Research article Special Issues

An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform

  • Received: 31 December 2023 Revised: 06 February 2024 Accepted: 21 February 2024 Published: 01 March 2024
  • This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.

    Citation: Manoj Singh, Ahmed Hussein, Msmali, Mohammad Tamsir, Abdullah Ali H. Ahmadini. An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform[J]. AIMS Mathematics, 2024, 9(4): 8776-8802. doi: 10.3934/math.2024426

    Related Papers:

  • This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.



    加载中


    [1] G. W. Leibnitz, Letter from Hanover, Mathematische Schriften, 2 (1695), 301–302.
    [2] S. G. Samko, Fractional integrals and derivatives: Theory and applications, USA: Gordon and Breach Science Publishers, 1993.
    [3] K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Newyork: John wiley and Sons, Inc., 1993.
    [4] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998.
    [5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: Modelling and control applications, World Scientific Publishing Co. Pte. Ltd., 2010.
    [6] J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising. IEEE T. Image Process, 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971
    [7] S. N. Rao, M. Khuddush, M. Singh, M. Z. Meetei, Infinite-time blowup and global solutions for a semilinear Klein Gordan equation with logarithmic nonlinearity, Appl. Math. Sci. Eng., 31 (2023), 2270134. https://doi.org/10.1080/27690911.2023.2270134 doi: 10.1080/27690911.2023.2270134
    [8] H. Liu, H. Yuan, Q. Liu, J. Hou, H. Zeng, S. Kwong, A hybrid compression framework for color attributes of static 3D point clouds. IEEE T. Circ. Syst. Vid. Technol., 32 (2022), 1564–1577. https://doi.org/10.1109/TCSVT.2021.3069838 doi: 10.1109/TCSVT.2021.3069838
    [9] T. Guo, H. Yuan, L. Wang, T. Wang, Rate-distortion optimized quantization for geometry-based point cloud compression, J. Electron Imaging, 32 (2023), 013047. https://doi.org/10.1117/1.JEI.32.1.013047 doi: 10.1117/1.JEI.32.1.013047
    [10] J. F. G$\acute{o}$mez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hern$\acute{a}$ndez, D. Baleanu, R. F. Escobar-Jim$\acute{e}$nez, M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local Kernels, Entropy, 18 (2016), 402. https://doi.org/10.3390/e18080402 doi: 10.3390/e18080402
    [11] A. El-Ajou, M. Al-Smadi, M. N. Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: Applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
    [12] A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020
    [13] E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Mathematics, 8 (2023), 1713–1736. 1713-1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
    [14] A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
    [15] A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, A. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119–133. https://doi.org/10.1016/j.amc.2014.12.121 doi: 10.1016/j.amc.2014.12.121
    [16] H. M. He, J. G. Peng, H. Y. Li, Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds, U.P.B. Sci. Bull. Ser. A, 84 (2022), 25–36.
    [17] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [18] X. Zhou, X. Liu, G. Zhang, L. Jia, X. Wang, Z. Zhao, An iterative threshold algorithm of log-sum regularization for sparse problem, IEEE T. Circ. Syst. Vid. Technol., 33 (2023), 4728–4740. https://doi.org/10.1109/TCSVT.2023.3247944 doi: 10.1109/TCSVT.2023.3247944
    [19] Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Appl. Math. Comput., 182 (2006), 1048–1055. https://doi.org/10.1016/j.amc.2006.05.004 doi: 10.1016/j.amc.2006.05.004
    [20] M. Kurulay, Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method, Adv. Differ. Equ., 2012 (2012), 187. https://doi.org/10.1186/1687-1847-2012-187 doi: 10.1186/1687-1847-2012-187
    [21] R. P. Agarwal, F. Mofarreh, R. Shah, W. Luangboon, K. Nonlaopon, An analytical technique, based on natural transform to solve fractional-order parabolic equations, Entropy, 23 (2021), 1086. https://doi.org/10.3390/e23081086 doi: 10.3390/e23081086
    [22] A. A. Arafa, A. M. S. Hagag, Q-homotopy analysis transform method applied to fractional Kundu-Eckhaus equation and fractional massive Thirring model arising in quantum field theory, Asian-Eur. J. Math., 12 (2019), 1950045. https://doi.org/10.1142/S1793557119500451 doi: 10.1142/S1793557119500451
    [23] J. J. H. He, An elementary introduction to the homotopy perturbation method, Comput. Math. Appl., 57 (2009), 410–412. https://doi.org/10.1016/j.camwa.2008.06.003 doi: 10.1016/j.camwa.2008.06.003
    [24] F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Opt. Control, 6 (2016), 75–83. https://doi.org/10.11121/ijocta.01.2016.00317 doi: 10.11121/ijocta.01.2016.00317
    [25] Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068 doi: 10.1016/j.amc.2007.07.068
    [26] M. Singh, Approximation of the time-fractional Klein-Gordon equation using the integral and projected differential transform methods, Int. J. Math. Eng. Manag. Sci., 8 (2023), 672–687. https://doi.org/10.33889/IJMEMS.2023.8.4.039 doi: 10.33889/IJMEMS.2023.8.4.039
    [27] N. H. Aljahdaly, R. P. Agarwal, R. Shah, T. Botmart, Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators, Mathematics, 9 (2021), 2326. https://doi.org/10.3390/math9182326 doi: 10.3390/math9182326
    [28] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation. Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [29] L. Wang, Y. Ma, Z. Meng, Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput., 227 (2014), 66–76. https://doi.org/10.1016/j.amc.2013.11.004 doi: 10.1016/j.amc.2013.11.004
    [30] K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the time fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 7979365. https://doi.org/10.1155/2021/7979365 doi: 10.1155/2021/7979365
    [31] P. Sunthrayuth, R. Shah, A. M. Zidan, S. Khan, J. Kafle, The analysis of fractional-order Navier-Stokes model arising in the unsteady flow of a viscous fluid via Shehu transform, J. Funct. Spaces, 2021 (2021), 1029196. https://doi.org/10.1155/2021/1029196 doi: 10.1155/2021/1029196
    [32] A. Sohail, K. Maqbool, R. Ellahi, Stability analysis for fractional-order partial differential equations by means of space spectral time Adams Bashforth Moulton method, Numer. Meth. Partial Differ. Equ., 34 (2018), 19–29. https://doi.org/10.1002/num.22171 doi: 10.1002/num.22171
    [33] F. Mirzaee, N. Samadyar, On the numerical solution of stochastic quadratic integral equations via operational matrix method, Math. Method. Appl. Sci., 41 (2018), 4465–4479. https://doi.org/10.1002/mma.4907 doi: 10.1002/mma.4907
    [34] M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, In: Handbook of mathematical fluid dynamics, 3 (2005), 161–244. https://doi.org/10.1016/S1874-5792(05)80006-0
    [35] G. Adomian, Analytical solution of Navier-Stokes flow of a viscous compressible fluid, Found. Phys. Lett., 8 (1995), 389–400. https://doi.org/10.1007/BF02187819 doi: 10.1007/BF02187819
    [36] M. Krasnoschok, V. Pata, S. V. Siryk, N. Vasylyeva, A subdiffusive Navier-Stokes-Voigt system, Phys. D Nonlinear Phenom., 409 (2020), 132503. https://doi.org/10.1016/j.physd.2020.132503 doi: 10.1016/j.physd.2020.132503
    [37] M. I. Herreros, S. Lig$\ddot{u}\acute{e}$rzana, Rigid body motion in viscous flows using the finite element method, Phys. Fluids, 32 (2020), 123311. https://doi.org/10.1063/5.0029242 doi: 10.1063/5.0029242
    [38] M. El-Shahed, A. Salem, On the generalized Navier-Stokes equations, Appl. Math. Comput., 156 (2004), 287–293. https://doi.org/10.1016/j.amc.2003.07.022 doi: 10.1016/j.amc.2003.07.022
    [39] Z. Z. Ganji, D. D. Ganji, A. D. Ganji, M. Rostamian, Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method, Numer. Method. Partial Differ. Equ., 26 (2010), 117–124. https://doi.org/10.1002/num.20420 doi: 10.1002/num.20420
    [40] D. Kumar, J. Singh, S. Kumar, A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Assoc. Arab. Univ. Basic Appl. Sci., 17 (2015), 14–19. https://doi.org/10.1016/j.jaubas.2014.01.001 doi: 10.1016/j.jaubas.2014.01.001
    [41] S. Maitama, Analytical solution of time-fractional Navier-Stokes equation by natural homotopy perturbation method, Prog. Fract. Differ. Appl., 4 (2018), 123–131. https://doi.org/10.18576/pfda/040206 doi: 10.18576/pfda/040206
    [42] G. A. Birajdar, Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method, Nonlinear Eng., 3 (2014), 21–26. https://doi.org/10.1515/nleng-2012-0004 doi: 10.1515/nleng-2012-0004
    [43] Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations with Caputo operators and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
    [44] Y. M. Chu, N. A. Shah, P. Agarwal, J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Differ. Equ., 2021 (2021), 91. https://doi.org/10.1186/s13662-021-03250-x doi: 10.1186/s13662-021-03250-x
    [45] B. K. Singh, P. Kumar, FRDTM for numerical simulatin of multi-dimensional Navier-Stokes equation, Ain Shams Eng. J., 9 (2018), 827–834. https://doi.org/10.1016/j.asej.2016.04.009 doi: 10.1016/j.asej.2016.04.009
    [46] E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of fractional-order Navier-Stokes equations by a novel Approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
    [47] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, 2006.
    [48] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [49] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [50] Z. H. Khan, W. A. Khan, N-Transform-properties and applications, NUST J. Eng. Sci., 1 (2008), 127–133.
    [51] D. Loonker, P. K. Banerji, Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 2 (2013), 1–7.
    [52] A. Khalouta, A. Kadem, A new numerical technique for solving fractional Bratu's initial value problems in the Caputo and Caputo-Fabrizio sense, J. Appl. Math. Comput. Mech., 19 (2020), 43–56. https://doi.org/10.17512/jamcm.2020.1.04 doi: 10.17512/jamcm.2020.1.04
    [53] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009
    [54] A. Ghorbani, Beyond Adomian's polynomials: He's polynomials, Chaos Soliton. Fract., 39 (2009), 1486–1492. https://doi.org/10.1016/j.chaos.2007.06.034 doi: 10.1016/j.chaos.2007.06.034
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(910) PDF downloads(87) Cited by(4)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog