of the fixed point theory. We also discuss the case of nonlinear Riemann-Liouville integral boundary conditions. The obtained results are well-illustrated with examples.

    Citation: Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad. Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions[J]. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463

    Related Papers:

  • In this paper, we introduce a new class of nonlocal multipoint-integral boundary conditions with respect to the sum and difference of the governing functions and analyze a coupled system of nonlinear Caputo fractional differential equations equipped with these conditions. The existence and uniqueness results for the given problem are proved via the tools of the fixed point theory. We also discuss the case of nonlinear Riemann-Liouville integral boundary conditions. The obtained results are well-illustrated with examples.



    加载中


    [1] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Contr. Sys. Techn., 20 (2012), 763–769. https://doi.org/10.1109/TCST.2011.2153203 doi: 10.1109/TCST.2011.2153203
    [2] M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dynam., 72 (2013), 301–309. https://doi.org/10.1007/s11071-012-0714-6 doi: 10.1007/s11071-012-0714-6
    [3] F. Zhang, G. Chen, C. Li, J. Kurths, Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 20120155, 26. https://doi.org/10.1098/rsta.2012.0155 doi: 10.1098/rsta.2012.0155
    [4] Y. Xu, W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems, Phys. A, 549 (2020), 123903. https://doi.org/10.1016/j.physa.2019.123903 doi: 10.1016/j.physa.2019.123903
    [5] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18.
    [6] A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Control, 5 (2017), 168–186. https://doi.org/10.1007/s40435-016-0224-3 doi: 10.1007/s40435-016-0224-3
    [7] V. V. Tarasova, V. E. Tarasov, Logistic map with memory from economic model, Chaos Soliton. Fract., 95 (2017), 84–91. https://doi.org/10.1515/9783110627459 doi: 10.1515/9783110627459
    [8] Y. Xu, Y. Li, W. Li, Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights, Commun. Nonlinear Sci. Numer. Simul., 85 (2020), 105239. https://doi.org/10.1016/j.cnsns.2020.105239 doi: 10.1016/j.cnsns.2020.105239
    [9] M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105088, 22 pp.
    [10] A. N. Chatterjee, B. Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Soliton. Fract., 147 (2021), Paper No. 110952, 6 pp. https://doi.org/10.1016/j.chaos.2021.110952
    [11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
    [12] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-verlag Berlin Heidelberg, 2010.
    [13] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, 2017.
    [14] J. Tariboon, S. K. Ntouyas, S. Asawasamrit, C. Promsakon, Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain, Open Math., 15 (2107), 645–666.
    [15] A. Alsaedi, B. Ahmad, M. Alghanmi, Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions, Appl. Math. Lett., 91 (2019), 113–120. https://doi.org/10.1016/j.aml.2018.12.006 doi: 10.1016/j.aml.2018.12.006
    [16] L. Ren, J. Wang, M. Feckan, Periodic mild solutions of impulsive fractional evolution equations, AIMS Math., 5 (2020), 497–506. https://doi.org/10.3934/math.2020033 doi: 10.3934/math.2020033
    [17] Z. Cen, L. B. Liu, J. Huang, A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative, Appl. Math. Lett., 102 (2020), 106086, 8 pp. https://doi.org/10.1016/j.aml.2019.106086 doi: 10.1016/j.aml.2019.106086
    [18] Z. Cen, L.-B. Liu, J. Huang, A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative, Appl. Math. Lett. 102 (2020), 106086, 8. https: //doi.org/10.1016/j.aml.2019.106086
    [19] L. Zhang, W. Hou, B. Ahmad, G. Wang, Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $p$-Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3851–3863. https://doi.org/10.3934/dcdss.2020445 doi: 10.3934/dcdss.2020445
    [20] C. S. Goodrich, Nonlocal differential equations with convolution coefficients and applications to fractional calculus, Adv. Nonlinear Stud., 21 (2021), 767–787. https://doi.org/10.1515/ans-2021-2145 doi: 10.1515/ans-2021-2145
    [21] C. Promsakon, S. K. Ntouyas, J. Tariboon, Hilfer-Hadamard nonlocal integro-multipoint fractional boundary value problems, J. Funct. Spaces, 2021 (2021), Art. ID 8031524, 9 pp. https://doi.org/10.1155/2021/8031524
    [22] H. Fazli, H. Sun, J. J. Nieto, On solvability of differential equations with the Riesz fractional derivative, Math. Methods Appl. Sci., 45 (2022), 197–205. https://doi.org/10.1002/mma.7773 doi: 10.1002/mma.7773
    [23] A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Initial value problem for hybrid $\psi $-Hilfer fractional implicit differential equations, J. Fixed Point Theory Appl., 24 (2022), Paper No. 7, 14 pp. https://doi.org/10.1007/s11784-021-00920-x
    [24] J. W. He, Y. Zhou, L. Peng, B. Ahmad, On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on $\Bbb{R}^{N}$, Adv. Nonlinear Anal., 11 (2022), 580–597.
    [25] J. A. Gallegos, N. Aguila-Camacho, M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis, J. Integral Equations Appl., 31 (2019), 59–84. https://doi.org/10.1216/JIE-2019-31-1-59 doi: 10.1216/JIE-2019-31-1-59
    [26] K. M. Owolabi, B. Karaagac, Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator, Chaos Soliton. Fract., 136 (2020), 109835. https://doi.org/10.1016/j.chaos.2020.109835 doi: 10.1016/j.chaos.2020.109835
    [27] A. Samadi, S. K. Ntouyas, Solvability for infinite systems of fractional differential equations in Banach sequence spaces $\ell_p$ and $c_0$, Filomat, 34 (2020), 3943–3955.
    [28] S. Hristova, R. Agarwal, D. O'Regan, Explicit solutions of initial value problems for systems of linear Riemann-Liouville fractional differential equations with constant delay, Adv. Difference Equ., 2020 (2020), Paper No. 180, 18 pp. https://doi.org/10.1186/s13662-020-02643-8
    [29] B. Ahmad, S. Hamdan, A. Alsaedi, S. K. Ntouyas, On a nonlinear mixed-order coupled fractional differential system with new integral boundary conditions, AIMS Math., 6 (2021), 5801–5816. https://doi.org/10.3934/math.2021343 doi: 10.3934/math.2021343
    [30] B. Ahmad, M. Alghanmi, A. Alsaedi, J. J. Nieto, Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021), 107018, 10 pp. https://doi.org/10.1016/j.aml.2021.107018 doi: 10.1016/j.aml.2021.107018
    [31] R. Luca, On a system of Riemann-Liouville fractional differential equations with coupled nonlocal boundary conditions, Adv. Difference Equ., 2021 (2021), Paper No. 134, 25 pp.
    [32] B. Ahmad, J. Henderson, R. Luca, Boundary Value Problems for Fractional Differential Equations and Systems, Trends in Abstract and Applied Analysis, 9, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2021. https://doi.org/10.1186/s13662-021-03303-1
    [33] S. Abbas, M. Benchohra, A. Petrusel, Coupled Hilfer and Hadamard fractional differential systems in generalized Banach spaces, Fixed Point Theory, 23 (2022), 21–34. https://doi.org/10.3390/math7030285 doi: 10.3390/math7030285
    [34] B. Ahmad, B. Alghamdi, R. P. Agarwal, A. Alsaedi, Riemann–Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions, Fractals, 30 (2022), 2240002, 11 pp. https://doi.org/10.1142/S0218348X22400023 doi: 10.1142/S0218348X22400023
    [35] D. R. Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics, No. 66, Cambridge University Press, London-New York, 1974.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1726) PDF downloads(90) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog