The aim of study is to investigate the Hirota equation which has a significant role in applied sciences, like maritime, coastal engineering, ocean, and the main source of the environmental action due to energy transportation on floating anatomical structures. The classical Hirota model has transformed into a fractional Hirota governing equation by using the space-time fractional Riemann-Liouville, time fractional Atangana-Baleanu and space-time fractional $ \beta $ differential operators. The most generalized new extended direct algebraic technique is applied to obtain the solitonic patterns. The utilized scheme provided a generalized class of analytical solutions, which is presented by the trigonometric, rational, exponential and hyperbolic functions. The analytical solutions which cover almost all types of soliton are obtained with Riemann-Liouville, Atangana-Baleanu and $ \beta $ fractional operator. The influence of the fractional-order parameter on the acquired solitary wave solutions is graphically studied. The two and three-dimensional graphical comparison between Riemann-Liouville, Atangana-Baleanu and $ \beta $-fractional derivatives for the solutions of the Hirota equation is displayed by considering suitable involved parametric values with the aid of Mathematica.
Citation: Muhammad Imran Asjad, Waqas Ali Faridi, Adil Jhangeer, Maryam Aleem, Abdullahi Yusuf, Ali S. Alshomrani, Dumitru Baleanu. Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing[J]. AIMS Mathematics, 2022, 7(5): 8290-8313. doi: 10.3934/math.2022462
The aim of study is to investigate the Hirota equation which has a significant role in applied sciences, like maritime, coastal engineering, ocean, and the main source of the environmental action due to energy transportation on floating anatomical structures. The classical Hirota model has transformed into a fractional Hirota governing equation by using the space-time fractional Riemann-Liouville, time fractional Atangana-Baleanu and space-time fractional $ \beta $ differential operators. The most generalized new extended direct algebraic technique is applied to obtain the solitonic patterns. The utilized scheme provided a generalized class of analytical solutions, which is presented by the trigonometric, rational, exponential and hyperbolic functions. The analytical solutions which cover almost all types of soliton are obtained with Riemann-Liouville, Atangana-Baleanu and $ \beta $ fractional operator. The influence of the fractional-order parameter on the acquired solitary wave solutions is graphically studied. The two and three-dimensional graphical comparison between Riemann-Liouville, Atangana-Baleanu and $ \beta $-fractional derivatives for the solutions of the Hirota equation is displayed by considering suitable involved parametric values with the aid of Mathematica.
[1] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[3] | I. Podlubny, Fractional diferential equations, California: Academic Press, 1999. |
[4] | C. Park, M. M. A. Khater, A. H. Abdel-Aty, R. A. M. Attia, H. Rezazadeh, A. M. Zidan, et al., Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic, Alex. Eng. J., 59 (2020), 1425–1433. https://doi.org/10.1016/j.aej.2020.03.046 doi: 10.1016/j.aej.2020.03.046 |
[5] | K. U. Tariq, M. Younis, H. Rezazadeh, S. T. R. Rizvi, M. S. Osman, Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution, Mod. Phys. Lett. B, 32 (2018), 1–13. https://doi.org/10.1142/S0217984918503177 doi: 10.1142/S0217984918503177 |
[6] | H. Rezazadeh, H. Aminikhah, A. R. Sheikhani, A new algorithm for solving of fractional differential equation with time delay, In: The 10th seminar on differential equations and dynamic systems, 2013,194–197. |
[7] | H. H. Asada, F. E. Sotiropoulos, Dual faceted linearization of nonlinear dynamical systems based on physical modeling theory, J. Dyn. Sys. Meas. Control, 141 (2019), 1–11. https://doi.org/10.1115/1.4041448 doi: 10.1115/1.4041448 |
[8] | C. Gérard, C. D. Jäkel, Thermal quantum fields without cut-offs in 1+1 space-time dimensions, Rev. Math. Phy., 17 (2005), 113–173. https://doi.org/10.1142/S0129055X05002303 doi: 10.1142/S0129055X05002303 |
[9] | A. Atangana, S. I. Araz, Atangana-Seda numerical scheme for Labyrinth attractor with new differential and integral operators, Fractals, 28 (2020), 1–18. https://doi.org/10.1142/S0218348X20400447 doi: 10.1142/S0218348X20400447 |
[10] | A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods, and applications, Adv. Differ. Equ., 2020 (2020), 1–89. https://doi.org/10.1186/s13662-020-03095-w doi: 10.1186/s13662-020-03095-w |
[11] | A. Atangana, S. I. Araz, Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Differ. Equ., 2021 (2021), 1–107. https://doi.org/10.1186/s13662-021-03213-2 doi: 10.1186/s13662-021-03213-2 |
[12] | A. Atangana, S. I. Araz, Nonlinear equations with global differential and integral operators: Existence, uniqueness with application to epidemiology, Results Phys., 20 (2020), 103593. https://doi.org/10.1016/j.rinp.2020.103593 doi: 10.1016/j.rinp.2020.103593 |
[13] | M. Mirzazadeh, Analytical study of solitons to nonlinear time fractional parabolic equations, Nonlinear Dyn., 85 (2016), 2569–2576. https://doi.org/10.1007/s11071-016-2845-7 doi: 10.1007/s11071-016-2845-7 |
[14] | E. Tala-Tebue, Z. I. Djoufack, A. Djimeli-Tsajio, A. Kenfack-Jiotsa, Solitons and other solutions of the nonlinear fractional Zoomeron equation, Chinese J. Phys., 56 (2018), 1232–1246. https://doi.org/10.1016/j.cjph.2018.04.017 doi: 10.1016/j.cjph.2018.04.017 |
[15] | E. Tala-Tebue, C. Tetchoka-Manemo, H. Rezazadeh, A. Bekir, Y. M. Chu, Optical solutions of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation using two different methods, Results Phys., 19 (2020), 103514. https://doi.org/10.1016/j.rinp.2020.103514 doi: 10.1016/j.rinp.2020.103514 |
[16] | E. M. E. Zayed, H. A. Zedan, K. A. Gepreel, Group analysis and modified extended Tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations, Int. J. Nonlinear Sci. Num. Simul., 5 (2004), 221–234. https://doi.org/10.1515/IJNSNS.2004.5.3.221 doi: 10.1515/IJNSNS.2004.5.3.221 |
[17] | A. Biswas, D. Milovic, Travelling wave solutions of the non-linear Schrödinger's equation in non-Kerr law media, Commun. Nonlinear Sci. Num. Simul., 14 (2009), 1993–1998. https://doi.org/10.1016/j.cnsns.2008.04.017 doi: 10.1016/j.cnsns.2008.04.017 |
[18] | A. Aasaraai, The application of modified F-expansion method for solving the Maccari's system, Brit. J. Math. Comput. Sci., 11 (2015), 1–14. |
[19] | E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212–218. https://doi.org/10.1016/S0375-9601(00)00725-8 doi: 10.1016/S0375-9601(00)00725-8 |
[20] | Z. S. Feng, The first-integer method to study the Burgers-Kroteweg-de Vries equation, J. Phys. A Math. Gen., 35 (2002), 343–349. |
[21] | V. B. Matveev, M. A. Salle, Darboux transformations and solitions, Berlin, Heideelberg: Springer, 1991. |
[22] | M. S. Islam, K. Kamruzzaman, M. A. Akbar, A. Mastroberardino, A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations, R. Soc. Open Sci., 1 (2014), 1–13. https://doi.org/10.1098/rsos.140038 doi: 10.1098/rsos.140038 |
[23] | L. Akinyemi, M. Şenol, H. Rezazadeh, H. Ahmad, H. Wang, Abundant optical soliton solutions for an integrable (2+1)-dimensional nonlinear conformable Schrödinger system, Results Phys., 25 (2021), 104177. https://doi.org/10.1016/j.rinp.2021.104177 doi: 10.1016/j.rinp.2021.104177 |
[24] | M. A. Akbar, L. Akinyemi, S. W. Yao, A. Jhangeer, H. Rezazadeh, M. M. A. Khater, et al., Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method, Results Phys., 25 (2021), 104228. https://doi.org/10.1016/j.rinp.2021.104228 doi: 10.1016/j.rinp.2021.104228 |
[25] | L. Akinyemi, K. Hosseini, S. Salahshour, The bright and singular solitons of (2+1)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersions, Optik, 242 (2021), 167120. https://doi.org/10.1016/j.ijleo.2021.167120 doi: 10.1016/j.ijleo.2021.167120 |
[26] | L. Akinyemi, H. Rezazadeh, S. W. Yao, M. A. Akbar, M. M. A. Khatere, A. Jhangeer, et al., Nonlinear dispersion in parabolic law medium and its optical solitons, Results Phys., 26 (2021), 104411. https://doi.org/10.1016/j.rinp.2021.104411 doi: 10.1016/j.rinp.2021.104411 |
[27] | M. Mirzazadeh, A. Akbulut, F. Taşcan, L. Akinyemi, A novel integration approach to study the perturbed Biswas-Milovic equation with Kudryashov's law of refractive index, Optik, 252 (2022), 168529. https://doi.org/10.1016/j.ijleo.2021.168529 doi: 10.1016/j.ijleo.2021.168529 |
[28] | A. Kilicman, R. Shokhanda, P. Goswami, On the solution of (n+1)-dimensional fractional M-Burgers equation, Alex. Eng. J., 60 (2021), 1165–1172. https://doi.org/10.1016/j.aej.2020.10.040 doi: 10.1016/j.aej.2020.10.040 |
[29] | R. Shokhanda, P. Goswami, J. H. He, A. Althobaiti, An approximate solution of the time-fractional two-mode coupled Burgers equation, Fractal Fract., 5 (2021), 1–18. https://doi.org/10.3390/fractalfract5040196 doi: 10.3390/fractalfract5040196 |
[30] | C. L. Yuan, X. Y. Wen, Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type, Chinese Phys. B, 30 (2021), 030201. |
[31] | H. T. Wang, X. Y. Wen, Modulational instability, interactions of two-component localized waves and dynamics in a semi-discrete nonlinear integrable system on a reduced two-chain lattice, Eur. Phys. J. Plus, 136 (2021), 1–43. https://doi.org/10.1140/epjp/s13360-021-01454-4 doi: 10.1140/epjp/s13360-021-01454-4 |
[32] | C. L. Yuan, X. Y. Wen, Integrability, discrete kink multi-soliton solutions on an inclined plane background and dynamics in the modified exponential Toda lattice equation, Nonlinear Dyn., 105 (2021), 643–669. https://doi.org/10.1007/s11071-021-06592-z doi: 10.1007/s11071-021-06592-z |
[33] | X. Y. Wen, H. T. Wang, Breathing-soliton and singular rogue wave solutions for a discrete nonlocal coupled Ablowitz-Ladik equation of reverse-space type, Appl. Math. Lett., 111 (2021), 106683. https://doi.org/10.1016/j.aml.2020.106683 doi: 10.1016/j.aml.2020.106683 |
[34] | X. Wang, C. Liu, L. Wang, Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations, J. Math. Anal. Appl., 449 (2017), 1534–1552. https://doi.org/10.1016/j.jmaa.2016.12.079 doi: 10.1016/j.jmaa.2016.12.079 |
[35] | X. Wang, L. Wang, J. Wei, B. W. Guo, J. F. Kang, Rogue waves in the three-level defocusing coupled Maxwell-Bloch equations, Proc. R. Soc. A, 477 (2021), 1–21. https://doi.org/10.1098/rspa.2021.0585 doi: 10.1098/rspa.2021.0585 |
[36] | Y. S. Tao, J. S. He, Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation, Phys. Rev. E, 85 (2012), 026601. |
[37] | C. Q. Dai, J. F. Zhang, New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients, J. Phys. A Math. Gen., 39 (2006), 723–737. |
[38] | L. Faddeev, A. Y. Volkov, Hirota equation as an example of an integrable symplectic map, Lett. Math. Phys., 32 (1994), 125–135. https://doi.org/10.1007/BF00739422 doi: 10.1007/BF00739422 |
[39] | X. Wang, C. Liu, L. Wang, Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations, J. Math. Anal. Appl., 449 (2017), 1534–1552. https://doi.org/10.1016/j.jmaa.2016.12.079 doi: 10.1016/j.jmaa.2016.12.079 |
[40] | K. El-Rashidy, A. R. Seadawy, S. Althobaiti, M. M. Makhlouf, Multiwave, Kinky breathers and multi-peak soliton solutions for the nonlinear Hirota dynamical system, Results Phys., 19 (2020), 103678. https://doi.org/10.1016/j.rinp.2020.103678 doi: 10.1016/j.rinp.2020.103678 |
[41] | R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805–809. https://doi.org/10.1063/1.1666399 doi: 10.1063/1.1666399 |
[42] | P. Wang, B. Tian, W. J. Liu, M. Li, K. Sun, Soliton solutions for a generalized inhomogeneous variable-coefficient Hirota equation with symbolic computation, Stud. Appl. Math., 125 (2010), 213–222. https://doi.org/10.1111/j.1467-9590.2010.00486.x doi: 10.1111/j.1467-9590.2010.00486.x |
[43] | G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006), 1367–1376. https://doi.org/10.1016/j.camwa.2006.02.001 doi: 10.1016/j.camwa.2006.02.001 |
[44] | A. Scott, Encyclopedia of nonlinear science, New York: Routledge, 2005. https://doi.org/10.4324/9780203647417 |
[45] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[46] | A. Kurt, A. Tozar, O. Tasbozan, Applying the new extended direct algebraic method to solve the equation of obliquely interacting waves in shallow waters, J. Ocean Univ. China, 19 (2020), 772–780. https://doi.org/10.1007/s11802-020-4135-8 doi: 10.1007/s11802-020-4135-8 |