Research article

Statistical property analysis for a stochastic chemostat model with degenerate diffusion

  • Received: 19 August 2022 Revised: 11 October 2022 Accepted: 13 October 2022 Published: 24 October 2022
  • MSC : 92B05, 60H10

  • By considering the fact that the growth of microorganisms in a chemostat is subject to white noise, we construct a stochastic chemostat model with degenerate diffusion by using a discrete Markov chain. By solving the corresponding Fokker-Planck equation, we derive the explicit expression of the stationary joint probability density, which peaks near the deterministic equilibrium. Next, we simulate the the marginal probability density functions for different noise intensities and further discuss the relationship of the marginal probability density function and noise intensities. For the statistical properties of the stochastic model, we mainly investigate the effect of white noise on the variance and skewness of the concentration of microorganisms.

    Citation: Jingen Yang, Zhong Zhao, Xinyu Song. Statistical property analysis for a stochastic chemostat model with degenerate diffusion[J]. AIMS Mathematics, 2023, 8(1): 1757-1769. doi: 10.3934/math.2023090

    Related Papers:

  • By considering the fact that the growth of microorganisms in a chemostat is subject to white noise, we construct a stochastic chemostat model with degenerate diffusion by using a discrete Markov chain. By solving the corresponding Fokker-Planck equation, we derive the explicit expression of the stationary joint probability density, which peaks near the deterministic equilibrium. Next, we simulate the the marginal probability density functions for different noise intensities and further discuss the relationship of the marginal probability density function and noise intensities. For the statistical properties of the stochastic model, we mainly investigate the effect of white noise on the variance and skewness of the concentration of microorganisms.



    加载中


    [1] H. L. Smith, P. Waltman, The theory of the chemostat: Dynamics of microbial competition, Cambridge: Cambridge University Press, 1995.
    [2] P. Fergola, C. Tenneriello, Z. Ma, X. Wen, Effects of toxicants on chemostat models, Cybernet. Syst., 94 (1994), 887–894.
    [3] M. Nelson, H. Sidhu, Reducing the emission of pollutants in food processing wastewaters, Chem. Eng. Process., 46 (2007), 429–436. https://doi.org/10.1016/j.cep.2006.04.012 doi: 10.1016/j.cep.2006.04.012
    [4] D. H. Nguyen, N. Nguyen, G. Yin, General nonlinear stochastic systems motivated by chemostat models: Complete characterization of long-time behavior, optimal controls, and applications to wastewater treatment, Stoch. Proc. Appl., 130 (2017), 4608–4642. https://doi.org/10.1016/j.spa.2020.01.010 doi: 10.1016/j.spa.2020.01.010
    [5] Y. Sabbar, A. Din, D. Kiouach, Predicting potential scenarios for wastewater treatment under unstable physical and chemical laboratory conditions: A mathematical study, Results Phys., 39 (2022), 105717. https://doi.org/10.1016/j.rinp.2022.105717 doi: 10.1016/j.rinp.2022.105717
    [6] Y. Sabbar, A. Zeb, D. Kiouach, N. Gul, T. Sitthiwirattham, D. Baleanu, et al., Dynamical bifurcation of a sewage treatment model with general higher-order perturbation, Results Phys., 39 (2022), 105799. https://doi.org/10.1016/j.rinp.2022.105799 doi: 10.1016/j.rinp.2022.105799
    [7] S. B. Hsu, S. P. Hubbell, P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366–383. https://doi.org/10.1137/0132030 doi: 10.1137/0132030
    [8] T. C. Gard, A new Liapunov function for the simple chemostat, Nonlinear Anal-Real., 3 (2002), 211–226. https://doi.org/10.1016/S1468-1218(01)00023-2 doi: 10.1016/S1468-1218(01)00023-2
    [9] Z. Zhong, L. Chen, X. Song, Extinction and permanence of chemostat model with pulsed input in a polluted environment, Commu. Nonlinear Sci., 14 (2009), 1737–1745. https://doi.org/10.1016/j.cnsns.2008.01.009 doi: 10.1016/j.cnsns.2008.01.009
    [10] J. Jiao, X. Yang, L. Chen, S. Cai, Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input, Chaos Soliton. Fract., 42 (2009), 2280–2287. https://doi.org/10.1016/j.chaos.2009.03.132 doi: 10.1016/j.chaos.2009.03.132
    [11] J. Shi, Y. Wu, X. Zou, Coexistence of competing species for intermediate dispersal rates in a reaction Cdiffusion chemostat model, J. Dyn. Differ. Equ., 32 (2020), 1085–1112. https://doi.org/10.1007/s10884-019-09763-0 doi: 10.1007/s10884-019-09763-0
    [12] E. O. Alzahrani, M. M. El-Dessoky, P. Dogra, Global dynamics of a cell quota-based model of light-dependent algae growth in a chemostat, Commu. Nonlinear Sci., 90 (2020), 105295. https://doi.org/10.1016/j.cnsns.2020.105295 doi: 10.1016/j.cnsns.2020.105295
    [13] R. Baratti, J. Alvarez, S. Tronci, M. Grosso, A. Schaum, Characterization with Fokker-Planck theory of the nonlinear stochastic dynamics of a class of two-state continuous bioreactors, J. Process Contr., 102 (2021), 66–84. https://doi.org/10.1016/j.jprocont.2021.04.004 doi: 10.1016/j.jprocont.2021.04.004
    [14] Y. Lu, Z. Fang, C. Gao, D. Dochain, Noise-to-state exponentially stabilizing (state, input)-disturbed CSTRs with non-vanishing noise, Automatica, 142 (2022), 110387. https://doi.org/10.1016/j.automatica.2022.110387 doi: 10.1016/j.automatica.2022.110387
    [15] A. Schaum, S. Tronci, R. Baratti, J. Alvarez, On the dynamics and robustness of the chemostat with multiplicative noise, IFAC, 54 (2021), 342–347. https://doi.org/10.1016/j.ifacol.2021.08.265 doi: 10.1016/j.ifacol.2021.08.265
    [16] S. B. Hsu, T. K. Luo, P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor, J. Math. Biol., 34 (1995), 225–238. https://doi.org/10.1007/BF00178774 doi: 10.1007/BF00178774
    [17] G. S. K. Wolkowicz, H. Xia, S. Ruan, Competition in the chemostat: A distributed delay model and its global asymptotic behavior, SIAM J. Appl. Math., 57 (1997), 1281–1310. https://doi.org/10.1137/S0036139995289842 doi: 10.1137/S0036139995289842
    [18] P. D. Leenheer, B. Li, H. L. Smith, Competition in the chemostat: Some remarks, Can. Appl. Math. Quart., 11 (2003), 229–248.
    [19] S. Yuan, T. Zhang, Dynamics of a plasmid chemostat model with periodic nutrient input and delayed nutrient recycling, Nonlinear Anal.-Real., 13 (2012), 2104–2119. https://doi.org/10.1016/j.nonrwa.2012.01.006 doi: 10.1016/j.nonrwa.2012.01.006
    [20] T. Bayen, J Harmand, M. Sebbah, Time-optimal control of concentrations changes in the chemostat with one single species, Appl. Math. Model., 50 (2017), 257–278. https://doi.org/10.1016/j.apm.2017.05.037 doi: 10.1016/j.apm.2017.05.037
    [21] T. Mtar, R. Fekih-Salem, T. Sari, Interspecific density-dependent model of predator-prey relationship in the chemostat, Int. J. Biomath., 14 (2021), 1–22. https://doi.org/10.1142/S1793524520500862 doi: 10.1142/S1793524520500862
    [22] G. Stephanopoulos, R. Aris, A. G. Fredrickson, A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor, Math. Biosci., 45 (1979), 99–135. https://doi.org/10.1016/0025-5564(79)90098-1 doi: 10.1016/0025-5564(79)90098-1
    [23] C. Xu, S. Yuan, T. Zhang, Asymptotic behavior of a chemostat model with stochastic perturbation on the dilution rate, Abstr. Appl. Anal., 2013 (2013), 423154. https://doi.org/10.1155/2013/423154 doi: 10.1155/2013/423154
    [24] D. Zhao, S. Yuan, Critical result on the break-even concentration in a single-species stochastic chemostat model, J. Math. Anal. Appl., 434 (2016), 1336–1345. https://doi.org/10.1016/j.jmaa.2015.09.070 doi: 10.1016/j.jmaa.2015.09.070
    [25] L. Wang, D. Jiang, Asymptotic properties of a stochastic chemostat including species death rate, Math. Meth. Appl. Sci., 41 (2018), 438–456. https://doi.org/10.1002/mma.4624 doi: 10.1002/mma.4624
    [26] L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017
    [27] D. Zhao, S. Yuan, Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat, Appl. Math. Comput., 339 (2018), 199–205. https://doi.org/10.1016/j.amc.2018.07.020 doi: 10.1016/j.amc.2018.07.020
    [28] C. Xu, S. Yuan, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, Math. Biosci., 280 (2016), 1–9. https://doi.org/10.1016/j.mbs.2016.07.008 doi: 10.1016/j.mbs.2016.07.008
    [29] C. Xu, S. Yuan, T. Zhang, Competitive exclusion in a general multi-species chemostat model with stochastic perturbations, Bull. Math. Biol., 83 (2021), 4. https://doi.org/10.1007/s11538-020-00843-7 doi: 10.1007/s11538-020-00843-7
    [30] C. Xu, S. Yuan, T. Zhang, Average break-even concentration in a simple chemostat model with telegraph noise, Nonlinear Anal.-Hybri., 29 (2018), 373–382. https://doi.org/10.1016/j.nahs.2018.03.007 doi: 10.1016/j.nahs.2018.03.007
    [31] M. Gao, D. Jiang, Ergodic stationary distribution of a stochastic chemostat model with regime switching, Phys. A, 524 (2019), 491–502. https://doi.org/10.1016/j.physa.2019.04.070 doi: 10.1016/j.physa.2019.04.070
    [32] T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz, A. Rapaport, Modeling and analysis of random and stochastic input flows in the chemostat model, Discrete Cont. Dyn.-B, 24 (2019), 3591–3614. https://doi.org/10.3934/dcdsb.2018280 doi: 10.3934/dcdsb.2018280
    [33] X. Zhang, R. Yuan, Pullback attractor for random chemostat model driven by colored noise, Appl. Math. Lett., 112 (2021), 106833. https://doi.org/10.1016/j.aml.2020.106833 doi: 10.1016/j.aml.2020.106833
    [34] M. Gao, D. Jiang, T. Hayat, The threshold of a chemostat model with single-species growth on two nutrients under telegraph noise, Commu. Nonlinear Sci., 75 (2019), 160–173. https://doi.org/10.1016/j.cnsns.2019.03.027 doi: 10.1016/j.cnsns.2019.03.027
    [35] Z, Cao, X. Wen, H. Su, L. Liu, Stationary distribution of a stochastic chemostat model with Beddington-DeAngelis functional response, Phys. A, 554 (2020), 124634. https://doi.org/10.1016/j.physa.2020.124634 doi: 10.1016/j.physa.2020.124634
    [36] X. Zhang, R. Yuan, Sufficient and necessary conditions for stochastic near-optimal controls: A stochastic chemostat model with non-zero cost inhibiting, Appl. Math. Model., 78 (2020), 601–626. https://doi.org/10.1016/j.apm.2019.10.013 doi: 10.1016/j.apm.2019.10.013
    [37] R. Durrett. Stochastic calculus, Boston: CRC Press, 1996.
    [38] N. Ikeda, S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619–633.
    [39] J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci., 152 (1998), 13–27. https://doi.org/10.1016/S0025-5564(98)10020-2 doi: 10.1016/S0025-5564(98)10020-2
    [40] L. Arnold, Random dynamical system, New York: Springer, 1998.
    [41] G. Cai, Y. Lin, Probabilistic structural synamics: Advanced theory and applications, New York: McGraw-Hill, 2004.
    [42] C. Xu, S. Yuan, An analogue of break-even concentration in an simple stochastic chemostat model, Appl. Math. Lett., 48 (2015), 62–68. https://doi.org/10.1016/j.aml.2015.03.012 doi: 10.1016/j.aml.2015.03.012
    [43] Q. Liu, Q. Chen, Density function analysis for a stochastic SEIS epidemic model with non-degenerate diffusion, Discrete Cont. Dyn.-B, 26 (2021), 4359–4373. https://doi.org/10.3934/dcdsb.2020291 doi: 10.3934/dcdsb.2020291
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1247) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog