Research article Special Issues

Factors influencing drivers' queue-jumping behavior at urban intersections: A covariance-based structural equation modeling analysis

  • Received: 08 November 2023 Revised: 17 January 2024 Accepted: 26 January 2024 Published: 06 February 2024
  • Queue-jumping is widely acknowledged as one of the most vexing driving behaviors and a prevalent traffic violation at urban intersections in China, exerting detrimental effects on both traffic operational efficiency and safety. To investigate the motivational factors underlying drivers' queue-jumping behavior at urban intersections, a questionnaire was designed to collect data based on an extended theory of planned behavior (TPB). A total of 427 valid responses were received through an online self-reported questionnaire survey conducted in China. The Pearson's chi-square test was employed to examine potential demographic disparities in self-reported queue-jumping behavior among drivers at urban intersections. Covariance-based structural equation modeling (CB-SEM) with bootstrapping was utilized to elucidate the impact of various factors on drivers' engagement in queue-jumping behavior. The findings revealed significant gender and age differences regarding drivers' propensity for queue-jumping at urban intersections, with male and young drivers exhibiting higher inclination compared to female and older counterparts, respectively. Furthermore, the extended TPB effectively accounted for both behavioral intention and actual occurrence of queue-jumping among drivers at urban intersections. Behavioral intention (β = 0.391, p = 0.002) and perceived behavior control (β = 0.282, p = 0.002) emerged as influential determinants of queue-jumping. Among all influencing factors shaping drivers' behavioral intention toward engaging queue-jumping at urban intersections, attitude (β = 0.316, p = 0.005) proved to be the most significant factor followed by perceived risk (β = 0.230, p = 0.001), moral norms (β = 0.184, p = 0.002), subjective norms (β = 0.175, p = 0.002), and perceived behavior control (β = 0.122, p = 0.05). These results offer valuable insights for urban road traffic managers seeking effective strategies for public awareness campaigns as well as practical intervention measures aimed at curbing improper driving behavior of queue-jumping at urban intersections.

    Citation: Xiaoxiao Wang, Liangjie Xu. Factors influencing drivers' queue-jumping behavior at urban intersections: A covariance-based structural equation modeling analysis[J]. Electronic Research Archive, 2024, 32(3): 1439-1470. doi: 10.3934/era.2024067

    Related Papers:

  • Queue-jumping is widely acknowledged as one of the most vexing driving behaviors and a prevalent traffic violation at urban intersections in China, exerting detrimental effects on both traffic operational efficiency and safety. To investigate the motivational factors underlying drivers' queue-jumping behavior at urban intersections, a questionnaire was designed to collect data based on an extended theory of planned behavior (TPB). A total of 427 valid responses were received through an online self-reported questionnaire survey conducted in China. The Pearson's chi-square test was employed to examine potential demographic disparities in self-reported queue-jumping behavior among drivers at urban intersections. Covariance-based structural equation modeling (CB-SEM) with bootstrapping was utilized to elucidate the impact of various factors on drivers' engagement in queue-jumping behavior. The findings revealed significant gender and age differences regarding drivers' propensity for queue-jumping at urban intersections, with male and young drivers exhibiting higher inclination compared to female and older counterparts, respectively. Furthermore, the extended TPB effectively accounted for both behavioral intention and actual occurrence of queue-jumping among drivers at urban intersections. Behavioral intention (β = 0.391, p = 0.002) and perceived behavior control (β = 0.282, p = 0.002) emerged as influential determinants of queue-jumping. Among all influencing factors shaping drivers' behavioral intention toward engaging queue-jumping at urban intersections, attitude (β = 0.316, p = 0.005) proved to be the most significant factor followed by perceived risk (β = 0.230, p = 0.001), moral norms (β = 0.184, p = 0.002), subjective norms (β = 0.175, p = 0.002), and perceived behavior control (β = 0.122, p = 0.05). These results offer valuable insights for urban road traffic managers seeking effective strategies for public awareness campaigns as well as practical intervention measures aimed at curbing improper driving behavior of queue-jumping at urban intersections.



    加载中


    [1] World Health Organization (WHO), Global Status Report on Road Safety 2018, 2018. Available from: https://www.who.int/publications/i/item/9789241565684.
    [2] National Highway Traffic Safety Administration, Traffic Safety Facts Annual Report 2020, 2022. Available from: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813375.
    [3] J. Liang, L. Chen, Y. Cai, H. Jiang, M. Zhong, Vehicle Active Safety Application Technology Based on PreScan, China Communications Press Co., Ltd., Beijing, 2018.
    [4] Q. Yang, Z. Shi, The evolution process of queues at signalized intersections under batch arrivals, Phys. A, 505 (2018), 413–425. https://doi.org/10.1016/j.physa.2018.03.059 doi: 10.1016/j.physa.2018.03.059
    [5] Q. Yang, Z. Shi, The queue dynamics of protected/permissive left turns at pre-timed signalized intersections, Phys. A, 562 (2021), 125406. https://doi.org/10.1016/j.physa.2020.125406 doi: 10.1016/j.physa.2020.125406
    [6] H. Liu, W. Liang, L. Rai, K. Teng, S. Wang, A real-time queue length estimation method based on probe vehicles in CV environment, IEEE Access, 7 (2019), 20825–20839. https://doi.org/10.1109/ACCESS.2019.2898424 doi: 10.1109/ACCESS.2019.2898424
    [7] X. Luo, D. Ma, S. Jin, Y. Gong, D. Wang, Queue length estimation for signalized intersections using license plate recognition data, IEEE Intell. Transp. Syst. Mag., 11 (2019), 209–220. https://doi.org/10.1109/MITS.2019.2919541 doi: 10.1109/MITS.2019.2919541
    [8] K. Gao, S. Huang, F. Han, S. Li, W. Wu, R. Du, An integrated algorithm for intersection queue length estimation based on IoT in a mixed traffic scenario, Appl. Sci., 10 (2020), 2078. https://doi.org/10.3390/app10062078 doi: 10.3390/app10062078
    [9] C. Tan, J. Yao, K. Tang, J. Sun, Cycle-based queue length estimation for signalized intersections using sparse vehicle trajectory data, IEEE Trans. Intell. Transp. Syst., 22 (2021), 91–106. https://doi.org/10.1109/TITS.2019.2954937 doi: 10.1109/TITS.2019.2954937
    [10] M. S. Chaudhry, P. Ranjitkar, Delay estimation at signalized intersections with variable queue discharge rate, J. E. Asia Soc. Transp., 10 (2013), 1764–1775. https://doi.org/10.11175/easts.10.1764 doi: 10.11175/easts.10.1764
    [11] E. Harahap, D. Darmawan, Y. Fajar, R. Ceha, A. Rachmiatie, Modeling and simulation of queue waiting time at traffic light intersection, J. Phys. Conf. Ser., 1188 (2019), 012001. https://doi.org/10.1088/1742-6596/1188/1/012001 doi: 10.1088/1742-6596/1188/1/012001
    [12] S. P. Anushaa, L. Vanajakshib, S. C. Subramanian, Dynamical systems approach for queue and delay estimation at signalized intersections under mixed traffic conditions, Transp. Lett., 14 (2022), 578–590. https://doi.org/10.1080/19427867.2021.1908492 doi: 10.1080/19427867.2021.1908492
    [13] O. M. Rouhani, Queue dissipation shockwave speed–a signalized intersection case study, in Proceedings of the 54th Annual Transportation Research Forum, (2013), 54–61. https://doi.org/10.22004/ag.econ.206954
    [14] S. Mondal, A. Guptha, Queue dissipation at signalized intersection under mixed traffic conditions, in Proceedings of the Transportation Research Forum 2018, (2018), 22–24. http://dl.lib.uom.lk/handle/123/18078
    [15] H. H. Chen, Y. B. Lin, I. H. Yeh, H. J. Cho, Y. J. Wu, Prediction of queue dissipation time for mixed traffic flows with deep learning, IEEE Open J. Int. Tr., 3 (2022), 267–277. https://doi.org/10.1109/OJITS.2022.3162526 doi: 10.1109/OJITS.2022.3162526
    [16] P. P. Dey, S. Nandal, R. Kalyan, Queue discharge characteristics at signalised intersections under mixed traffic conditions, Eur. Transp., 55 (2013), 1–12.
    [17] Modern Express, Top 10 Bad Traffic Habits in Jiangsu: Queue-jumping is Annoying, 2016. Available from: https://ijs.ifeng.com/mip/5177954/news.shtml.
    [18] The National People's Congress Standing Committee of China, Report on the Implementation of the Road Traffic Safety Law of China, 2016. Available from: http://www.npc.gov.cn/zgrdw/npc/xinwen/syxw/2016-12/21/content_2004382.htm.
    [19] S. Hallmark, A. Mudgal, T. Stout, B. Wang, Behavior Study of Merge Practices for Drivers at Work Zone Closures, 2011. Available from: https://intrans.iastate.edu/app/uploads/2018/03/work_zone_merge_behaviors_w_cvr2.pdf.
    [20] C. Sun, P. Edara, S. Anowar, C. Canfield, Optimizing Work Zone Zipper Merge Using Federated Driving Simulators, 2021. Available from: https://rosap.ntl.bts.gov/view/dot/60855/dot_60855_DS1.pdf.
    [21] B. Shang, S. Fang, Cellular automata simulation of traffic spillback and queue-jumping behaviors at off-ramp on urban expressways in Shanghai, in Proceedings of the 2nd International Conference on Systems and Informatics, (2014), 394–399. https://doi.org/10.1109/ICSAI.2014.7009321
    [22] Q. Ren, X. Lu, Y. Zhao, Z. Tang, H. Wu, Study on endogenous and exogenous logic and influencing factors of "road rage", J. Safety Sci. Technol., 17 (2021), 162–166. https://doi.org/10.11731/j.issn.1673-193x.2021.07.026 doi: 10.11731/j.issn.1673-193x.2021.07.026
    [23] H. Ning, Y. Yu, L. Bai, Unsafe behaviors analysis of sideswipe collision on urban expressways based on Bayesian network, Sustainability, 14 (2022), 8142. https://doi.org/10.3390/su14138142 doi: 10.3390/su14138142
    [24] H. Ning, Y. Yu, L. Bai, Survival analysis of the unsafe behaviors leading to urban expressway crashes, PLoS ONE, 17 (2022), e0267559. https://doi.org/10.1371/journal.pone.0267559 doi: 10.1371/journal.pone.0267559
    [25] Q. Liu, Study On The Mechanism And Application Of Dangerous Lane-Changing Behavior In The Entrance Lane At Intersection, M.E. thesis, Wuhan University of Technology, 2014. https://doi.org/10.7666/d.D639291
    [26] Z. Yang, Z. Jia, Evolutionary analysis on queue-jumping of small or large vehicle drivers at traffic bottleneck, J. Taiyuan U. Sci. Tech., 35 (2014), 49–53. https://doi.org/10.3969/j.issn.1673-2057.2014.01.010 doi: 10.3969/j.issn.1673-2057.2014.01.010
    [27] K. Huang, The Impact of Vehicle Jumping on Road Traffic Safety At The Intersection, M.E. thesis, Jilin University, 2017.
    [28] Y. Hao, L. Xu, X. Wang, Risk characteristics analysis of dangerous lane-changing behavior at signalized intersections based on VAT, J. Wuhan Univ. Technol. Transp. Sci. Eng. Ed., 43 (2019), 92–96. https://doi.org/10.3963/j.issn.2095-3844.2019.01.019 doi: 10.3963/j.issn.2095-3844.2019.01.019
    [29] Y. Hao, L. Xu, B. Qi, T. Wang, W. Zhao, A machine learning approach for highway intersection risk caused by harmful lane-changing behaviors, in Proceedings of the 19th COTA International Conference of Transportation Professionals, (2019), 5623–5635. https://doi.org/10.1061/9780784482292.484
    [30] Y. Hao, L. Xu, X. Wang, Y. Li, G. Chen, Aggressive lane-change analysis closing to intersection based on UAV video and deep learning, in Proceedings of the 5th International Conference on Transportation Information and Safety, (2019), 496–502. https://doi.org/10.1109/ICTIS.2019.8883543
    [31] A. Ahmed, F. Outay, S. O. R. Zaidi, M. Adnan, D. Ngoduy, Examining queue-jumping phenomenon in heterogeneous traffic stream at signalized intersection using UAV-based data, Pers. Ubiquit. Comput., 25 (2021), 93–108. https://doi.org/10.1007/s00779-020-01434-y doi: 10.1007/s00779-020-01434-y
    [32] J. Wang, B. Wang, The study on increasing vehicle passing rate at intersection based on ergonomics, in Proceedings of the 14th International Conference on Man–Machine–Environment System Engineering, (2014), 375–380. https://doi.org/10.1007/978-3-662-44067-4_45
    [33] L. Yang, Z. Feng, X. Zhao, K. Jiang, Z. Huang, Analysis of the factors affecting drivers' queue-jumping behaviors in China, Transport. Res. F-Traf., 72 (2020), 96–109. https://doi.org/10.1016/j.trf.2020.05.008 doi: 10.1016/j.trf.2020.05.008
    [34] I. Ajzen, The theory of planned behavior, Organ. Behav. Hum. Dec., 50 (1991), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T doi: 10.1016/0749-5978(91)90020-T
    [35] I. Ajzen, Perceived behavioural control, self-efficacy, locus of control, and the theory of planned behavior, J. Appl. Soc. Psychol., 32 (2002), 665–683. https://doi.org/0.1111/j.1559-1816.2002.tb00236.x
    [36] C. Chen, W. Chao, Habitual or reasoned? Using the theory of planned behavior, technology acceptance model, and habit to examine switching intentions toward public transit, Transport. Res. F-Traf., 14 (2011), 128–137. https://doi.org/10.1016/j.trf.2010.11.006 doi: 10.1016/j.trf.2010.11.006
    [37] N. Ali, S. Nakayama, H. Yamaguchi, Using the extensions of the theory of planned behavior (TPB) for behavioral intentions to use public transport (PT) in Kanazawa, Japan, Transp. Res. Interdiscip. Perspect., 17 (2023), 100742. https://doi.org/10.1016/j.trip.2022.100742 doi: 10.1016/j.trip.2022.100742
    [38] J. de Oña, Understanding the mediator role of satisfaction in public transport: A cross-country analysis, Transp. Policy, 100 (2021), 129–149. https://doi.org/10.1016/j.tranpol.2020.09.011 doi: 10.1016/j.tranpol.2020.09.011
    [39] M. A. Javid, M. Abdullah, N. Ali, Travellers' perceptions about ride-hailing services in Lahore: An extension of the theory of planned behavior, Asian Transp. Stud., 8 (2022), 100083. https://doi.org/10.1016/j.eastsj.2022.100083 doi: 10.1016/j.eastsj.2022.100083
    [40] S. P. Walsh, K. M. White, M. K. Hyde, B. Watson, Dialling and driving: Factors influencing intentions to use a mobile phone while driving, Accid. Anal. Prev., 40 (2008), 1893–1900. https://doi.org/10.1016/j.aap.2008.07.005 doi: 10.1016/j.aap.2008.07.005
    [41] H. E. Nemme, K. M. White, Texting while driving: Psychosocial influences on young people's texting intentions and behaviour, Accid. Anal. Prev., 42 (2010), 1257–1265. https://doi.org/10.1016/j.aap.2010.01.019 doi: 10.1016/j.aap.2010.01.019
    [42] C. S. Gauld, I. Lewis, K. M. White, Concealing their communication: Exploring psychosocial predictors of young drivers' intentions and engagement in concealed texting, Accid. Anal. Prev., 62 (2014), 285–293. https://doi.org/10.1016/j.aap.2013.10.016 doi: 10.1016/j.aap.2013.10.016
    [43] T. Benson, M. Mclaughlin, M. Giles, The factors underlying the decision to text while driving, Transport. Res. F-Traf., 35 (2015), 85–100. https://doi.org/10.1016/j.trf.2015.10.013 doi: 10.1016/j.trf.2015.10.013
    [44] S. Bazargan-Hejazi, S. Teruya, D. Pan, J. Lin, D. Gordon, P. C. Krochalk, et al., The theory of planned behavior (TPB) and texting while driving behavior in college students, Traffic Inj. Prev., 18 (2017), 56–62. https://doi.org/10.1080/15389588.2016.1172703 doi: 10.1080/15389588.2016.1172703
    [45] C. S. Gauld, I. Lewis, K. M. White, J. J. Fleiter, B. Watson, Smartphone use while driving: What factors predict young drivers' intentions to initiate, read, and respond to social interactive technology? Compu. Hum. Behav., 76 (2017), 174–183. https://doi.org/10.1016/j.chb.2017.07.023 doi: 10.1016/j.chb.2017.07.023
    [46] A. M. Przepiorka, A. P. Błachnio, M. J. M. Sullman, Factors influencing intentions to text while driving among Polish drivers, Transport. Res. F-Traf., 55 (2018), 306–313. https://doi.org/10.1016/j.trf.2018.03.015 doi: 10.1016/j.trf.2018.03.015
    [47] P. M. Brown, A. M. George, D. Rickwood, Perceived risk and anticipated regret as factors predicting intentions to text while driving among young adults, Transp. Res. F-Traf., 62 (2019), 339–348. https://doi.org/10.1016/j.trf.2019.01.014 doi: 10.1016/j.trf.2019.01.014
    [48] N. Khanjani, A. Tavakkoli, S. Bazargan-Hejazi, Factors related to cell phone use while driving based on the theory of planned behavior among university students in Kerman, Iran, J. Inj. Violence Res., 11 (2019), 203–212. https://doi.org/10.5249/jivr.v11i2.1120 doi: 10.5249/jivr.v11i2.1120
    [49] B. R. K. Shevlin, K. A. Goodwin, Past behavior and the decision to text while driving among young adults, Transp. Res. F-Traf., 60 (2019), 58–67. https://doi.org/10.1016/j.trf.2018.09.027 doi: 10.1016/j.trf.2018.09.027
    [50] W. Qua, Y. Ge, Y. Guo, X. Sun, K. Zhang, The influence of WeChat use on driving behavior in China: A study based on the theory of planned behavior, Accid. Anal. Prev., 144 (2020), 105641. https://doi.org/10.1016/j.aap.2020.105641 doi: 10.1016/j.aap.2020.105641
    [51] T. D. Eijigu, Mobile phone use intention while driving among public service vehicle drivers: Magnitude and its social and cognitive determinants, PLoS ONE, 16 (2021), e0251007. https://doi.org/10.1371/journal.pone.0251007 doi: 10.1371/journal.pone.0251007
    [52] M. J. M. Sullman, A. M. Przepiorka, A. P. Bachnio, T. Hill, Can't text, I'm driving–factors influencing intentions to text while driving in the UK, Accid. Anal. Prev., 153 (2021), 106027. https://doi.org/10.1016/j.aap.2021.106027 doi: 10.1016/j.aap.2021.106027
    [53] M. Conner, R. Lawton, D. Parker, K. Chorlton, A. S. Manstead, S. Stradling, Application of the theory of planned behaviour to the prediction of objectively assessed breaking of posted speed limits, Br. J. Psychol., 98 (2011), 429–453. https://doi.org/10.1348/000712606x133597 doi: 10.1348/000712606x133597
    [54] D. Vankov, R. Schroeter, D. Twisk, Understanding the predictors of young drivers' speeding intention and behaviour in a three-month longitudinal study, Accid. Anal. Prev., 151 (2021), 105859. https://doi.org/10.1016/j.aap.2020.105859 doi: 10.1016/j.aap.2020.105859
    [55] Y. Ding, X. Zhao, Y. Wu, X. Zhang, C. He, S. Liu, How psychological factors affect speeding behavior: Analysis based on an extended theory of planned behavior in a Chinese sample. Transport. Res. F-Traf., 93 (2023), 143–158. https://doi.org/10.1016/j.trf.2023.01.003 doi: 10.1016/j.trf.2023.01.003
    [56] I. S. Moan, J. Rise, Predicting intentions not to "drink and drive" using an extended version of the theory of planned behavior, Accid. Anal. Prev., 43 (2011), 1378–1384. https://doi.org/10.1016/j.aap.2011.02.012 doi: 10.1016/j.aap.2011.02.012
    [57] J. Jin, Y. Deng, Analysis of drink-driving behavior: Considering the subjective and objective factors of drivers, Traffic Inj. Prev., 22 (2021), 183–188. https://doi.org/10.1080/15389588.2021.1873301 doi: 10.1080/15389588.2021.1873301
    [58] X. Wang, L. Xu, Y. Hao, What factors predict drivers' self-reported lane change violation behavior at urban intersections? A study in China, PLoS ONE, 14 (2019), e0216751. https://doi.org/10.1371/journal.pone.0216751 doi: 10.1371/journal.pone.0216751
    [59] X. Wang, L. Xu, Factors influencing young drivers' willingness to engage in risky driving behavior: Continuous lane-changing, Sustainability, 13 (2021), 6459. https://doi.org/10.3390/su13116459 doi: 10.3390/su13116459
    [60] X. Wang, L. Xu, The factors underlying drivers' unwillingness to give way to ambulances: An application of an extended theory of planned behavior, J. Transp. Health, 20 (2021), 101000. https://doi.org/10.1016/j.jth.2020.101000 doi: 10.1016/j.jth.2020.101000
    [61] T. Lajunen, D. Parker, Are aggressive people aggressive drivers? A study of the relationship between self-reported general aggressiveness, driver anger and aggressive driving, Accid. Anal. Prev., 33 (2001), 243–255. https://doi.org/10.1016/S0001-4575(00)00039-7 doi: 10.1016/S0001-4575(00)00039-7
    [62] C. Xie, D. Parker, A social psychological approach to driving violations in two Chinese cities, Transp. Res. F-Traf., 5 (2002), 293–308. https://doi.org/10.1016/S1369-8478(02)00034-7 doi: 10.1016/S1369-8478(02)00034-7
    [63] J. Li, Y. Li, X. Liu, The effects of motor impulsiveness and optimism bias on risky driving behavior in Chinese urban areas, in Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems, (2008), 605–609. https://doi.org/10.1109/ITSC.2008.4732582
    [64] P. Li, J. Shi, X. Liu, Driving style recognition based on driver behavior questionnaire, Open J. Appl. Sci., 7 (2017), 115–128. https://doi.org/10.4236/ojapps.2017.74010 doi: 10.4236/ojapps.2017.74010
    [65] M. M. Abid, M. Adnan, B. Hussain, M. Iqbal, A. Kumar, The driver attitude questionnaire to examine driving behaviour in Sargodha city, in Proceedings of the 7th Multi Disciplinary Student Research International Conference, (2022), 1–9.
    [66] P. Li, J. Shi, X. Liu, H. Wang, The theory of planned behavior and competitive driving in China, Procedia Eng., 137 (2016), 362–371. https://doi.org/10.1016/j.proeng.2016.01.270 doi: 10.1016/j.proeng.2016.01.270
    [67] P. Li, J. Shi, X. Liu, Modeling of competitive driving behavior based on theory of planned behavior, J. Transp. Syst. Eng. Inf. Technol., 16 (2016), 92–98. https://doi.org/10.16097/j.cnki.1009-6744.2016.01.014 doi: 10.16097/j.cnki.1009-6744.2016.01.014
    [68] S. Liew, R. Hamidun, N. F. M. Soid, Differences of driving experience and gender on traffic offences among Malaysian motorists, in Proceedings of International Symposium on Civil and Environmental Engineering, (2016), 08016. https://doi.org/10.1051/matecconf/201710308016
    [69] L. C. Chee, A preliminary perception study among youths on road traffic accidents and domino theory, J. Adv. Res. Soc. Behav. Sci., 1 (2017), 68–76.
    [70] M. Li, Q. Zhong, D. Chen, Analyzing the motivation of queue-jumping driving-action on transportation systems by prospect theory, in Proceedings of the 9th International Conference of Chinese Transportation Professionals, (2009), 3019–3026. https://doi.org/10.1061/41064(358)424
    [71] Z. Li, H. Qian, Z. Liu, An analysis on queuing and queue-jumping of drivers at the intersection based on the evolutionary game, J. Beijing U. Technol., 36 (2010), 46–50.
    [72] H. Qin, B. Liu, R. Huang, Study on aggressive driving activities at crossroads in Beijing, in Proceedings of Cross-Cultural Design. Cultural Differences in Everyday Life: 5th International Conference, (2013), 322–328. https://doi.org/10.1007/978-3-642-39137-8_36
    [73] H. Qin, B. Liu, R. Huang, Impact of aggressive driving on intersection capacity, Urban Transp. China, 14 (2016), 65–71. https://doi.org/10.13813/j.cn11-5141/u.2016.0110 doi: 10.13813/j.cn11-5141/u.2016.0110
    [74] Y. Li, J. Lu, K. Xu, Crash risk prediction model of lane-change behavior on approaching intersections, Discrete Dyn. Nat. Soc., 2017 (2017), 7328562. https://doi.org/10.1155/2017/7328562 doi: 10.1155/2017/7328562
    [75] M. Fishbein, I. Ajzen, Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research, Addison-Wesley, Reading, MA, 1975.
    [76] J. D. Newton, F. J. Newton, M. T. Ewing, Conceptual overlap between moral norms and anticipated regret in the prediction of intention: Implications for theory of planned behaviour research, Psychol. Health, 28 (2012), 495–513. https://doi.org/10.1080/08870446.2012.745936 doi: 10.1080/08870446.2012.745936
    [77] G. Dash, J. Paul, CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting, Technol. Forecast. Soc., 173 (2021), 121092. https://doi.org/10.1016/j.techfore.2021.121092 doi: 10.1016/j.techfore.2021.121092
    [78] M. Wu, AMOS Operation and Application of Structural Equation Modeling, 2nd edition, Chongqing University Press, Chongqing, 2009.
    [79] R. H. Hoyle, Handbook of Structural Equation Modeling, The Guilford Press, New York, 2011.
    [80] R. B. Kline, Principles and Practice of Structural Equation Modeling, 3rd edition, The Guilford Press, New York, 2011.
    [81] B. Byrne, Structural Equation Modeling with AMOS, 3rd edition, Routledge, New York, 2016.
    [82] C. Kuzey, Contingent factors, extent of budget use and performance: A structural equation approach, Aust. Account. Rev., 26 (2016), 91–106. https://doi.org/10.1111/auar.12090 doi: 10.1111/auar.12090
    [83] V. Singh, S. K. Sharma, Analyzing the moderating effects of respondent type and experience on the fuel efficiency improvement in air transport using structural equation modeling, Eur. Transp. Res. Rev., 8 (2016), 1–20. https://doi.org/10.1007/s12544-016-0199-3 doi: 10.1007/s12544-016-0199-3
    [84] A. C. Davison, D. Kuonen, An introduction to the bootstrap with applications in R, Stat. Comput. Stat. Graph. Newsl., 13 (2002), 6–11.
    [85] M. Wood, Bootstrapped confidence intervals as an approach to statistical inference, Organ. Res. Methods, 8 (2005), 454–470. https://doi.org/10.1177/1094428105280059 doi: 10.1177/1094428105280059
    [86] S. Streukens, S. Leroi-Werelds, Bootstraping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results, Eur. Manag. J., 34 (2016), 618–632. https://doi.org/10.1016/j.emj.2016.06.003 doi: 10.1016/j.emj.2016.06.003
    [87] Z. Awang, W. M. A. W. Afthanorhan, M. A. M. Asri, Parametric and non parametric approach in structural equation modeling (SEM): The application of bootstrapping, Mod. Appl. Sci., 9 (2015), 58–67. https://doi.org/10.5539/mas.v9n9p58 doi: 10.5539/mas.v9n9p58
    [88] J. Hair, W. Black, B. Babin, R. Anderson, Multivariate Data Analysis, 8th edition, Cengage Learning EMEA, Hampshire, 2018.
    [89] T. Özkan, T. Lajunen, Why are there sex differences in risky driving? The relationship between sex and gender‐role on aggressive driving, traffic offences, and accident involvement among young Turkish drivers, Aggressive Behav. Off., 31 (2005), 547–558. https://doi.org/10.1002/ab.20062 doi: 10.1002/ab.20062
    [90] T. Özkan, T. Lajunen, What causes the differences in driving between young men and women? The effects of gender roles and sex on young drivers' driving behaviour and self-assessment of skills, Transport. Res. F-Traf., 9 (2006), 269–277. https://doi.org/10.1016/j.trf.2006.01.005 doi: 10.1016/j.trf.2006.01.005
    [91] S. Oltedal, T. Rundmo, The effects of personality and gender on risky driving behaviour and accident involvement, Safety Sci., 44 (2006), 621–628. https://doi.org/10.1016/j.ssci.2005.12.003 doi: 10.1016/j.ssci.2005.12.003
    [92] P. Obst, K. Armstrong, S. Smith, T. Banks, Age and gender comparisons of driving while sleepy: Behaviours and risk perceptions, Transp. Res. F-Traf., 14 (2011), 539–542. https://doi.org/10.1016/j.trf.2011.06.005 doi: 10.1016/j.trf.2011.06.005
    [93] I. Oppenheim, T. Oron-Gilad, Y. Parmet, D. Shinar, Can traffic violations be traced to gender-role, sensation seeking, demographics and driving exposure? Transp. Res. F-Traf., 43 (2016), 387–395. https://doi.org/10.1016/j.trf.2016.06.027 doi: 10.1016/j.trf.2016.06.027
    [94] C. Atombo, C. Wu, E. O. Tettehfio, A. A. Agbo, Personality, socioeconomic status, attitude, intention and risky driving behavior, Cogent. Psychol., 4 (2017), 1376424. https://doi.org/10.1080/23311908.2017.1376424 doi: 10.1080/23311908.2017.1376424
    [95] O. Oviedo-Trespalacios, B. Scott-Parker, The sex disparity in risky driving: A survey of Colombian young drivers, Traffic Inj. Prev., 19 (2018), 9–17. https://doi.org/10.1080/15389588.2017.1333606 doi: 10.1080/15389588.2017.1333606
    [96] P. Ventsislavova, D. Crundall, P. Garcia-Fernandez, C. Castro, Assessing willingness to engage in risky driving behaviour using naturalistic driving footage: The role of age and gender, Int. J. Env. Res. Pub. He., 18 (2021), 10227. https://doi.org/10.3390/ijerph181910227 doi: 10.3390/ijerph181910227
    [97] L. Jing, W. Shan, Zhang, Y., Risk preference, risk perception as predictors of risky driving behaviors: The moderating effects of gender, age, and driving experience, J. Transp. Saf. Secur., 15 (2023), 467–492. https://doi.org/10.1080/19439962.2022.2086953 doi: 10.1080/19439962.2022.2086953
    [98] A. Aluja, F. Balada, O. García, L. F. García, Psychological predictors of risky driving: The role of age, gender, personality traits (Zuckerman's and Gray's models), and decision-making styles, Front. Psychol., 14 (2023), 1058927. https://doi.org/10.3389/fpsyg.2023.1058927 doi: 10.3389/fpsyg.2023.1058927
    [99] J. P. Byrnes, D. C. Miller, W. D. Schafer, Gender differences in risk taking: A meta-analysis, Psychol. Bull., 125 (1999), 367–383. https://doi.org/10.1037/0033-2909.125.3.367 doi: 10.1037/0033-2909.125.3.367
    [100] M. Niederle, L. Vesterlund, Do women shy away from competition? Do men compete too much? Q. J. Econ., 122 (2007), 1067–1101. https://doi.org/10.1162/qjec.122.3.1067 doi: 10.1162/qjec.122.3.1067
    [101] P. Brañas-Garza, V. Capraro, E. Rascón-Ramírez, Gender differences in altruism on Mechanical Turk: Expectations and actual behavior, Econ. Lett., 170 (2018), 19–23. https://doi.org/10.1016/j.econlet.2018.05.022 doi: 10.1016/j.econlet.2018.05.022
    [102] D. G. Rand, V. L. Brescoll, J. A. C. Everett, V. Capraro, H. Barcelo, Social heuristics and social roles: Intuition favors altruism for women but not for men, J. Exp. Psychol. Gen., 145 (2016), 389–396. https://doi.org/10.1037/xge0000154 doi: 10.1037/xge0000154
    [103] D.G. Rand, Social dilemma cooperation (unlike Dictator Game giving) is intuitive for men as well as women, J. Exp. Soc. Psychol., 73 (2017), 164–168. https://doi.org/10.1016/j.jesp.2017.06.013 doi: 10.1016/j.jesp.2017.06.013
    [104] V. Capraro, Gender differences in lying in sender-receiver games: A meta-analysis, Judgm. Decis. Mak., 13 (2018), 345–355. https://doi.org/10.2139/ssrn.2930944 doi: 10.2139/ssrn.2930944
    [105] V. Capraro, J. Sippel, Gender differences in moral judgment and the evaluation of gender-specified moral agents, Cogn. Process., 4 (2017), 399–405. https://doi.org/10.1007/s10339-017-0822-9 doi: 10.1007/s10339-017-0822-9
    [106] B. Scott-Parker, M. K. Hyde, B. Watson, M. J. King, Speeding by young novice drivers: What can personal characteristics and psychosocial theory add to our understanding? Accid. Anal. Prev., 50 (2013), 242–250. https://doi.org/10.1016/j.aap.2012.04.010 doi: 10.1016/j.aap.2012.04.010
    [107] P. Delhomme, M. Cristea, F. Paran, Implementation of automatic speed enforcement: Covariation with young drivers' reported speeding behaviour and motivations, Eur. Rev. Appl. Psychol., 64 (2014), 131–139. https://doi.org/10.1016/j.erap.2013.07.009 doi: 10.1016/j.erap.2013.07.009
    [108] S. E. Forward, Speeding behaviour of adolescents and the image of a typical person who speeds, Trans. Transp. Sci., 11 (2020), 12–24. https://doi.org/10.5507/tots.2020.005 doi: 10.5507/tots.2020.005
    [109] A. Rivis, C. Abraham, S. Snook, Understanding young and older male drivers' willingness to drive while intoxicated: The predictive utility of constructs specified by the theory of planned behaviour and the prototype willingness model, Br. J. Health Psychol., 16 (2011), 445–456. https://doi.org/10.1348/135910710X522662 doi: 10.1348/135910710X522662
    [110] C. Potard, V. Kubiszewski, G. Camus, R. Courtois, S. Gaymard, Driving under the influence of alcohol and perceived invulnerability among young adults: An extension of the theory of planned behavior, Transp. Res. F-Traf., 55 (2018), 38–46. https://doi.org/10.1016/j.trf.2018.02.033 doi: 10.1016/j.trf.2018.02.033
    [111] C. Lee, J. G. Brown, K. H. Beck, Intentions and willingness to drive while drowsy among university students: An application of an extended theory of planned behavior model, Accid. Anal. Prev., 93 (2016), 113–123. https://doi.org/10.1016/j.aap.2016.05.002 doi: 10.1016/j.aap.2016.05.002
    [112] A. N. H. Ibrahim, M. N. Borhan, N. A. Mhd Yunin, Getting young drivers to buckle up: Exploring the factors influencing seat belt use by young drivers in Malaysia, Sustainability, 13 (2021), 162. https://doi.org/10.3390/su13010162 doi: 10.3390/su13010162
    [113] B. Scott-Parker, B. Watson, M. J. King, Understanding the psychosocial factors influencing the risky behaviour of young drivers, Transp. Res. F-Traf., 12 (2009), 470–482. https://doi.org/10.1016/j.trf.2009.08.003 doi: 10.1016/j.trf.2009.08.003
    [114] P. Sheeran, T. L. Webb, The intention–behavior gap, Soc. Personal. Psychol., 10 (2016), 503–518. https://doi.org/10.1111/spc3.12265 doi: 10.1111/spc3.12265
    [115] M. Conner, P. Norman, Understanding the intention-behavior gap: The role of intention strength, Front. Psychol., 13 (2022), 923464. https://doi.org/10.3389/fpsyg.2022.923464 doi: 10.3389/fpsyg.2022.923464
    [116] J. Todd, E. Kothe, B. Mullan, L. Monds, Reasoned versus reactive prediction of behaviour: A meta-analysis of the prototype willingness model, Health Psychol. Rev., 10 (2016), 922895. https://doi.org/10.1080/17437199.2014.922895 doi: 10.1080/17437199.2014.922895
    [117] H. Y. Berg, Reducing crashes and injuries among young drivers: What kind of prevention should we be focusing on? Inj. Prev., 12 (2006), i15–i18.
    [118] J. Li, S. Amr, E. R. Braver, P. Langenberg, M. Zhan, G. S. Smith, et al., Are current law enforcement strategies associated with a lower risk of repeat speeding citations and crash involvement? A longitudinal study of speeding Maryland drivers, Ann. Epidemiol., 21 (2011), 641–647. https://doi.org/10.1016/j.annepidem.2011.03.014 doi: 10.1016/j.annepidem.2011.03.014
    [119] A.T. Mccartt, W. Hu, Effects of red light camera enforcement on red light violations in Arlington County, Virginia, J. Saf. Res., 48 (2014), 57–62. https://doi.org/10.1016/j.jsr.2013.12.001 doi: 10.1016/j.jsr.2013.12.001
    [120] K. Shaaban, A. Pande, Evaluation of red-light camera enforcement using traffic violations, J. Traffic Transp. Engl. Ed., 5 (2018), 66–72. https://doi.org/10.1016/j.jtte.2017.04.005 doi: 10.1016/j.jtte.2017.04.005
    [121] M. Stead, S. Tagg, A. M. MacKintosh, D. Eadie, Development and evaluation of a mass media theory of planned behaviour intervention to reduce speeding, Health Educ. Res., 20 (2005), 36–50. https://doi.org/10.1093/her/cyg093 doi: 10.1093/her/cyg093
    [122] R. P. Yadav, M. A. Kobayashi, Systematic review: Effectiveness of mass media campaigns for reducing alcohol-impaired driving and alcohol-related crashes, BMC Public Health, 15 (2015), 857. https://doi.org/10.1186/s12889-015-2088-4 doi: 10.1186/s12889-015-2088-4
    [123] S. Shaikh, L. A. Baig, M. Polkwoski, Effectiveness of media awareness campaigns on the proportion of vehicles that give space to ambulances on roads: An observational study, Pak. J. Med. Sci., 33 (2017), 221–226. https://doi.org/10.12669/pjms.331.12176 doi: 10.12669/pjms.331.12176
    [124] S. Shaikh, I. Hashmi, L. A. Baig, M. Khan, F. Ahmed, N. Khan, et al., Assessment of a mass media campaign on giving way to ambulances in five cities of Pakistan, J. Pak. Med. Assoc., 70 (2020), 1510–1515. https://doi.org/10.5455/JPMA.18906 doi: 10.5455/JPMA.18906
    [125] T. Senserrick, R. Ivers, S. Boufous, H. Y. Chen, R. Norton, M. Stevenson, et al., Young driver education programs that build resilience have potential to reduce road crashes, Pediatrics, 124 (2009), 1287–1292. https://doi.org/10.1542/peds.2009-0659 doi: 10.1542/peds.2009-0659
    [126] J. P. Assailly, Road safety education: What works? Patient Educ. Couns., 100 (2017), S24–S29. https://doi.org/10.1016/j.pec.2015.10.017 doi: 10.1016/j.pec.2015.10.017
    [127] I. Bocina, J. Hasukic, Safe driving is cool—Project on young driver road traffic injury prevention, Croatia, 2018–2019, Eur. J. Public Health, 30 (2020). https://doi.org/10.1093/eurpub/ckaa166.862 doi: 10.1093/eurpub/ckaa166.862
    [128] X. Wang, L. Xu, A. Li, Analysis of drivers' lane-changing behavior on approaching signalized intersections, Adv. Transp. S., 62 (2024), 37–54.
    [129] L. Xu, Z. Liu, Improved method of intersection lane guidance system based on lane selection, J. East. China Jiaotong Univ., 35 (2018), 14–19. https://doi.org/10.16749/j.cnki.jecjtu.2018.01.003 doi: 10.16749/j.cnki.jecjtu.2018.01.003
    [130] L. Ye, S. Liu, Z. Ding, M. Guo, The impact of family climate for road safety on young drivers' risk driving behavior, J. Transp. Syst. Eng. Inf. Technol., 19 (2019), 233–238. https://doi.org/10.16097/j.cnki.1009-6744.2019.01.035 doi: 10.16097/j.cnki.1009-6744.2019.01.035
    [131] R. H. Henk, B. R. Fette, A. J. Ballard, A peer-to-peer safety program to reduce teen driver crashes in Texas, ITE J., 77 (2007), 40–46. https://doi.org/10.1049/iet-its:20070001 doi: 10.1049/iet-its:20070001
    [132] P. K. Julie, N. A. Franke-Wilson, The effectiveness of a peer lead smart driving campaign on high school students' driving habits, J. Trauma Acute Care, 67 (2009), S67–S69. https://doi.org/10.1097/TA.0b013e3181a6f119 doi: 10.1097/TA.0b013e3181a6f119
    [133] L. Weston, E. Hellier, Designing road safety interventions for young drivers: The power of peer influence, Transp. Res. F-Traf., 55 (2018), 262–271. https://doi.org/10.1016/j.trf.2018.03.003 doi: 10.1016/j.trf.2018.03.003
    [134] B. J. Hansma, S. Marulanda, H. Y. W. Chen, B. Donmez, Role of habits in cell phone-related driver distractions, Transp. Res. Rec., 2674 (2020), 254–262. https://doi.org/10.1177/0361198120953157 doi: 10.1177/0361198120953157
    [135] M. Gerrard, F. X. Gibbons, A. E. Houlihan, M. L. Stock, E. A. Pomery, A dual-process approach to health risk decision making: The prototype willingness model, Dev. Rev., 28 (2008), 29–61. https://doi.org/10.1016/j.dr.2007.10.001 doi: 10.1016/j.dr.2007.10.001
    [136] B. Demir, T. Özkan, S. Demir, Pedestrian violations: Reasoned or social reactive? Comparing theory of planned behavior and prototype willingness model, Transport. Res. F-Traf., 60 (2019), 560–572. https://doi.org/10.1016/j.trf.2018.11.012 doi: 10.1016/j.trf.2018.11.012
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1419) PDF downloads(108) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog