Research article

Robust kernel regression function with uncertain scale parameter for high dimensional ergodic data using $ k $-nearest neighbor estimation

  • Received: 09 January 2023 Revised: 17 February 2023 Accepted: 22 February 2023 Published: 03 April 2023
  • MSC : 62H12, 62G07, 62G35, 62G20

  • In this paper, we consider a new method dealing with the problem of estimating the scoring function $ \gamma_a $, with a constant $ a $, in functional space and an unknown scale parameter under a nonparametric robust regression model. Based on the $ k $ Nearest Neighbors ($ k $NN) method, the primary objective is to prove the asymptotic normality aspect in the case of a stationary ergodic process of this estimator. We begin by establishing the almost certain convergence of a conditional distribution estimator. Then, we derive the almost certain convergence (with rate) of the conditional median (scale parameter estimator) and the asymptotic normality of the robust regression function, even when the scale parameter is unknown. Finally, the simulation and real-world data results reveal the consistency and superiority of our theoretical analysis in which the performance of the $ k $NN estimator is comparable to that of the well-known kernel estimator, and it outperforms a nonparametric series (spline) estimator when there are irrelevant regressors.

    Citation: Fatimah Alshahrani, Wahiba Bouabsa, Ibrahim M. Almanjahie, Mohammed Kadi Attouch. Robust kernel regression function with uncertain scale parameter for high dimensional ergodic data using $ k $-nearest neighbor estimation[J]. AIMS Mathematics, 2023, 8(6): 13000-13023. doi: 10.3934/math.2023655

    Related Papers:

  • In this paper, we consider a new method dealing with the problem of estimating the scoring function $ \gamma_a $, with a constant $ a $, in functional space and an unknown scale parameter under a nonparametric robust regression model. Based on the $ k $ Nearest Neighbors ($ k $NN) method, the primary objective is to prove the asymptotic normality aspect in the case of a stationary ergodic process of this estimator. We begin by establishing the almost certain convergence of a conditional distribution estimator. Then, we derive the almost certain convergence (with rate) of the conditional median (scale parameter estimator) and the asymptotic normality of the robust regression function, even when the scale parameter is unknown. Finally, the simulation and real-world data results reveal the consistency and superiority of our theoretical analysis in which the performance of the $ k $NN estimator is comparable to that of the well-known kernel estimator, and it outperforms a nonparametric series (spline) estimator when there are irrelevant regressors.



    加载中


    [1] F. Ferraty, P. Vieu, Nonparametric models for functional data, with applications in regression, time series prediction and curves discrimination, J. Nonparametr. Stat., 16 (2004), 111–125. https://doi.org/10.1080/10485250310001622686 doi: 10.1080/10485250310001622686
    [2] F. Ferraty, P. Vieu, Nonparametric functional data analysis theory and practice, New York: Springer, 2006.
    [3] G. Boente, R. Fraiman, Robust nonparametric regression estimation, J. Multivariate Anal., 29 (1989), 180–198. https://doi.org/10.1016/0047-259X(89)90023-7 doi: 10.1016/0047-259X(89)90023-7
    [4] P. J. Huber, Robust estimation of a location parameter: annals mathematics statistics, IEEE T. Signal Proces., 56 (1964), 2356–2356.
    [5] G. Collomb, W. Hardle, Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations, Stoch. Proc. Appl., 23 (1986), 77–89. https://doi.org/10.1016/0304-4149(86)90017-7 doi: 10.1016/0304-4149(86)90017-7
    [6] N. Laïb, E. Ould-Said, A robust nonparametric estimation of the autoregression function under ergodic hypothesis, Canad. J. Stat., 28 (2000), 817–828. https://doi.org/10.2307/3315918 doi: 10.2307/3315918
    [7] F. Ruggeri, Nonparametric bayesian robustness, Chil. J. Stat., 1 (2010), 51–68.
    [8] N. Azzedine, A. Laksaci, E. Ould-Said, On the robust nonparametric regression estimation for functional regressor, Stat. Probabil. Lett., 78 (2008), 3216–3221. https://doi.org/10.1016/j.spl.2008.06.018 doi: 10.1016/j.spl.2008.06.018
    [9] C. Crambes, L. Delsol, A. Laksaci, Robust nonparametric estimation for functional data, J. Nonparametr. Stat., 20 (2008), 573–598. https://doi.org/10.1080/10485250802331524 doi: 10.1080/10485250802331524
    [10] G. Boente, A. Vahnovan, Strong convergence of robust equivariant nonparametric functional regression estimators, Stat. Probabil. Lett., 100 (2015), 1–11. https://doi.org/10.1016/j.spl.2015.01.028 doi: 10.1016/j.spl.2015.01.028
    [11] N. Laïb, D. Louani, Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties, J. Multivariate Anal., 101 (2010), 2266–2281. https://doi.org/10.1016/j.jmva.2010.05.010 doi: 10.1016/j.jmva.2010.05.010
    [12] N. Laïb, D. Louani, Rates of strong consistencies of the regression function estimator for functional stationary ergodic data, J. Stat. Plann. Infer., 141 (2011), 359–372. https://doi.org/10.1016/j.jspi.2010.06.009 doi: 10.1016/j.jspi.2010.06.009
    [13] A. Gheriballah, A. Laksaci, S. Sekkal, Nonparametric Mregression for functional ergodic data, Stat. Probabil. Lett., 83 (2013), 902–908. https://doi.org/10.1016/j.spl.2012.12.004 doi: 10.1016/j.spl.2012.12.004
    [14] F. Benziadi, A. Gheriballah, A. Laksaci, Asymptotic normality of kernel estimator of $ \psi $-regression functional ergodic data, New Trends Math. Sci., 1 (2016), 268–282.
    [15] F. Benziadi, A. Laksaci, F. Tebboune, Recursive kernel estimate of the conditional quantile for functional ergodic data, Commun. Stat. Theor. M., 45 (2016), 3097–3113. https://doi.org/10.1080/03610926.2014.901364 doi: 10.1080/03610926.2014.901364
    [16] D. Bosq, Linear processes in function spaces: theory and applications, Berlin: Springer, 2000.
    [17] J. O. Ramsay, B. W. Silverman, Applied functional data analysis: methods and case studies, New York: Springer, 2002.
    [18] G. Geenens, Curse of dimensionality and related issues in nonparametric functional regression, Stat. Surv., 5 (2011), 30–43. https://doi.org/10.1214/09-SS049 doi: 10.1214/09-SS049
    [19] I. M. Almanjahie, M. K. Attouch, O. Fetitah, H. Louhab, Robust kernel regression estimator of the scale parameter for functional ergodic data with applications, Chil. J. Stat., 11 (2020), 73–93.
    [20] I. M. Almanjahie, K. Aissiri, A. Laksaci, Z. Chiker Elmezouar, The $ k $ nearest neighbors smoothing of the relative-error regression with functional regressor, Commun. Stat. Theor. M., 51 (2020), 4196–4209. https://doi.org/10.1080/03610926.2020.1811870 doi: 10.1080/03610926.2020.1811870
    [21] W. Bouabsa, Nonparametric relative error estimation via functional regressor by the $ k $ Nearest Neighbors smoothing under truncation random data, AAM, 16 (2021), 97–116.
    [22] F. Burba, F. Ferraty, P. Vieu, $k$-Nearest neighbor method in functional nonparametric regression, J. Nonparametr. Stat., 21 (2009), 453–469. https://doi.org/10.1080/10485250802668909 doi: 10.1080/10485250802668909
    [23] M. Attouch, W. Bouabsa, The $k$-nearest neighbors estimation of the conditional mode for functional data, Rev. Roumaine Math. Pures Appl., 58 (2013), 393–415.
    [24] M. Attouch, W. Bouabsa, Z. Chiker el mozoaur, The $k$-nearest neighbors estimation of the conditional mode for functional data under dependency, Int. J. Stat. Econ., 19 (2018), 48–60.
    [25] M. Attouch, F. Belabed, The $ k $ nearest neighbors estimation of the conditional hazard function for functional data, REVSTAT Stat. J., 12 (2014), 273–297. https://doi.org/10.57805/revstat.v12i3.154 doi: 10.57805/revstat.v12i3.154
    [26] L. Z. Kara, A. Laksaci, M. Rachdi, P. Vieu, Data-driven kNN estimation in nonparametric functional data analysis, J. Multivariate Anal., 153 (2017), 176–188. https://doi.org/10.1016/j.jmva.2016.09.016 doi: 10.1016/j.jmva.2016.09.016
    [27] I. M. Almanjahie, O. Fetitah, M. Attouch, H. Louhab, Asymptotic normality of the robust equivariant estimator for functional nonparametric models, Math. Probl. Eng., 2022 (2022), 8989037. https://doi.org/10.1155/2022/8989037 doi: 10.1155/2022/8989037
    [28] F. Ferraty, A. Mas, P. Vieu, Nonparametric regression on functional data: inference and practical aspect, Aust. New Zeal. J. Stat., 49 (2007), 267–286. https://doi.org/10.1111/j.1467-842X.2007.00480.x doi: 10.1111/j.1467-842X.2007.00480.x
    [29] P. Gaenssler, J. Strobel, W. Stute, On central limit theorems for martingale triangular arrays, Acta Math. Acad. Sci. H., 31 (1978), 205–216.
    [30] F. Ferraty, P. Vieu, Additive prediction and boosting for functional data, Comput. Stat. Data Anal., 53 (2009), 1400–1413. https://doi.org/10.1016/j.csda.2008.11.023 doi: 10.1016/j.csda.2008.11.023
    [31] P. Hall, C. Heyde, Martingale limit theory and its application, New York: Academic Press, 1980.
    [32] M. Attouch, T. Benchikh, Asymptotic distribution of robust k-nearest neighbour estimator for functional nonparametric models, Mat. Vestn., 64 (2012), 275–285.
    [33] C. Azevedo, P. E. Oliveira, On the kernel estimation of a multivariate distribution function under positive dependence, Chil. J. Stat., 2 (2011), 99–113.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1054) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog