Research article

A new proof of a double inequality of Masjed-Jamei type

  • Received: 23 November 2023 Revised: 30 January 2024 Accepted: 26 February 2024 Published: 29 February 2024
  • MSC : 26D05, 26D15

  • In this paper, we provide a new simple proof of a double inequality of Masjed-Jamei type proved by L. Zhu [1].

    Citation: Fen Wang. A new proof of a double inequality of Masjed-Jamei type[J]. AIMS Mathematics, 2024, 9(4): 8768-8775. doi: 10.3934/math.2024425

    Related Papers:

  • In this paper, we provide a new simple proof of a double inequality of Masjed-Jamei type proved by L. Zhu [1].



    加载中


    [1] L. Zhu, New double inequality of Masjed-Jamei-type, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 117 (2023), 41. https://doi.org/10.1007/s13398-022-01375-6 doi: 10.1007/s13398-022-01375-6
    [2] M. Masjed-Jamei, A main inequality for several special functions, Comput. Math. Appl., 60 (2010), 1280–1289. https://doi.org/10.1016/j.camwa.2010.06.007 doi: 10.1016/j.camwa.2010.06.007
    [3] L. Zhu, B. Male$\breve{\rm{s}}$ević, Inequalities between the inverse hyperbolic tangent and the inverse sine and the analogue for corresponding functions, J. Inequal. Appl., 2019 (2019), 1–10. https://doi.org/10.1186/s13660-019-2046-2 doi: 10.1186/s13660-019-2046-2
    [4] L. Zhu, B. Male$\breve{\rm{s}}$ević, Natural approximation of Masjed-Jamei's inequality, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 114 (2020), 25. https://doi.org/10.1007/s13398-019-00735-z doi: 10.1007/s13398-019-00735-z
    [5] C. P. Chen, B. Male$\breve{\rm{s}}$ević, Inequalities related to certain inverse trigonometric and inverse hyperbolic functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 114 (2020), 105. https://doi.org/10.1007/s13398-020-00836-0 doi: 10.1007/s13398-020-00836-0
    [6] C. Chesneau, , Y. J. Bagul, On a reverse trigonometric Masjed-Jamei inequality, Asia Pac. J. Math., 8 (2021), 1–5. https://doi.org/10.28924/APJM/8-13 doi: 10.28924/APJM/8-13
    [7] X. D. Chen, L. Nie, W. K. Huang, New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions, J. Inequal. Appl., 2020 (2020), 1–8. https://doi.org/10.1186/s13660-020-02396-8 doi: 10.1186/s13660-020-02396-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(671) PDF downloads(66) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog