In this article some salient characteristics of Jordan ideals of MA-semirings are discussed. We prove some results for derivations of MA-semirings satisfying different identities on their Jordan ideals and investigate commuting conditions through these ideals.
Citation: Liaqat Ali, Muhammad Aslam, Ghulam Farid, S. Abdel-Khalek. On differential identities of Jordan ideals of semirings[J]. AIMS Mathematics, 2021, 6(7): 6833-6844. doi: 10.3934/math.2021400
In this article some salient characteristics of Jordan ideals of MA-semirings are discussed. We prove some results for derivations of MA-semirings satisfying different identities on their Jordan ideals and investigate commuting conditions through these ideals.
[1] | K. Glazek, A guide to the literature on semirings and their applications in mathematics and information sciences with complete bibliography, Springer, 2002. |
[2] | P. Kostolányi, F. Mišún, Alternating weighted automata over commutative semirings, Theor. Comput. Sci., 740 (2018), 1–27. doi: 10.1016/j.tcs.2018.05.003 |
[3] | U. Hebisch, H. J. Weinert, Semirings: Algebraic theory and applications in computer science, World Scientific Publishing Company, 1998. |
[4] | V. N. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications, Dordrecht: Kluwer Acad. Publ., 1997. |
[5] | V. P. Maslov, S. N. Samborskii, Idempotent analysis, RI: American Mathematical Society, 1992. |
[6] | M. A. Javed, M. Aslam, M. Hussain, On condition (A2) of Bandlet and Petrich for inverse semiqrings, Int. Math. Forum, 7 (2012), 2903–2914. |
[7] | S. Shafiq, M. Aslam, M. A. Javed, On centralizer of semiprime inverse semiring, Discuss. Math. Gen. Algebra Appl., 36 (2016), 71–84. doi: 10.7151/dmgaa.1252 |
[8] | Y. A. Khan, W. A. Dudek, Stronger Lie derivations on MA-semirings, Afr. Mat., 31 (2020), 891–901. doi: 10.1007/s13370-020-00768-3 |
[9] | L. Ali, Y. A. Khan, A. A. Mousa, S. A. Khalek, G. Farid, Some differential identities of MA-semirings with involution, AIMS Mathematics, 6 (2020), 2304–2314. |
[10] | L. Ali, M. Aslam, M. I. Qureshi, Y. A. Khan, S. Ur Rehman, G. Farid, Commutativity of MA-semirings with involution through generalized derivations, J. Math., 2020 (2020), 8867247. |
[11] | L. Ali, M. Aslam, Y. A. Khan, On Jordan ideals of inverse semirings with involution, Indian J. Sci. Technol., 13 (2020), 430–438. doi: 10.17485/ijst/2020/v13i04/149311 |
[12] | L. Ali, M. Aslam, Y. A. Khan, G. Farid, On generalized derivations of semirings with involution, J. Mech. Continua Math. Sci., 15 (2020), 138–152. |
[13] | R. Awtar, Lie and Jordan structure in prime rings with derivations, P. Am. Math. Soc., 41 (1973), 67–74. doi: 10.1090/S0002-9939-1973-0318233-5 |
[14] | H. E. Bell, W. S. Martindale, Centralizing mappings of semiprime rings, Can. Math. Bull., 30 (1987), 92–101. doi: 10.4153/CMB-1987-014-x |
[15] | J. Berger, I. N. Herstein, J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259–267. doi: 10.1016/0021-8693(81)90120-4 |
[16] | B. E. Johnson, Continuity of derivations on commutative Banach algebras, Am. J. Math., 91 (1969), 1–10. doi: 10.2307/2373262 |
[17] | D. A. Jordan, On the ideals of a Lie algebra of derivations, J. Lond. Math. Soc., 2 (1986), 33–39. |
[18] | L. Oukhtite, A. Mamouni, Derivations satisfying certain algebraic identities on Jordan ideals, Arab. J. Math., 1 (2012), 341–346. doi: 10.1007/s40065-012-0039-9 |
[19] | E. C. Posner, Derivations in prime rings, P. Am. Math. Soc., 8 (1957), 1093–1100. |
[20] | S. Shafiq, M. Aslam, Jordan and Lie ideals of inverse semirings, Asian-Eur J. Math., 2021 (2021), 2150181. |
[21] | L. Oukhtite, A. Mamouni, C. Beddani, Derivations and Jordan ideals in prim rings, J. Taibah Uni. Sci., 8 (2014), 364–369. doi: 10.1016/j.jtusci.2014.04.004 |
[22] | L. Ali, Y. A. Khan, M. Aslam, On Posner's second theorem for semirings with involution, JDMSC, 23 (2020), 1195–1202. |
[23] | I. N. Herstein, On the Lie and Jordan rings of simple associative ring, Am. J. Math., 77 (1955), 279–285. doi: 10.2307/2372531 |