High-frequency financial data are becoming increasingly available and need to be analyzed under the current circumstances for the market prices of stocks, currencies, risk analysis, portfolio management and other financial instruments. An emblematic challenge in econometrics is estimating the integrated volatility for financial prices, i.e., the quadratic variation of log prices. Following this point, in this paper, we study the estimation of integrated self-weighted volatility, i.e., the generalized style of integrated volatility, by using intraday high-frequency data with noise. In order to reduce the effect of noise, the "pre-averaging" technique is used. Both the law of large numbers and the central limit theorem of the estimator of integrated self-weighted volatility are established in this paper. Meanwhile, a studentized version is also given in order to make some statistical inferences. At the end of this article, the simulation results obtained to evaluate the accuracy of approximating the sampling distributions of the estimator are displayed.
Citation: Erlin Guo, Cuixia Li, Patrick Ling, Fengqin Tang. Convergence rate for integrated self-weighted volatility by using intraday high-frequency data with noise[J]. AIMS Mathematics, 2023, 8(12): 31070-31091. doi: 10.3934/math.20231590
High-frequency financial data are becoming increasingly available and need to be analyzed under the current circumstances for the market prices of stocks, currencies, risk analysis, portfolio management and other financial instruments. An emblematic challenge in econometrics is estimating the integrated volatility for financial prices, i.e., the quadratic variation of log prices. Following this point, in this paper, we study the estimation of integrated self-weighted volatility, i.e., the generalized style of integrated volatility, by using intraday high-frequency data with noise. In order to reduce the effect of noise, the "pre-averaging" technique is used. Both the law of large numbers and the central limit theorem of the estimator of integrated self-weighted volatility are established in this paper. Meanwhile, a studentized version is also given in order to make some statistical inferences. At the end of this article, the simulation results obtained to evaluate the accuracy of approximating the sampling distributions of the estimator are displayed.
[1] | T. Hendershott, R. Riordan, High frequency trading and price discovery, J. Economet., 148 (2009), 131–148. https://doi.org/10.2139/ssrn.1938769 doi: 10.2139/ssrn.1938769 |
[2] | Y. Aït-Sahalia, J. Jacod, Is Brownian motion necessary to model high frequency data? Ann. Stat., 38 (2010), 3093–3128. https://doi.org/10.1214/09-aos749 doi: 10.1214/09-aos749 |
[3] | Z. Bai, H. Liu, W. Wong, Enhancement of the applicability of Markowitz's portfolio optimization by utilizing random matrix theory, Math. Finan., 19 (2009), 639–667. https://doi.org/10.1111/j.1467-9965.2009.00383.x doi: 10.1111/j.1467-9965.2009.00383.x |
[4] | J. Liu, F. Longstaff, J. Pan, Dynamic asset allocation with event risk, J. Financ., 58 (2003), 231–259. https://doi.org/10.1111/1540-6261.00523 doi: 10.1111/1540-6261.00523 |
[5] | E. Dimson, Risk measurement when shares are subject to infrequent trading, J. Financ. Econ., 7 (1979), 197–226. https://doi.org/10.1016/0304-405X(79)90013-8 doi: 10.1016/0304-405X(79)90013-8 |
[6] | J. Q. Fan, Y. Y. Li, K. Yu, Vast volatility matrix estimation using high frequency data for portfolio selection, J. Am. Stat. Assoc., 107 (2012), 412–428. https://doi.org/10.1080/1621459.2012.656041 doi: 10.1080/1621459.2012.656041 |
[7] | Y. Ding, Y. Y. Li, X. H. Zheng, High dimensional minimum variance portfolio estimation under statistical factor models, J. Economet., 222 (2021), 502–515. https://doi.org/10.1016/j.jeconom.2020.07.013 doi: 10.1016/j.jeconom.2020.07.013 |
[8] | T. T. Cai, J. Hu, Y. Y. Li, X. H. Zheng, High-dimensional minimum variance portfolio estimation based on high-frequency data, J. Economet., 214 (2020), 482–494. https://doi.org/10.1016/j.jeconom.2019.04.039 doi: 10.1016/j.jeconom.2019.04.039 |
[9] | O. E. Barndorff-Nielsen, N. Shephard, Econometric analysis of realized volatility and its use in estimating stochastic volatility models, J. R. Stat. Soc. B., 64 (2002), 253–280. https://doi.org/10.1111/1467-9868.00336 doi: 10.1111/1467-9868.00336 |
[10] | O. E. Barndorff-Nielsen, N. Shephard, Power and bipower variation with stochastic volatility and jumps, J. Financ. Econ., 2 (2004), 1–37. https://doi.org/10.1093/jjfinec/nbh001 doi: 10.1093/jjfinec/nbh001 |
[11] | J. Jacod, Asymptotic properties of realized power variation and related functionals of semi-martingales, Stoch. Proc. Appl., 118 (2008), 517–559. https://doi.org/10.1016/j.spa.2007.05.005 doi: 10.1016/j.spa.2007.05.005 |
[12] | C. Mancini, Nonparametric threshold estimation for models with stochastic diffusion coefficient and jumps, Scand. J. Stat., 36 (2009), 270–296. https://doi.org/10.1111/j.1467-9469.2008.00622.x doi: 10.1111/j.1467-9469.2008.00622.x |
[13] | L. Zhang, P. Mykland, Y. Aït-Sahalia, A tale of two time scales: determining integrated volatility with noisy high-frequency data, J. Am. Stat. Assoc., 100 (2005), 1394–1411. https://doi.org/10.1198/016214505000000169 doi: 10.1198/016214505000000169 |
[14] | Y. Aït-Sahalia, P. Mykland, L. Zhang, How often to sample a continuous-time process in the presence of market microstructure noise, Rev. Financ. Stud., 18 (2005), 351–416. https://doi.org/10.1023/A:1004318727672 doi: 10.1023/A:1004318727672 |
[15] | L. Zhang, Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach, Bernoulli, 12 (2006), 1019–1043. https://doi.org/10.3150/bj/1165269149 doi: 10.3150/bj/1165269149 |
[16] | O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, N. Shephard, Designing realized kernels to measure ex-post variation of equity prices in the presence of noise, Econometrica, 76 (2008), 1481–1536. https://doi.org/10.3982/ECTA6495 doi: 10.3982/ECTA6495 |
[17] | J. Jacod, Y. Li, P. Mykland, M. Podolskij, M. Vetter, Microstructure noise in the continuous case: the pre-averaging approach, Stoch. Proc. Appl., 119 (2009), 2249–2276. https://doi.org/10.1016/j.spa.2008.11.004 doi: 10.1016/j.spa.2008.11.004 |
[18] | D. Xiu, Quasi-maximum likelihood estimation of volatility with high frequency data, J. Economet., 159 (2010), 235–250. https://doi.org/10.1016/j.jeconom.2010.07.002 doi: 10.1016/j.jeconom.2010.07.002 |
[19] | Y. Aït-Sahalia, J. Fan, D. Xiu, High frequency covariance estimates with noisy and asynchronous data, J. Am. Stat. Assoc., 105 (2010), 1504–1517. https://doi.org/10.1198/jasa.2010.tm10163 doi: 10.1198/jasa.2010.tm10163 |
[20] | J. Jacod, Y. Li, X. Zheng, Statistical properties of microstructure noise, Econometrica, 85 (2017), 1133–1174. https://doi.org/10.3982/ECTA13085 doi: 10.3982/ECTA13085 |
[21] | J. Jacod, Y. Li, X. Zheng, Estimating the integrated volatility when microstructure noise is dependent and observation times are irregular, J. Economet., 208 (2019), 80–100. https://doi.org/10.2139/ssrn.2659615 doi: 10.2139/ssrn.2659615 |
[22] | Z. Liu, Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations, Financ. Stoch., 21 (2017), 427–469. https://doi.org/10.1007/s00780-017-0325-7 doi: 10.1007/s00780-017-0325-7 |
[23] | Z. Liu, X. Kong, B. Jing, Estimating the integrated volatility using high frequency data with zero durations, J. Economet., 204 (2018), 18–32. https://doi.org/10.1016/j.jeconom.2017.12.008 doi: 10.1016/j.jeconom.2017.12.008 |
[24] | M. Wang, N. Xia, Y. Zhou, On the estimation of high-dimensional integrated covariance matrix based on high-frequency data with multiple transactions, preprint paper, 2021. https://doi.org/10.48550/arXiv.1908.08670 |
[25] | R. Da, D. Xiu, When moving-average models meet high-frequency data: uniform inference on volatility, Econometrica, 89 (2021), 2787–2825. https://doi.org/10.3982/ECTA15593 doi: 10.3982/ECTA15593 |
[26] | Y. Z. Wang, J. Zou, Vast volatility matrix estimation for high-frequency financial data, Ann. Stat., 38 (2010), 943–978. https://doi.org/10.1214/09-aos730 doi: 10.1214/09-aos730 |
[27] | M. Tao, Y. Z. Wang, H. Zhou, Optimal sparse volatility matrix estimation for high-dimensional Itô process with measurement error, Ann. Stat., 41 (2013), 1816–1864. https://doi.org/10.1214/13-aos1128 doi: 10.1214/13-aos1128 |
[28] | D. Kim, Y. Z. Wang, J. Zou, Asymptotic theory for large volatility matrix estimation based on high-frequency financial data, Stoch. Proc. Appl., 126 (2016), 3527–3577. https://doi.org/10.1016/j.spa.2016.05.004 doi: 10.1016/j.spa.2016.05.004 |
[29] | Y. He, X. B. Kong, L. Yu, X. S. Zhang, Large-dimensional factor analysis without moment constraints, J. Bus. Exon. Stat., 40 (2022), 302–312. https://doi.org/10.1080/07350015.2020.1811101 doi: 10.1080/07350015.2020.1811101 |
[30] | D. Kim, X. B. Kong, C. X. Li, Y. Z. Wang, Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data, J. Economet., 203 (2018), 69–79. https://doi.org/10.1016/J.JECONOM.2017.09.006 doi: 10.1016/J.JECONOM.2017.09.006 |
[31] | B. Y. Jing, X. B. Kong, Z. Liu, Modeling high-frequency financial data by pure jump processes, Ann. Stat., 40 (2012), 759–784. https://doi.org/10.1214/12-AOS977 doi: 10.1214/12-AOS977 |
[32] | B. Y. Jing, C. X. Li, Z. Liu, On estimating the integrated co-volatility using noisy high-frequency data with jumps, Commun. Stat. Theor. Meth., 43 (2013), 3889–3901. https://doi.org/10.1080/03610926.2011.6399746 doi: 10.1080/03610926.2011.6399746 |
[33] | E. L. Guo, C. X. Li, F. Q. Tang, The convergence rates of a large volatility matrix estimator based on noise, jumps, and asynchronization, Mathematics, 11 (2023), 1425. https://doi.org/10.3390/math11061425 doi: 10.3390/math11061425 |
[34] | Y. Aït-Sahalia, P. Mykland, L. Zhang, Ultra high frequency volatility estimation with dependent microstructure noise, J. Economet., 160 (2011), 190–203. https://doi, org/10.2139/ssrn.686131 doi: 10.2139/ssrn.686131 |
[35] | K. Christensen, S. Kinnebrock, M. Podolskij, Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data, J. Economet., 72 (2010), 885–925. https://doi.org/10.1016/j.jeconom.2010.05.001 doi: 10.1016/j.jeconom.2010.05.001 |
[36] | C. Dai, K. Lu, D. Xiu, Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data, J. Economet., 208 (2019), 43–79. https://doi.org/10.1016/j.jeconom.2018.09.005 doi: 10.1016/j.jeconom.2018.09.005 |
[37] | L. Zhang, Estimating Covariation: Epps effect, microstructure noise, J. Economet., 160 (2010), 33–77. https://doi.org/10.1016/j.jeconom.2010.03.012 doi: 10.1016/j.jeconom.2010.03.012 |
[38] | M. Podolskij, M. Vetter, Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps, Bernoulli, 15 (2009), 634–658. https://doi.org/10.17877/DE290R-7733 doi: 10.17877/DE290R-7733 |
[39] | J. Jacod, M. Podolskij, M. Vetter, Limit theorems for moving averages of discretized processes plus noise, Ann. Stat., 38 (2010), 1478–1545. https://doi.org/10.1214/09-AOS756 doi: 10.1214/09-AOS756 |