This paper proposes an analytical solution for a fractional fuzzy acoustic wave equation. Under the fractional Caputo-Fabrizio operator, we use the Laplace transformation and the iterative technique. In the present study, the achieved series type result was determined, and we approximated the estimated values of the suggested models. All three problems used two various fractional-order simulations between 0 and 1 to obtain the upper and lower portions of the fuzzy results. Since the exponential function is present, the fractional operator is non-singular and global. Due to its dynamic behaviors, it provides all fuzzy form solutions that happen between 0 and 1 at any level of fractional order. Because the fuzzy numbers return the solution in a fuzzy shape with upper and lower branches, the unknown quantity likewise incorporates fuzziness.
Citation: Naveed Iqbal, Imran Khan, Rasool Shah, Kamsing Nonlaopon. The fuzzy fractional acoustic waves model in terms of the Caputo-Fabrizio operator[J]. AIMS Mathematics, 2023, 8(1): 1770-1783. doi: 10.3934/math.2023091
This paper proposes an analytical solution for a fractional fuzzy acoustic wave equation. Under the fractional Caputo-Fabrizio operator, we use the Laplace transformation and the iterative technique. In the present study, the achieved series type result was determined, and we approximated the estimated values of the suggested models. All three problems used two various fractional-order simulations between 0 and 1 to obtain the upper and lower portions of the fuzzy results. Since the exponential function is present, the fractional operator is non-singular and global. Due to its dynamic behaviors, it provides all fuzzy form solutions that happen between 0 and 1 at any level of fractional order. Because the fuzzy numbers return the solution in a fuzzy shape with upper and lower branches, the unknown quantity likewise incorporates fuzziness.
[1] | T. Allahviranloo, Fuzzy fractional differential equations, Springer, Cham, 397 (2021), 127–192. https://doi.org/10.1007/978-3-030-51272-9_4 |
[2] | T. Allahviranloo, B. Ghanbari, On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach, Chaos Soliton. Fract., 130 (2020), 109397. https://doi.org/10.1016/j.chaos.2019.109397 doi: 10.1016/j.chaos.2019.109397 |
[3] | N. V. Hoa, H. Vu, T. M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70–99. https://doi.org/10.1016/j.fss.2018.08.001 doi: 10.1016/j.fss.2018.08.001 |
[4] | S. Chakraverty, S. Tapaswini, D. Behera, Fuzzy arbitrary order system: Fuzzy fractional differential equations and applications, John Wiley & Sons, 2016. |
[5] | S. Rashid, M. K. Kaabar, A. Althobaiti, M. S. Alqurashi, Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.01.003 doi: 10.1016/j.joes.2022.01.003 |
[6] | M. S. Alqurashi, S. Rashid, B. Kanwal, F. Jarad, S. K. Elagan, A novel formulation of the fuzzy hybrid transform for dealing nonlinear partial differential equations via fuzzy fractional derivative involving general order, AIMS Math., 7 (2022), 14946–14974. https://doi.org/10.3934/math.2022819 doi: 10.3934/math.2022819 |
[7] | M. S. Shagari, S. Rashid, F. Jarad, M. S. Mohamed, Interpolative contractions and intuitionistic fuzzy set-valued maps with applications, AIMS Math., 7 (2022), 10744–10758. https://doi.org/10.3934/math.2022600 doi: 10.3934/math.2022600 |
[8] | M. Al-Qurashi, M. S. Shagari, S. Rashid, Y. S. Hamed, M. S. Mohamed, Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions, AIMS Math., 7 (2022), 315–333. https://doi.org/10.3934/math.2022022 doi: 10.3934/math.2022022 |
[9] | V. H. Ngo, Fuzzy fractional functional integral and differential equations, Fuzzy Set. Syst., 280 (2015), 58–90. https://doi.org/10.1016/j.fss.2015.01.009 doi: 10.1016/j.fss.2015.01.009 |
[10] | T. Allahviranloo, Z. Gouyandeh, A. Armand, A full fuzzy method for solving differential equation based on Taylor expansion, J. Intell. Fuzzy Syst., 29 (2015), 1039–1055. https://doi.org/10.3233/IFS-151713 doi: 10.3233/IFS-151713 |
[11] | M. Das, A. Maiti, G. P. Samanta, Stability analysis of a prey-predator fractional order model incorporating prey refuge, Ecol. Genet. Genomics, 7 (2018), 33–46. https://doi.org/10.1016/j.egg.2018.05.001 doi: 10.1016/j.egg.2018.05.001 |
[12] | M. Das, G. P. Samanta, A delayed fractional order food chain model with fear effect and prey refuge, Math. Comput. Simulat., 178 (2020), 218–245. https://doi.org/10.1016/j.matcom.2020.06.015 doi: 10.1016/j.matcom.2020.06.015 |
[13] | M. Das, G. P. Samanta, A prey-predator fractional order model with fear effect and group defense, Int. J. Dyn. Control, 9 (2021), 334–349. https://doi.org/10.1007/s40435-020-00626-x doi: 10.1007/s40435-020-00626-x |
[14] | A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944 |
[15] | M. Chehlabi, T. Allahviranloo, Concreted solutions to fuzzy linear fractional differential equations, Appl. Soft Comput., 44 (2016), 108–116. https://doi.org/10.1016/j.asoc.2016.03.011 doi: 10.1016/j.asoc.2016.03.011 |
[16] | N. V. Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci., 22 (2015), 1134–1157. https://doi.org/10.1016/j.cnsns.2014.08.006 doi: 10.1016/j.cnsns.2014.08.006 |
[17] | M. Naeem, H. Rezazadeh, A. A. Khammash, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022). https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916 |
[18] | A. U. K. Niazi, N. Iqbal, F. Wannalookkhee, K. Nonlaopon, Controllability for fuzzy fractional evolution equations in credibility space, Fractal Fract., 5 (2021), 112. https://doi.org/10.3390/fractalfract5030112 doi: 10.3390/fractalfract5030112 |
[19] | K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the time-fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021). https://doi.org/10.1155/2021/7979365 doi: 10.1155/2021/7979365 |
[20] | R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. https://doi.org/10.1016/j.cam.2017.09.039 doi: 10.1016/j.cam.2017.09.039 |
[21] | H. V. Long, N. T. K. Son, H. T. T. Tam, The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Set. Syst., 309 (2017), 35–63. https://doi.org/10.1016/j.fss.2016.06.018 doi: 10.1016/j.fss.2016.06.018 |
[22] | S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci., 17 (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005 |
[23] | A. S. Alshehry, M. Imran, A. Khan, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022), 1463. https://doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463 |
[24] | S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102 |
[25] | A. Goswami, J. Singh, D. Kumar, S. Gupta, An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85–99. https://doi.org/10.1016/j.joes.2019.01.003 doi: 10.1016/j.joes.2019.01.003 |
[26] | M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. http://dx.doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010 |
[27] | A. S. Alshehry, N. Amir, N. Iqbal, K. Nonlaopon, On the solution of nonlinear fractional-order shock wave equation via analytical method, AIMS Math., 7 (2022), 19325–19343. https://doi.org/10.3934/math.20221061 doi: 10.3934/math.20221061 |
[28] | M. M. Al-Sawalha, A. S. Alshehry, K. Nonlaopon, O. Y. Ababneh, Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm, AIMS Math., 7 (2022), 19739–19757. https://doi.org/10.3934/math.20221082 doi: 10.3934/math.20221082 |
[29] | Y. Khan, R. Taghipour, M. Falahian, A. Nikkar, A new approach to modified regularized long wave equation, Neural Comput. Appl., 23 (2013), 1335–1341. https://doi.org/10.1007/s00521-012-1077-0 doi: 10.1007/s00521-012-1077-0 |
[30] | C. Bota, B. Căruntu, Approximate analytical solutions of the regularized long wave equation using the optimal homotopy perturbation method, The Scientific World J., 2014 (2014). https://doi.org/10.1155/2014/721865 doi: 10.1155/2014/721865 |
[31] | V. D. Gejji, H. Jafari, An iterative method for solving nonlinear functional equation, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009 |
[32] | H. Jafari, S. Seifi, A. Alipoor, M. Zabihi, An iterative method for solving linear and nonlinear fractional diffusion-wave equation, J. Nonlinear Fract. Phenom. Sci. Eng., 2007. |
[33] | S. Bhalekar, V. Daftardar-Gejji, Solving evolution equations using a new iterative method, Numer. Method. Part. D. E., 26 (2010), 906–916. https://doi.org/10.1002/num.20463 doi: 10.1002/num.20463 |
[34] | V. N. Kovalnogov, R. V. Fedorov, D. A. Generalov, E. V. Tsvetova, T. E. Simos, C. Tsitouras, On a new family of Runge-Kutta-Nystrom pairs of orders, Mathematics, 10 (2022), 875. https://doi.org/10.3390/math10060875 doi: 10.3390/math10060875 |
[35] | R. Ye, P. Liu, K. Shi, B. Yan, State damping control: A novel simple method of rotor UAV with high performance, IEEE Access, 8 (2020) 214346–214357. https://doi.org/10.1109/ACCESS.2020.3040779 doi: 10.1109/ACCESS.2020.3040779 |
[36] | W. Dang, J. Guo, M. Liu, S. Liu, B. Yang, L. Yin, et al., A semi-supervised extreme learning machine algorithm based on the new weighted kernel for machine smell, Appl. Sci., 12 (2022), 9213. https://doi.org/10.3390/app12189213 doi: 10.3390/app12189213 |
[37] | T. Sitthiwirattham, M. Arfan, K. Shah, A. Zeb, S. Djilali, S. Chasreechai, Semi-analytical solutions for fuzzy Caputo-Fabrizio fractional-order two-dimensional heat equation, Fractal Fract., 5 (2021), 139. https://doi.org/10.3390/fractalfract5040139 doi: 10.3390/fractalfract5040139 |
[38] | M. Alesemi, N. Iqbal, M. S. Abdo, Novel investigation of fractional-order Cauchy-reaction diffusion equation involving Caputo-Fabrizio operator, J. Function Space., 2022 (2022). |
[39] | N. Harrouche, S. Momani, S. Hasan, M. Al-Smadi, Computational algorithm for solving drug pharmacokinetic model under uncertainty with nonsingular kernel type Caputo-Fabrizio fractional derivative, Alex. Eng. J., 60 (2021), 4347–4362. https://doi.org/10.1016/j.aej.2021.03.016 doi: 10.1016/j.aej.2021.03.016 |
[40] | P. Veeresha, D. G. Prakasha, J. Singh, A novel approach for nonlinear equations occurs in ion acoustic waves in plasma with Mittag-Leffler law, Eng. Comput., 37 (2020). https://doi.org/10.1108/EC-09-2019-0438 doi: 10.1108/EC-09-2019-0438 |