We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results.
Citation: Shuqin Zhang, Jie Wang, Lei Hu. On definition of solution of initial value problem for fractional differential equation of variable order[J]. AIMS Mathematics, 2021, 6(7): 6845-6867. doi: 10.3934/math.2021401
We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results.
[1] | D. Valério, J. Sá da Costa, Variable-order fractional derivative and their numerical approximations Signal Process., 91 (2011), 470–483. |
[2] | D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci., 35 (2016), 69–87. doi: 10.1016/j.cnsns.2015.10.027 |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[4] | K. B. Oldham, J. Spanier, The fractional calculus: Integrations and differentiations of arbitrary order, New York: Academic Press, 1974. |
[5] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[6] | K. Diethelm, The analysis of fractional differential equations, Springer Science & Business Media, 2010. |
[7] | A. Atangana, Fractional operators with constant and variable order with application to geo-hydrology, New York: Academic Press, 2017. |
[8] | A. Razminia, A. F. Dizaji, V. J. Majd, Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Model., 55 (2012), 1106–1117. doi: 10.1016/j.mcm.2011.09.034 |
[9] | A. A. Alikhanov, Boundary value problems for the equation of the variable order in differential and difference settings, Appl. Math. Comput., 219 (2012), 3938–3946. |
[10] | A. Babaei, H. Jafari, S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, J. Comput. Appl. Math., 377 (2020), 112908. doi: 10.1016/j.cam.2020.112908 |
[11] | C. J. Zúniga-Aguilar, H. M. Romero-Ugalde, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, Solving fractional differential equations of variable-order involving operator with Mittag-Leffler kernel using artificial neural networks, Chaos Soliton. Fract., 103 (2017), 382–403. doi: 10.1016/j.chaos.2017.06.030 |
[12] | C. M. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), 1740–1760. doi: 10.1137/090771715 |
[13] | D. Sierociuk, W. Malesza, M. Macias, Derivation, interpretation, and analog modelling of fractional variable order derivative definition, Appl. Math. Model., 39 (2015), 3876–3888. doi: 10.1016/j.apm.2014.12.009 |
[14] | H. Hassani, J. A. Tenreiro Machado, E. Naraghirad, An efficient numerical technique for variable order time fractional nonlinear Klein-Gordon equation, Appl. Numer. Math., 154 (2020), 260–272. doi: 10.1016/j.apnum.2020.04.001 |
[15] | H. Hassani, Z. Avazzadeh, J. A. Tenreiro Machado, Numerical approach for solving variable order space-time fractional telegraph equation using transcendental Bernstein series, Eng. Comput., 36 (2020), 867–878. doi: 10.1007/s00366-019-00736-x |
[16] | J. Vanterler da C. Sousa, E. Capelas de Oliverira, Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation, Comput. Appl. Math., 37 (2018), 5375–5394. doi: 10.1007/s40314-018-0639-x |
[17] | J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica. A, 494 (2018), 52–57. doi: 10.1016/j.physa.2017.12.007 |
[18] | J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation, Appl. Math. Lett., 76 (2018), 221–226. doi: 10.1016/j.aml.2017.08.020 |
[19] | M. Hajipour, A. Jajarmi, D. Baleanu, H. Sun, On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci., 69 (2019), 119–133. doi: 10.1016/j.cnsns.2018.09.004 |
[20] | R. M. Ganji, H. Jafari, D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 130 (2020), 109405. doi: 10.1016/j.chaos.2019.109405 |
[21] | S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213–236. doi: 10.1007/BF01911126 |
[22] | S. G. Samko, B. Boss, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 1 (1993), 277–300. doi: 10.1080/10652469308819027 |
[23] | S. Zhang, S. Sun, L. Hu, Approximate solutions to initial value problem for differential equation of variable order, JFCA, 9 (2018), 93–112. |
[24] | S. Zhang, The uniqueness result of solutions to initial value problem of differential equations of variable-order, RACSAM Rev. R. Acad. A, 112 (2018), 407–423. |
[25] | W. Malesza, M. Macias, D. Sierociuk, Analyitical solution of fractional variable order differential equations, J. Comput. Appl. Math., 348 (2019), 214–236. doi: 10.1016/j.cam.2018.08.035 |
[26] | Y. Kian, E. Soccorsi, M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order, Ann. Henri Poincaré, 19 (2018), 3855–3881. doi: 10.1007/s00023-018-0734-y |
[27] | J. Jiang, H. Chen, J. L. G. Guirao, D. Cao, Existence of the solution and stability for a class of variable fractional order differential systems, Chaos Soliton. Fract., 128 (2019), 269–274. doi: 10.1016/j.chaos.2019.07.052 |
[28] | R. Almeida, D. Tavares, D. Torres, The variable-order fractional calculus of variations, Springer International Publishing, 2019. |
[29] | H. G. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22 (2019), 27–59. doi: 10.1515/fca-2019-0003 |
[30] | X. Li, B. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387–393. doi: 10.1016/j.cam.2016.08.010 |
[31] | X. Li, B. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108–113. doi: 10.1016/j.aml.2014.12.012 |
[32] | J. Deng, Z. Deng, Existence of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett., 32 (2014), 6–12. doi: 10.1016/j.aml.2014.02.001 |
[33] | X. Dong, Z. Bai, S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl., 5 (2017), 1–15. |
[34] | Z. Bai, S. Zhang, S. Sun, Y. Chun, Monotone iterative method for a class of fractional differential equations, Electron. J. Differ. Eq., 2016 (2016), 1–8. doi: 10.1186/s13662-015-0739-5 |
[35] | T. T. Hartley, C. F. Lorenzo, Fractional system identification: An approach using continuous order distributions, NASA Glenn Research Center, 1999. |