Lévy-type behaviors are widely involved in anomalous thermal transport, yet generic investigations based on the mathematical descriptions of the confined Lévy flights are still lacking. In the frameworks of classical irreversible thermodynamics and Boltzmann-Gibbs statistical mechanics, the Lévy-Fokker-Planck equation is connected to near-equilibrium thermal transport. In this work, we show that thermal transport dominated by the confined Lévy flights will be paired with an anomaly, namely that the local effective thermal conductivity is nonlocal. It is demonstrated that the near-equilibrium assumption is not unconditionally valid, which relies on several thermodynamic restrictions expressed by the probability density function (PDF). It is illustrated that the Lévy-Fokker-Planck equation based on the Caputo operator will give rise to two signatures of anomalous thermal transport, the power-law size-dependence of the global effective thermal conductivity and nonlinear boundary asymptotics of the stationary temperature profile. These anomalies are interrelated with each other, and their quantitative relations can be considered as criteria for Lévy-based thermal transport.
Citation: Shu-Nan Li, Bing-Yang Cao. Anomalies of Lévy-based thermal transport from the Lévy-Fokker-Planck equation[J]. AIMS Mathematics, 2021, 6(7): 6868-6881. doi: 10.3934/math.2021402
Lévy-type behaviors are widely involved in anomalous thermal transport, yet generic investigations based on the mathematical descriptions of the confined Lévy flights are still lacking. In the frameworks of classical irreversible thermodynamics and Boltzmann-Gibbs statistical mechanics, the Lévy-Fokker-Planck equation is connected to near-equilibrium thermal transport. In this work, we show that thermal transport dominated by the confined Lévy flights will be paired with an anomaly, namely that the local effective thermal conductivity is nonlocal. It is demonstrated that the near-equilibrium assumption is not unconditionally valid, which relies on several thermodynamic restrictions expressed by the probability density function (PDF). It is illustrated that the Lévy-Fokker-Planck equation based on the Caputo operator will give rise to two signatures of anomalous thermal transport, the power-law size-dependence of the global effective thermal conductivity and nonlinear boundary asymptotics of the stationary temperature profile. These anomalies are interrelated with each other, and their quantitative relations can be considered as criteria for Lévy-based thermal transport.
[1] | G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461-580. |
[2] | S. Lepri, R. Livi, A. Politi, Thermal conduction in classical low-dimensional lattices, Phys. Rep., 377 (2003), 1-80. doi: 10.1016/S0370-1573(02)00558-6 |
[3] | A. Dhar, Heat transport in low-dimensional systems, Adv. Phys., 57 (2008), 457-537. doi: 10.1080/00018730802538522 |
[4] | S. Lepri, R. Livi, A. Politi, Thermal transport in low dimensions, Lecture Notes in Physics Vol. 921, Springer, 2016. |
[5] | M. Upadhyaya, Z. Aksamija, Nondiffusive lattice thermal transport in Si-Ge alloy nanowires, Phys. Rev. B, 94 (2016), 174303. doi: 10.1103/PhysRevB.94.174303 |
[6] | B. Vermeersch, J. Carrete, N. Mingo, A. Shakour, Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations, Phys. Rev. B, 91 (2015), 085202. doi: 10.1103/PhysRevB.91.085202 |
[7] | J. Wang, S. V. Dmitriev, D. Xiong, Thermal transport in long-range interacting Fermi-Pasta-Ulam chains, Phys. Rev. Research, 2 (2020), 013179. doi: 10.1103/PhysRevResearch.2.013179 |
[8] | J. Wang, T. X. Liu, X. Z. Luo, X. L. Xu, N. Li, Anomalous energy diffusion in two-dimensional nonlinear lattices, Phys. Rev. E, 101 (2020), 012126. doi: 10.1103/PhysRevE.101.012126 |
[9] | S. N. Li, B. Y. Cao, Fractional Boltzmann transport equation for anomalous heat transport and divergent thermal conductivity, Int. J. Heat Mass Transfer, 137 (2019), 84-89. doi: 10.1016/j.ijheatmasstransfer.2019.03.120 |
[10] | S. N. Li, B. Y. Cao, Fractional-order heat conduction models from generalized Boltzmann transport equation, Philos. Trans. R. Soc. A, 378 (2020), 20190280. doi: 10.1098/rsta.2019.0280 |
[11] | S. N. Li, B. Y. Cao, Anomalous heat diffusion from fractional Fokker-Planck equation, Appl. Math. Lett., 99 (2020), 105992. doi: 10.1016/j.aml.2019.07.023 |
[12] | S. Denisov, J. Klafter, M. Urbakh, Dynamical heat channels, Phys. Rev. Lett., 91 (2003), 194301. |
[13] | C. Bernardin, P. Gonçalves, M. Jara, M. Sasada, M. Simon, From normal diffusion to superdiffusion of energy in the evanescent flip noise limit, J. Stat. Phys., 159 (2015), 1327-1368. doi: 10.1007/s10955-015-1235-8 |
[14] | G. Basile, S. Olla, H. Spohn, Energy transport in stochastically perturbed lattice dynamics, Arch. Rational Mech. Anal., 195 (2010), 171-203. doi: 10.1007/s00205-008-0205-6 |
[15] | Priyanka, A. Kundu, A. Dhar, A. Kundu, Anomalous heat equation in a system connected to thermal reservoirs, Phys. Rev. E, 98 (2018), 042105. doi: 10.1103/PhysRevE.98.042105 |
[16] | T. Godoy, A semilnear singular problem for the fractional laplacian, AIMS Mathematics, 3 (2018), 464-484. doi: 10.3934/Math.2018.4.464 |
[17] | S. Mohammadian, Y. Mahmoudi, F. D. Saei, Solution of fractional telegraph equation with Riesz space-fractional derivative, AIMS Mathematics, 4 (2019), 1664-1683. doi: 10.3934/math.2019.6.1664 |
[18] | G. Basile, A. Bovier, Convergence of a kinetic equation to a fractional diffusion equation, Markov Proc. Relat. Fields, 16 (2010), 15-44. |
[19] | G. Basile, From a kinetic equation to a diffusion under an anomalous scaling, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 1301-1322. |
[20] | S. De Moor, Fractional diffusion limit for a stochastic kinetic equation, Stoch. Proc. Appl., 124 (2010), 1335-1367. |
[21] | C. Bernardin, P. Gonçalves, M. Jara, 3/4-Fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise, Arch. Ration. Mech. Anal., 220 (2016), 505-542. doi: 10.1007/s00205-015-0936-0 |
[22] | S. N. Li, B. Y. Cao, Beyond phonon hydrodynamics: Nonlocal phonon heat transport from spatial fractional-order Boltzmann transport equation, AIP Adv., 10 (2020), 105004. doi: 10.1063/5.0021058 |
[23] | S. I. Denisov, W. Horsthemke, P. Hänggi, Steady-state Lévy flights in a confined domain, Phys. Rev. E, 77 (2008), 061112. doi: 10.1103/PhysRevE.77.061112 |
[24] | B. Dybiec, E. Gudowska-Nowak, P. Hänggi, Lévy-Brownian motion on finite intervals: Mean-first passage time analysis, Phys. Rev. E, 73 (2006), 046104. doi: 10.1103/PhysRevE.73.046104 |
[25] | B. Dybiec, E. Gudowska-Nowak, E. Barkai, A. A. Dubkov, Lévy flights versus Lévy walks in bounded domains, Phys. Rev. E, 95 (2017), 052102. |
[26] | D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible thermodynamics, 2 Eds., Berlin: Springer, 2010. |
[27] | H. Risken, The Fokker-Planck equation, Berlin: Springer, 1989. |
[28] | S. Mukhopadhyay, D. S. Parker, B. C. Sales, A. A. Puretzky, M. A. McGuire, L. Lindsay, Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4, Science, 360 (2018), 1455-1458. doi: 10.1126/science.aar8072 |
[29] | Y. Xia, K. Pal, J. He, V. Ozoliņš, C. Wolverton, Particlelike phonon propagation dominates ultralow lattice thermal conductivity in crystalline Tl3VSe4, Phys. Rev. Lett., 124 (2020), 065901. doi: 10.1103/PhysRevLett.124.065901 |
[30] | W. Li, N. Mingo, Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the fat avoided-crossing filler modes, Phys. Rev. B, 91 (2015), 144304. doi: 10.1103/PhysRevB.91.144304 |
[31] | A. M. A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electron. J. Theor. Phys., 3 (2006), 81-95. |