
According to the mechanism of drug inhibition of hepatitis B virus and the analysis of clinical data, it is found that random factors in long-term treatment produced uncertainty and resistance to hepatitis B virus infection rate, a model of hepatitis B virus with random interference infection rate is established. By constructing Lyapunov function and using Ito's formula, it is proved that the stochastic hepatitis B model has a unique global positive solution. The sufficient conditions for the asymptotic behavior of solution are given. The relationship between noise intensity and oscillation amplitude is obtained. The effects of noise intensity on the asymptotic behavior of the model and antiviral therapy are simulated, and the conclusion of the theorem is verified. An interesting phenomenon is also found that with the increase of noise intensity, the number of drug-resistant viruses will decrease, which will affect the accuracy of a single test of HBV DNA. Therefore, it is suggested to increase the frequency and interval of tests.
Citation: Dong-Me Li, Bing Chai, Qi Wang. A model of hepatitis B virus with random interference infection rate[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8257-8297. doi: 10.3934/mbe.2021410
[1] | Yiping Tan, Yongli Cai, Zhihang Peng, Kaifa Wang, Ruoxia Yao, Weiming Wang . Dynamics of a stochastic HBV infection model with drug therapy and immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 7570-7585. doi: 10.3934/mbe.2022356 |
[2] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[3] | Jiying Ma, Shasha Ma . Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China. Mathematical Biosciences and Engineering, 2023, 20(2): 3070-3098. doi: 10.3934/mbe.2023145 |
[4] | Maysaa Al Qurashi, Saima Rashid, Fahd Jarad . A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay. Mathematical Biosciences and Engineering, 2022, 19(12): 12950-12980. doi: 10.3934/mbe.2022605 |
[5] | Kangbo Bao, Qimin Zhang, Xining Li . A model of HBV infection with intervention strategies: dynamics analysis and numerical simulations. Mathematical Biosciences and Engineering, 2019, 16(4): 2562-2586. doi: 10.3934/mbe.2019129 |
[6] | Fathalla A. Rihan, Hebatallah J. Alsakaji . Analysis of a stochastic HBV infection model with delayed immune response. Mathematical Biosciences and Engineering, 2021, 18(5): 5194-5220. doi: 10.3934/mbe.2021264 |
[7] | Suqi Ma . Low viral persistence of an immunological model. Mathematical Biosciences and Engineering, 2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809 |
[8] | Ming-Zhen Xin, Bin-Guo Wang, Yashi Wang . Stationary distribution and extinction of a stochastic influenza virus model with disease resistance. Mathematical Biosciences and Engineering, 2022, 19(9): 9125-9146. doi: 10.3934/mbe.2022424 |
[9] | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo . Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070 |
[10] | Bao-Zhu Guo, Li-Ming Cai . A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences and Engineering, 2011, 8(3): 689-694. doi: 10.3934/mbe.2011.8.689 |
According to the mechanism of drug inhibition of hepatitis B virus and the analysis of clinical data, it is found that random factors in long-term treatment produced uncertainty and resistance to hepatitis B virus infection rate, a model of hepatitis B virus with random interference infection rate is established. By constructing Lyapunov function and using Ito's formula, it is proved that the stochastic hepatitis B model has a unique global positive solution. The sufficient conditions for the asymptotic behavior of solution are given. The relationship between noise intensity and oscillation amplitude is obtained. The effects of noise intensity on the asymptotic behavior of the model and antiviral therapy are simulated, and the conclusion of the theorem is verified. An interesting phenomenon is also found that with the increase of noise intensity, the number of drug-resistant viruses will decrease, which will affect the accuracy of a single test of HBV DNA. Therefore, it is suggested to increase the frequency and interval of tests.
In real life, in the face of emerging and re-emerging infectious diseases, human behavior and environmental noise interference will produce many uncertain factors, which may accelerate the spread of the disease or make the disease exist for a long time, or even make the local epidemic situation beyond control. For example, currently popular novel coronavirus pneumonia (NCP), long-term existence of AIDS (AIDS), hepatitis B virus (HBV) and seasonal influenza virus (influenza virus). For these diseases, although there is no specific drug cure, standard treatment and appropriate prevention and control measures can control the trend of viral infection. In the long term treatment, drug tolerance and human activity with uncertain interference will affect the control of the transmission of the virus.
Many scholars find that the resistance of hepatitis B virus is affected by many factors when they study the mechanism of hepatitis B resistance. Zhang Jing et al. studied the changes of drug-resistant mutants in 268 cases of chronic hepatitis B patients and found that with the extension of drug treatment time, the increase probability of drug-resistant strains in different patients was different, but all of them would increase, even up to 100% [1]. Deng Jun et al. studied the mechanism of drug resistance of hepatitis B and found that multiple factors could lead to drug resistance, such as the reliability of viral polymerase, the pressure of drug selection, the patient's past drug use history and the patient's genetic factors (such as congenital metabolic defects), and the sensitive virus strains in the patient could mutate at one or more sites [2,3].
In order to be more practical, many scholars have combined the influence of environmental fluctuation factors to study the development trend of infectious diseases with stochastic models. Pang Haiyan et al. considered that variables oscillated around the equilibrium point caused by white noise, and the disturbance value was proportional to the amplitude of oscillation, thus establishing the virus dynamics model under immune response damage, and obtained the conclusion that the positive equilibrium point of the model was stable under random disturbance [4,5]. Xie Falan et al. took into account that the regeneration ability of liver cells was interfered by environmental factors, so that the infection rate would fluctuate around a certain average value. They established a random hepatitis B virus infection model with Logistic liver cell growth, and proved that the solution of this model had a unique stable distribution [6,7]. Hui Hongwen et al. established an HBV model with nonlinear incidence and random interference, obtained sufficient conditions for the exponential stability of the free virus in infected cells, estimated the oscillating behavior of the model near its deterministic model, and verified it by numerical simulation [8]. Bao Kangbo et al. analyzed the influence of environmental noise on stochastic hepatitis B virus dynamics model, and observed that high environmental noise intensity can inhibit the outbreak of hepatitis B, indicating the important role of intervention strategies in the control of hepatitis B [9,10]. Taking into account the variables directly proportional to the ambient noise, Liu et al. constructed a three-dimensional stochastic virus infection model, and obtained sufficient conditions for the ergonomically stationary distribution of the model solution and conditions for the extinction of the disease [11,12,13].
Xia Peiyan established a random HTLV-I model with CTL immune response by considering the random perturbation of exposure rate, and proved the existence of a unique global positive solution to the model, and found the random threshold values of virus extinction, latent and epidemic [14,15,16]. By considering the random interference of the environment on the exposure rate, Cui Xiaowei established the dynamic model of virus infection with random immune effect, proved that the unique global positive solution existed in the model solution, obtained the threshold conditions of virus extinction and persistence, and gave the upper and lower bounds of the persistence, and verified the theory through numerical simulation [17]. The research with stochastic model changes the law of the original determined model [18,19,20], and it is a meaningful work to pay attention to the problems of environment and personal noise. For patients with hepatitis B virus infection, white noise will interfere with the original infection rate in the presence of external environmental interference or drug resistance during long-term treatment. Therefore, the dynamic model of hepatitis B virus with random infection rate can be used to predict the effect of virus control under treatment more accurately. This is worthwhile work.
In the second part of this paper, according to the statistical data rules of drug treatment of hepatitis B virus, it is found that drug-resistant HBV is uncertain due to viral mutation, which resulted in the randomness of the infection rate of healthy cells, and a stochastic hepatitis B virus dynamics model is established. In the third part, Lyapunov function and Ito's formula are used to prove the existence and uniqueness of the global positive solution of the model and the asymptotic property of the model solution. In the fourth part, several cases of the influence of noise intensity on HBV treatment are simulated numerically, and the rationality of the theorem is also verified. By comparing the results of no noise interference model, it is found that strong noise can affect the variation law of hepatitis B virus.
According to the principle of action of anti-hepatitis B virus drugs and the rule of therapeutic test data, it was found that the drug resistance of the virus was the main reason for the decrease of drug efficacy [21]. Therefore, the virus can be divided into drug sensitive virus and drug resistant virus. It is assumed that the inhibition rate of drugs to the resistant virus is related to the mutation rate of the virus, and the following kinetic model of hepatitis B virus with drug resistance is established.
{T′(t)=λ−KsVs(t)T(t)−KrVr(t)T(t)−αT(t)T′s(t)=(1−u)KsVs(t)T(t)−αTs(t)V′s(t)=NsαTs(t)−δVs(t)−f(CN)VsT′r(t)=uKsVs(t)T(t)+KrVr(t)T(t)−αTr(t)V′r(t)=NrαTr(t)−δVr(t)−β(u)f(CN)Vr | (1) |
here T, Ts, Vs, Tr and Vr respectively represent the number of uninfected hepatocytes at time t, the number of hepatocytes infected with drug-sensitive HBV, the number of drug-sensitive HBV, the number of hepatocytes infected with drug-resistant HBV, and the number of drug-resistant HBV; λ is the growth rate of uninfected hepatocytes; α and δ are the death rates of hepatocytes and viruses; Ks and Kr respectively denote the infection rate of drug-sensitive HBV and drug-resistant HBV on uninfected hepatocytes; Ns and Nr respectively denote the total number of viruses produced by drug-sensitive infected hepatocytes and drug-resistant infected hepatocytes during their life cycle; the mutation rate between drug-sensitive hepatocytes and drug-resistant hepatocytes is given by u; f(CN) is the rate at which drug therapy causes the decrease of HBV; CN denotes the average steady-state plasma concentration in a patient; β(u) denotes the inhibition rate of drug therapy on drug-resistant HBV; all parameters are positive. Suppose that f(CN) is a bounded function, and β=1−u. The basic regeneration number is as follows
Rs=λNsKs(1−u)α(δ+f(CN)),Rr=λNrKrα(δ+βf(CN)). | (2) |
The model has four equilibrium points, namely, the disease-free equilibrium point E0, the sensitive virus equilibrium point Es, the drug-resistant virus equilibrium point Er and the double virus equilibrium point E*. When the basic regeneration number meets different conditions, the equilibrium point is globally asymptotically stable.
In drug therapy, because the mechanism of its action on the virus is different from the body's tolerance, the blood drug concentration is inversely proportional to the rate of decline of HBV DNA, which can be used to determine the occurrence of HBV mutation. Taking lamivudine as an example, Su Ying et al. studied its drug-resistant mutation site in the catalytic region of HBV polymerase or YMDD sequence in the C region, which was due to the mutation of rtM204V /I (methionine M at position 204 was replaced by isoleucine I or valine V), and the drug-resistant strains formed by the mutation of this sequence were called YMDD variants [2]. It was also found that there were some variations in the B region. The susceptibility of the virus to the drug is slightly reduced when only the B region variation is present, and is greatly reduced when they are accompanied by the RTM204V/I variation. Due to the differences in the variation types of HBV in patients, some patients only have YMDD variant strains in the body, some patients only have mutations in the B region, and some have these two variants. So the more mutated sites on HBV DNA, the more likely the virus is to infect liver cells, which leads to different rates of infection of the mutant strains on healthy liver cells.
According to the statistical analysis of the duration of medication and the number of virus strains [1], the length of treatment would also lead to different probabilities of YMDD variant strains appearing in patients, as shown in Figure 1. Even for the same treatment duration, the percentage of patients with the YMDD variant varies, as shown in Figure 2. Due to the influence of individual genetic factors or variation characteristics in B region in vivo, the replication rate of HBV in patients is different, and the infection rate of the virus on liver cells is uncertain.
In [22], the hepatitis B virus genome is double-stranded relaxed circular DNA (rcDNA). When HBV DNA enters the cell, the rcDNA becomes covalently closed circular DNA (cccDNA), which is used as a template to start the replication process of the virus. Therefore, cccDNA is stable in infected liver cells, and there are about 5-50 cccDNA copies in each liver cell. When liver cells are damaged, cccDNA in the liver nucleus is released into the blood, so the amount of cccDNA detected in liver tissue and serum can be used to predict the number of infected cells. Therefore, the total amount of cccDNA and HBV DNA can be measured to determine the relationship between infected liver cells and the virus. In [23], changes in liver tissue cccDNA, serum cccDNA, and HBV DNA in 88 patients with chronic hepatitis B were recorded before and at 24, 48, and 96 weeks after treatment. The data are shown in Table 1.
DNA(log10 copies/ ml) | Before treatment | 24 weeks | 48 weeks | 60 weeks |
hepatic tissue cccDNA | 3.83 | 2.30 | 1.25 | 0.94 |
serum cccDNA | 7.12 | 3.37 | 1.40 | 0.21 |
serum HBV DNA | 6.22 | 3.01 | 0.62 | 0.29 |
The total amount of cccDNA can be considered to be composed of cccDNA in liver tissue and cccDNA in serum, represented by variable x; The amount of serum HBV DNA was denoted by variable y. Statistical analysis shows that the two are linearly correlated and satisfy the relationship y=0.6302x−0.6822, and the degree of correlation is r=0.9906. The drawing graph is shown in Figure 3.
According to the image and fitting results, it can be approximately believed that there is a linear proportional relationship between infected liver cells and virus, as shown in the following expression
(H) Vs=˜k1Ts,Vr=˜k1Tr. |
To control the infection of healthy liver cells, that means to reduce the infection rate. According to the above data analysis, it is found that multiple factors during treatment will interfere with the infection rate, which may lead to some changes in the results given by Model (1). If the influence of random factors on the infection rate is considered, the infection rate Kr is rewritten into the following form
Krdt→Krdt+σdB(t). |
Let (Ω,Φ,P) be a complete probability space and Φ is the σ -algebra. In this probability space, a σ -algebraic stream {Ft}t⩾0 is defined, which satisfies the usual conditions.
1) For all 0⩽s<t<∞, Φs⊂Φt⊂Φ,
2) Right continuity: for all t⩾0, Φt=∩s>tΦs.
Moreover, the B(t) belongs to the independent Brownian movement in this probability space, and B(0)=0. σ2>0 is noise intensity.
In summary, the following hepatitis B virus model with random interference infection rate is established based on Model (1):
{dT=(λ−KsVsT−KrVrT−αT)dt−σVrTdB(t),dTs=((1−u)KsVsT−αTs)dt,dVs=(NsαTs−δVs−f(CN)Vs)dt,dTr=(uKsVsT+KrVrT−αTr)dt+σVrTdB(t),dVr=(NrαTr−δVr−β(u)f(CN)Vr)dt. | (3) |
The variables and other parameters in Model (3) are the same as those in Model (1).
Theorem 1. For any given initial value (T(0),Ts(0),Vs(0),Tr(0),Vr(0))∈R5+ , Model (3) has a unique global positive solution (T(t),Ts(t),Vs(t),Tr(t),Vr(t))(t⩾0) . That is, (T(t),Ts(t),Vs(t),Tr(t),Vr(t))∈R5+ a.s..
Proof. The function at the right end of Model (3) satisfies the local Lipschitz condition, so any given initial value (T(0),Ts(0),Vs(0),Tr(0),Vr(0))∈R5+, there is a unique local solution y(t)=(T(t),Ts(t),Vs(t),Tr(t),Vr(t)) on [0,τe), where τe is the blasting time, the solution is proved to be global, only need to prove τe=∞ a.s..
Take a sufficiently large positive number k0⩾0, so that every component of the initial y(0) is a member of the interval [1k0,k0]. For any k⩾k0, k∈N+, define the stopping time
τk=inf{t∈[0,τe):T(t)∉(1k,k),Ts(t)∉(1k,k),Vs(t)∉(1k,k),Tr(t)∉(1k,k),Vr(t)∉(1k,k)}, |
here inf∅=∞ (∅ stands for the empty set).
From the definition of the stop time, we know that when k→∞, τk monotonically increases. Let τ∞=limk→∞τk, then τ∞⩽τe a. s..
If τ∞=∞ can be proved for all t⩾0 and (T(t),Ts(t),Vs(t),Tr(t),Vr(t))∈R5+, then τe=∞. Use contradiction. If not, there are constants ˜t>0 and δ∈(0,1), such that P{ τk⩽˜t} >δ, so there is an integer k1⩾k0, and for any k⩾k1, there is
P{ τk⩽˜t} ⩾δ. | (4) |
when t⩽τk, for each k
d(T+Ts+12NsVs+Tr+12NrVr)⩽(λ−c(T+Ts+12NsVs+Tr+12NrVr))dt. | (5) |
Thus, it is obtained from Eq (5)
T(t)+Ts(t)+12NsVs(t)+Tr(t)+12NrVr(t)⩽M, | (6) |
where
M=max{λ/c,T(0)+Ts(0)+12NsVs(0)+Tr(0)+12NrVr(0)} |
c=min{α2,δ+β(u)f(CN)} |
Define the function V : R5+→R+
V(T,Ts,Vs,Tr,Vr)=(T+a−alnTa)+(Ts+1−lnTs)+1Ns(Vs+1−lnVs)+(Tr+1−lnTr)+1Nr(Vr+1−lnVr), |
where a is the positive number to be determined.
It is easy to prove that inequality u+1−lnu>0(u>0) is true, so there is V(T,Ts,Vs,Tr,Vr)>0. From Itˆo formula, we get
dV=LVdt+(1−aT)σVrTdB1(t)+(1−1Tr)σVrTdB(t), |
where
LV=(1−aT)(λ−KsVsT−KrVrT−αT)+(1−1Ts)((1−u)KsVsT−αTs)+1Ns(1−1Vs)(NsαTs−δVs−f(CN)Vs)+(1−1Tr)(KsVsT+KrVrT−αTr)+1Nr(1−1Vr)(NrαTr−δVr−βf(CN)Vr)+12aσ2V2r+12σ2V2rT2T2r⩽λ+KsVsa+KrVra+αa+2α+1Ns(δ+f(CN))−1Ns(δ+f(CN))Vs+1Nr(δ+βf(CN))−1Nr(δ+βf(CN))Vr+12aσ2V2r+12σ2V2rT2T2r. | (7) |
Let
a=min{δ+f(CN)KsNs,δ+βf(CN)KrNr} |
Based on Eq (6), Eq (7) can be reduced to
LV⩽λ+KsVsa+KrVra+αa+2α+1Ns(δ+f(CN))−1Ns(δ+f(CN))Vs+1Nr(δ+βf(CN))−1Nr(δ+βf(CN))Vr+2aσ2N2rM2+12σ2˜k21M2⩽K, |
where
K=λ+αa+2α+1Ns(δ+f(CN))+1Nr(δ+βf(CN))+2aσ2N2rM2+12σ2˜k21M2. |
Therefore
dV⩽Kdt+(1−aT)σVrTdB1(t)+(1−1Tr)σVrTdB(t). | (8) |
Integrate Eq (8) from 0 to τk∧˜t and take the expectation
EV(T(τk∧˜t),Ts(τk∧˜t),Vs(τk∧˜t),Tr(τk∧˜t),Vr(τk∧˜t))⩽V(y(0))+K˜t. | (9) |
Let Ωk={τk⩽˜t}, then for any k⩾k1, as shown in Eq (4), there is P(Ωk)⩾δ, and for any ω∈Ωk, as can be seen from the definition of stop time, at least one of them is equal to k or 1k, so there is
V(T(τk,ω),Ts(τk,ω),Vs(τk,ω),Tr(τk,ω),Vr(τk,ω))⩾(k+1−lnk)∧(1k+1+lnk). |
It can be obtained from Eq (9) and the above equation
V(y(0))+K˜t⩾E(IΩk(ω)V(T(τk,ω),Ts(τk,ω),Vs(τk,ω),Tr(τk,ω),Vr(τk,ω)))⩾δ(k+1−lnk)∧(1k+1+lnk), |
where IΩk represents an indicator function of Ωk.
When k→∞, the above equation is in contradiction with the boundedness of function V, so there must be τ∞=∞ a.s., that is, the solution is positive and globally unique.
The result of Theorem 1 and Eq (3) can be obtained
T+Ts+12NsVs+Tr+12NrVr⩽λc+e−ct(T(0)+Ts(0)+12NsVs(0)+Tr(0)+12NrVr(0)). |
For any given initial value (T(0),Ts(0),Vs(0),Tr(0),Vr(0)), the solution of Model (1) is ultimately bounded, thus the region
Γ*={(T,Ts,Vs,Tr,Vr)∈R3+:T+Ts+12NsVs+Tr+12NrVr⩽λc} |
is the positive invariant set of Model (3). Let's assume (T(0),Ts(0),Vs(0),Tr(0),Vr(0))∈Γ*, so all the questions that follow will be discussed in Γ*.
Theorem 2. If Rs<1−u and Rr<1 , the solution (T(t),Ts(t),Vs(t),Tr(t),Vr(t)) of Model (3) has
limt→∞sup1tE∫t0((T−λα)2+T2s+T2r+V2s+V2r)ds⩽(4+C1+2C2)N2rλ4σ2mc4, |
where m=min{α,12N2s(δ+f(CN)),12N2r(δ+f(CN)),αNs(δ+f(CN))2(1−u)λcKs,12C2α},
C1=(1−u)λcKsNs2(δ+f(CN))+12C2+(αNs+1Ns(δ+f(CN)))22αN2s(δ+f(CN)+(αNr+1Nr(δ+β(u)f(CN)))22αN2r(δ+β(u)f(CN)), |
C2=min{ 1Ns(δ+f(CN))uλcKs, 1Nr(δ+β(u)f(CN))λcKr} . |
Proof. Define the C2 -function Vi(i=1,2,3,4,5)
V1=12(T−λα)2,V2=Ts+Tr+1NsVs+1NrVr, |
V3=12(T−λα+Ts+Tr+1NsVs+1NrVr)2,V4=12T2s,V5=12T2r. |
Applying Itˆo formula to Vi(i=1,2,3,4,5), we get
dV1=LV1dt−(T−λα)σVrTdB(t),dV2=LV2dt+σVrTdB(t), |
dV3=LV3dt,dV4=LV4dt,dV5=LV5dt+TrσVrTdB(t). | (10) |
From Rs<1−u and Rr<1, Eq (10) can be reduced to the following form
LV1=(T−λα)(λ−KsVsT−KrVrT−αT)+12σ2V2rT2 |
⩽−α(T−λα)2−λαKs(T−λα)Vs−λαKr(T−λα)Vr+2σ2N2rλ4c4, | (11) |
LV2=KsVsT+KrVrT−1Ns(δ+f(CN))Vs+1Nr(δ+β(u)f(CN))Vr+12σ2V2rT2=KsVs(T−λα)−(1Ns(δ+f(CN))−λαKs)Vs+KrVr(T−λα)−(1Nr(δ+β(u)f(CN))−λαKr)Vr+12σ2V2rT2⩽KsVs(T−λα)+KrVr(T−λα)+2σ2N2rλ4c4, | (12) |
LV3=(T−λα+Ts+Tr+1NsVs+1NrVr)(λ−αT−1Ns(δ+f(CN))Vs−1Nr(δ+β(u)f(CN))Vr)+σ2V2rT2⩽−α(T−λα)2−1N2s(δ+f(CN))V2s−1N2r(δ+β(u)f(CN))V2r−1Ns(δ+f(CN))Vs(Ts+Tr)−1Nr(δ+f(CN))Vr(Ts+Tr)−α(T−λα)(Ts+Tr)−1N2s(T−λα)Vs−1N2r(T−λα)Vr |
−1Ns(δ+f(CN))(T−λα)Vs−1Nr(δ+β(u)f(CN))(T−λα)Vr+4σ2N2rλ4c4, | (13) |
LV4=Ts((1−u)KsVsT−αTs)⩽λc(1−u)KsVsTs−αT2s, | (14) |
LV5=Tr(uKsVsT+KrVrT−αTr)+12σ2V2rT2⩽λc(uKsVsTr+KrVrTr)−αT2r+2N2rσ2λ4c4, | (15) |
We can define the function V From Vi(i=1,2,3,4,5)
V=C1(V1+λαV2)+V3+δ+f(CN)(1−u)λcKsNsV4+C2V5, |
where C1,C2 is the normal number to be determined.
Substitute Eqs (11)–(15) into Eq (10) to obtain
dV=LVdt−C1(T−2λα)σVrTdB(t)+C2TrσVrTdB(t), | (16) |
where
LV⩽−C1α(T−λα)2−α(T−λα)2−1N2s(δ+f(CN))V2s−1N2r(δ+β(u)f(CN))V2r−1Ns(δ+f(CN))Vs(Ts+Tr)−1Nr(δ+f(CN))Vr(Ts+Tr)−α(T−λα)(Ts+Tr) |
−1N2s(T−λα)Vs−1N2r(T−λα)Vr−1Ns(δ+f(CN))(T−λα)Vs−1Nr(δ+β(u)f(CN))(T−λα)Vr+12σ24T2r+δ+f(CN)NsVsTs−α(δ+f(CN))(1−u)λcKsNsT2s+C2λcuKsVsTr+C2λcKrVrTr−C2αT2r+2C1σ2N2rλ4c4+4σ2N2rλ4c4+2C2σ2N2rλ4c4. | (17) |
Inequality 2ab⩽a2+b2 and the expressions in the second, third and fourth lines of Eq (17) can be obtained
−α(T−λα)(Ts+Tr)=α(λα−T)Ts+α(λα−T)Tr⩽(1−u)λcKsNsα2(δ+f(CN))(T−λα)2+α(δ+f(CN))2(1−u)λcKsNsT2s+α2C2(T−λα)2+C2α2T2r, |
−(αNs+1Ns(δ+f(CN)))(T−λα)Vs⩽(αNs+1Ns(δ+f(CN)))22(1N2s(δ+f(CN))(T−λα)2+1N2s(δ+f(CN))2V2s, | (18) |
−(αNr+1Nr(δ+β(u)f(CN)))(T−λα)Vr |
⩽(αNr+1Nr(δ+β(u)f(CN)))22(1N2r(δ+β(u)f(CN))(T−λα)2+1N2r(δ+f(CN))2V2r. |
Choose
C1=(αNs+1Ns(δ+f(CN)))22αN2s(δ+f(CN)+(αNr+1Nr(δ+β(u)f(CN)))22αN2r(δ+β(u)f(CN)) | (19) |
+(1−u)λcKsNs2(δ+f(CN))+12C2, |
C2=min{ 1Ns(δ+f(CN))uλcKs, 1Nr(δ+β(u)f(CN))λcKr} , | (20) |
meet
C2uλcKs−1Ns(δ+f(CN))⩽0,C2λcKr−1Nr(δ+β(u)f(CN))⩽0. |
Therefore, when Eqs (19) and (20) are substituted into Eq (17), there is
LV⩽−α(T−λα)2−12N2s(δ+f(CN))V2s−12N2r(δ+f(CN))V2r−α(δ+f(CN))2(1−u)λcKsNsT2s+((1−u)λcKsNsα2(δ+f(CN))+(αNs+1Ns(δ+f(CN)))221N2s(δ+f(CN))+(αNr+1Nr(δ+β(u)f(CN)))22N2r(δ+β(u)f(CN))+α2C2−C1α)(T−λα)2+(C2uλcKs |
−1Ns(δ+f(CN)))VsTr+(C2λcKr−1Nr(δ+β(u)f(CN)))VrTr−12C2αT2r+C1σ2N2rλ4c4+4σ2N2rλ4c4+2C2σ2N2rλ4c4 | (21) |
⩽−α(T−λα)2−12N2s(δ+f(CN))V2s−12N2r(δ+f(CN))V2r−α(δ+f(CN))2(1−u)λcKsNsT2s−α(δ+f(CN))2(1−u)λcKsNsT2r+2C1σ2N2rλ4c4+4σ2N2rλ4c4+2C2σ2N2rλ4c4. |
Then substitute Eq (21) into Eq (16), and take the expectation of both ends after the integration from 0 to t, we get
E(V(t)−V(0))⩽−m1E∫t0(T−λα)2ds−m2E∫t0V2sds−m3E∫t0V2rds−m4E∫t0T2rds−m5E∫t0T2sds+(2C1σ2N2rλ4c4+4σ2N2rλ4c4+2C2σ2N2rλ4c4)t. |
Therefore
\mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - \frac{\lambda }{\alpha })}^2} + T_s^2 + T_r^2 + V_s^2 + V_r^2)} ds \leqslant \frac{{(2{C_1} + 4 + 2{C_{\text{2}}})N_r^2{\lambda ^4}{\sigma ^2}}}{{m{c^4}}}, |
where m = \min \{ \alpha , \frac{1}{{2N_s^2}}(\delta + f({C_N})), \frac{1}{{2N_r^2}}(\delta + f({C_N})), \frac{{\frac{\alpha }{{{N_s}(\delta + f({C_N}))}}}}{{2(1 - u)\frac{\lambda }{c}{K_s}}}, \frac{1}{2}{C_{\text{2}}}\alpha {\kern 1pt} {\kern 1pt} \}
According to Theorem 2, the solution of Model (3) will oscillate around the equilibrium point of Model (1). The amplitude of oscillation is positively correlated with the noise intensity.
In the special case, when \sigma = 0 , there is
\mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - \frac{\lambda }{\alpha })}^2} + T_s^2 + T_r^2 + V_s^2 + V_r^2)} ds \leqslant 0. |
This indicates that its equilibrium point {E_0} with respect to Model (1) is globally asymptotically stable.
Theorem 3. If {R_s} > {R_r} and {R_s} > 1 , and satisfy:
{\rm{(H_{1})}} {\Delta _1} = {(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}))^2} - \frac{{100N_s^2{\alpha ^4}{\lambda ^2}}}{{{c^2}{{(V_s^*)}^2}{{(\delta + f({C_N}))}^2}}} > 0, |
{\rm{(H_{2})}} \max \{ {e_1}, {e_2}\} < {b_{12}}, |
where
{e_1} = \frac{{5\lambda K_s^2}}{{2(\lambda \alpha + c(\alpha + {K_s}V_s^* + {K_r}V_r^*))(\delta + f({C_N}))}}, |
{e_2} = \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c(u{K_s}V_s^* + {K_r}V_r^*)}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}(\delta + f({C_N}))\alpha (1 + \frac{{2\alpha }}{{u{K_s}V_s^* + {K_r}V_r^*}})}}, |
{b_{12}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}) + \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}. |
{\rm{(H_{3})}} {\Delta _2} = {(B(b_1^{\text{*}}))^2} - \frac{{36{\lambda ^2}{\alpha ^4}N_r^2K_r^2}}{{{c^2}{{(u{K_s}V_s^* + {K_r}V_r^*)}^2}{{(\delta + \beta (u)f({C_N}))}^2}}} > 0, |
where
B(b_1^*) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}V_s^* + {K_r}V_r^*}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c(u{K_s}V_s^* + {K_r}V_r^*)}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^*(\delta + f({C_N}))}}, |
b_1^{\text{*}} \in ({b_{11}}, {b_{12}}), {b_{11}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}) - \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}. |
{\rm{(H_{4})}} \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}} < \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}, |
where
A(b_1^*) = \alpha + \frac{{c(\alpha + {K_s}V_s^* + {K_r}V_r^*)}}{\lambda } - \frac{{5K_s^2}}{{2b_1^*(\delta + f({C_N}))}}. |
Then, the solution (T(t), {T_s}(t), {V_s}(t), {T_r}(t), {V_r}(t)) of Model (3) has
\begin{gathered} \mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T^*})}^2} + {{({T_s} - T_s^*)}^2} + {{({T_r} - T_r^*)}^2} + {{({V_s} - V_s^*)}^2} + {{({V_r} - V_r^*)}^2})} ds \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \leqslant \frac{{((\frac{1}{2} + \frac{\alpha }{{u{K_s}V_s^* + {K_r}V_r^*}})\frac{{4{\lambda ^4}N_r^2}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T^*}}}{{{c^2}}}){\sigma ^2}}}{m}, \hfill \\ \end{gathered} |
where
m = \min \{ {m_1}(b_1^*, b_2^*), {m_2}(b_2^*), {m_3}(b_1^*, b_2^*), \frac{{b_1^*(\delta + f({C_N}))}}{2}, \frac{{b_2^*(\delta + f({C_N}))}}{2}{\kern 1pt} {\kern 1pt} \} , |
{m_1}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha + \frac{{c(\alpha + {K_s}V_s^* + {K_r}V_r^*)}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{3K_r^2}}{{2b_2^{\text{*}}(\delta + \beta (u)f({C_N}))}}, |
{m_2}(b_1^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}) - \frac{{10{\alpha ^2}{\lambda ^2}}}{{{c^2}{{(V_s^*)}^2}b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{5b_1^{\text{*}}N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}, |
\begin{gathered} {m_3}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}V_s^* + {K_r}V_r^*}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c(u{K_s}V_s^* + {K_r}V_r^*)}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^{\text{*}}(\delta + f({C_N}))}} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{{6{\lambda ^2}{\alpha ^2}K_r^2}}{{{c^2}b_2^{\text{*}}{{(u{K_s}V_s^* + {K_r}V_r^*)}^2}(\delta + \beta (u)f({C_N}))}} - \frac{{3b_2^{\text{*}}N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}, \hfill \\ \end{gathered} |
b_2^{\text{*}} \in (\max \{ {b_{21}}, \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}}\} , {b_{22}}), |
{b_{21}} = \frac{{(\delta + f({C_N}))(B(b_1^*) - \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}, {b_{22}} = \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}. |
Proof. Define the {C^2} -function {V_i}(i = 1, 2, 3, 4, 5)
{V_1} = \frac{1}{2}{(T - {T^*} + {T_s} - T_s^* + {T_r} - T_r^*)^2}, {V_2} = \frac{{{b_1}}}{2}{({V_s} - V_s^*)^2}, |
{V_3} = \frac{{{b_2}}}{2}{({V_r} - V_r^*)^2}, {V_4} = \frac{1}{2}{({T_s} - T_s^*)^2}, {V_5} = \frac{1}{2}{({T_r} - T_r^*)^2}, {V_6} = T - {T^*} - {T^*}\ln \frac{T}{{{T^*}}}, |
where {b_1}, {b_2} is the normal number to be determined.
Applying {\rm{It\hat o}} formula to {V_i}(i = 1, 2, 3, 4, 5) , we get
d{V_1} = L{V_1}dt, d{V_2} = L{V_2}dt, d{V_3} = L{V_3}dt, d{V_4} = L{V_4}dt, | (22) |
d{V_5} = L{V_5}dt + ({T_r} - T_r^*)\sigma {V_r}TdB(t), d{V_6} = L{V_6}dt + (1 - \frac{{{T^*}}}{T})\sigma {V_r}TdB(t). |
From the inequality 2ab \leqslant {a^2} + {b^2} , L{V_i}(i = 1, 2, 3, 4, 5, 6) in Eq (21) can be reduced to the following form
\begin{gathered} L{V_1} = - \alpha {(T - {T^*})^2} - \alpha {({T_s} - T_s^*)^2} - \alpha {({T_r} - T_r^*)^2} - 2\alpha (T - {T^*})({T_s} - T_s^*) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 2\alpha (T - {T^*}){\kern 1pt} ({T_r} - T_r^*) - 2\alpha ({T_s} - T_s^*)({T_r} - T_r^*) + \frac{1}{2}{\sigma ^2}V_r^2{T^2}, \hfill \\ \end{gathered} | (23) |
\begin{gathered} L{V_2} \leqslant \frac{{5{b_1}N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}{({T_s} - T_s^*)^2} + \frac{{{b_1}(\delta + f({C_N}))}}{{10}}{({V_s} - V_s^*)^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {b_1}(\delta + f({C_N})){({V_s} - V_s^*)^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{5{b_1}N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}{({T_s} - T_s^*)^2} - \frac{{9{b_1}(\delta + f({C_N}))}}{{10}}{({V_s} - V_s^*)^2}, \hfill \\ \end{gathered} | (24) |
\begin{gathered} L{V_3} \leqslant \frac{{3{b_2}N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}{({T_r} - T_r^*)^2} + \frac{{{b_2}(\delta + \beta (u)f({C_N}))}}{6}{({V_r} - V_r^*)^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {b_2}(\delta + \beta (u)f({C_N})){({V_r} - V_r^*)^2} \hfill \\ \end{gathered} |
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{{3{b_2}N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}{({T_r} - T_r^*)^2} - \frac{{5{b_2}(\delta + \beta (u)f({C_N}))}}{6}{({V_r} - V_r^*)^2}, | (25) |
L{V_4} = ({T_s} - T_s^*)((1 - u){K_s}(T({V_s} - V_s^*) + V_s^*(T - {T^*}))) - \alpha {({T_s} - T_s^*)^2}, | (26) |
\begin{gathered} L{V_5} = ({T_r} - T_r^*)(u{K_s}(T({V_s} - V_s^*) + V_s^*(T - {T^*}))) + ({T_r} - T_r^*)({K_r}(T({V_r} - V_r^*) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + V_r^*(T - {T^*}))) - \alpha {({T_r} - T_r^*)^2} + \frac{1}{2}{\sigma ^2}V_r^2{T^2}, \hfill \\ \end{gathered} | (27) |
\begin{gathered} L{V_6} = - (\alpha + {K_s}V_s^* + {K_r}V_r^*)\frac{{{{(T - {T^*})}^2}}}{T} - {K_s}(T - {T^*})({V_s} - V_s^*) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {K_r}(T - {T^*})({V_r} - V_r^*) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \leqslant - \frac{{c(\alpha + {K_s}V_s^* + {K_r}V_r^*)}}{\lambda }\frac{{{{(T - {T^*})}^2}}}{T} - {K_s}(T - {T^*})({V_s} - V_s^*) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {K_r}(T - {T^*})({V_r} - V_r^*). \hfill \\ \end{gathered} | (28) |
We can define the function V From {V_i}(i = 1, 2, 3, 4, 5)
V = {V_1} + {V_2} + {V_3} + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}{V_4} + \frac{{2\alpha }}{{u{K_s}V_s^* + {K_r}V_r^*}}{V_5} + {V_6}. |
Substituting Eqs (23)–(28) into Eq (22), we get
dV = LVdt + \frac{{2\alpha }}{{u{K_s}V_s^* + {K_r}V_r^*}}({T_r} - T_r^*)\sigma {V_r}TdB(t) + (1 - \frac{{{T^*}}}{T})\sigma {V_r}TdB(t). | (29) |
Then, LV in Eq (26) can be obtained from inequality 2ab \leqslant {a^2} + {b^2} and condition (H)
\begin{gathered} LV \leqslant {\kern 1pt} {\kern 1pt} - {m_1}({b_1}, {b_2}){(T - {T^*})^2} - {m_2}({b_1}){({T_s} - T_s^*)^2} - {\kern 1pt} \frac{{{b_1}(\delta + f({C_N}))}}{2}{({V_s} - V_s^*)^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}({b_1}, {b_2}){({T_r} - T_r^*)^2} - \frac{{{b_2}(\delta + \beta (u)f({C_N}))}}{2}{({V_r} - V_r^*)^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (\frac{1}{2} + \frac{\alpha }{{u{K_s}V_s^* + {K_r}V_r^*}}){\sigma ^2}V_r^2{T^2} + \frac{1}{2}{\sigma ^2}V_r^2{T^*}, \hfill \\ \end{gathered} | (30) |
where
{m_1}({b_1}, {b_2}) = A({b_1}) - \frac{{3K_r^2}}{{2{b_2}(\delta + \beta (u)f({C_N}))}}, |
{m_2}({b_1}) = \frac{{f({b_1})}}{{{b_1}}}, {m_3}({b_1}, {b_2}) = \frac{{g({b_1}, {b_2})}}{{{b_2}}}, | (31) |
f({b_1}) = - \frac{{5b_1^2N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}} + \alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}){b_1} - \frac{{10{\alpha ^2}{\lambda ^2}}}{{{c^2}{{(V_s^*)}^2}(\delta + f({C_N}))}}, |
g({b_1}, {b_2}) = B({b_1}){b_2} - \frac{{6{\lambda ^2}{\alpha ^2}K_r^2}}{{{c^2}{{(u{K_s}V_s^* + {K_r}V_r^*)}^2}(\delta + \beta (u)f({C_N}))}} - \frac{{3N_r^2{\alpha ^2}b_2^2}}{{2(\delta + \beta (u)f({C_N}))}}, |
A({b_1}) = \alpha + \frac{{c(\alpha + {K_s}V_s^* + {K_r}V_r^*)}}{\lambda } - \frac{{5K_s^2}}{{2{b_1}(\delta + f({C_N}))}}, |
B({b_1}) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}V_s^* + {K_r}V_r^*}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c(u{K_s}V_s^* + {K_r}V_r^*)}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}{b_1}(\delta + f({C_N}))}}. |
There are positive numbers {b_1} and {b_2} such that {m_2}({b_1}) > 0 and {m_3}({b_1}, {b_2}) > 0 are true.
In fact, it's just a matter of choosing {b_1} and {b_2} so that f({b_1}) > 0 and g({b_1}, {b_2}) > 0 are true. Because f({b_1}) is a downward opening quadratic function of {b_1} , the discriminant is
{\Delta _1} = {(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}))^2} - \frac{{100N_s^2{\alpha ^4}{\lambda ^2}}}{{{c^2}{{(V_s^*)}^2}{{(\delta + f({C_N}))}^2}}}. |
We know from (H1) that f({b_1}) = 0 has two positive roots, and the expression is as follows
{b_{11}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}) - \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}, {b_{12}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}) + \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}. |
So, for any {b_1} \in ({b_{11}}, {b_{12}}) , there is a f({b_1}) > 0 . Therefore, {m_2}({b_1}) > 0 .
We know from condition (H2) that we choose b_1^* \in ({b_{11}}, {b_{12}}) such that A(b_1^*) > 0 , B(b_1^*) > 0 .
From {m_1}(b_1^*, {b_2}) > 0 , we can get
{b_2} > \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}}. |
Substituting b_1^* into g({b_1}, {b_2}) we get that g(b_1^*, {b_2}) is a downward opening quadratic function of {b_2} , the discriminant is
{\Delta _2} = {(B(b_1^{\text{*}}))^2} - \frac{{36{\lambda ^2}{\alpha ^4}N_r^2K_r^2}}{{{c^2}{{(u{K_s}V_s^* + {K_r}V_r^*)}^2}{{(\delta + \beta (u)f({C_N}))}^2}}}. |
We know from (H3) that g(b_1^*, {b_2}) = 0 has two positive roots, and the expression is as follows
{b_{21}} = \frac{{(\delta + f({C_N}))(B(b_1^*) - \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}} \text{,} {b_{22}} = \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}. |
So, for any {b_2} \in ({b_{21}}, {b_{22}}) , there is a g({b_2}) > 0 . Therefore, {m_3}(b_1^*, {b_2}) > 0 .
We know from (H4) that there is b_2^{\text{*}} \in (\max \{ {b_{21}}, \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}}\} , {b_{22}}) , such that {m_1}(b_1^*, b_2^*) > 0 and {m_3}(b_1^*, b_2^{\text{*}}) > 0 are true.
Equation (30) is simplified as
\begin{gathered} LV \leqslant {\kern 1pt} {\kern 1pt} - {m_1}(b_1^*, b_2^*){(T - {T^*})^2} - {m_2}(b_1^*){({T_s} - T_s^*)^2} - {\kern 1pt} \frac{{b_1^*(\delta + f({C_N}))}}{2}{({V_s} - V_s^*)^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}(b_1^*, b_2^*){({T_r} - T_r^*)^2} - \frac{{b_2^*(\delta + \beta (u)f({C_N}))}}{2}{({V_r} - V_r^*)^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (\frac{1}{2} + \frac{\alpha }{{u{K_s}V_s^* + {K_r}V_r^*}}){\sigma ^2}V_r^2{T^2} + \frac{1}{2}{\sigma ^2}V_r^2{T^*}. \hfill \\ \end{gathered} |
Integrate Eq (29) from 0 to t and take the expectation of both ends, and we get
\begin{gathered} E(V(t) - V(0)) \leqslant - {m_1}(b_1^*, b_2^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{(T - {T^*})}^2}ds} {\kern 1pt} - {m_2}(b_1^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({T_s} - T_s^*)}^2}ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}(b_1^*, b_2^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({T_r} - T_r^*)}^2}ds} - \frac{{b_1^*(\delta + f({C_N}))}}{2}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({V_s} - V_s^*)}^2}ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{{b_2^*(\delta + \beta (u)f({C_N}))}}{2}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({V_r} - V_r^*)}^2}ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + ((\frac{1}{2} + \frac{\alpha }{{u{K_s}V_s^* + {K_r}V_r^*}})\frac{{4{\lambda ^4}N_r^2{\sigma ^2}}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T^*}{\sigma ^2}}}{{{c^2}}}){\kern 1pt} {\kern 1pt} t. \hfill \\ \end{gathered} |
Therefore
\begin{gathered} \mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T^*})}^2} + {{({T_s} - T_s^*)}^2} + {{({T_r} - T_r^*)}^2} + {{({V_s} - V_s^*)}^2} + {{({V_r} - V_r^*)}^2})} ds \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \leqslant \frac{{((\frac{1}{2} + \frac{\alpha }{{u{K_s}V_s^* + {K_r}V_r^*}})\frac{{4{\lambda ^4}N_r^2}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T^*}}}{{{c^2}}}){\sigma ^2}}}{m}, \hfill \\ \end{gathered} |
where
m = \min \{ {m_1}(b_1^*, b_2^*), {m_2}(b_2^*), {m_3}(b_1^*, b_2^*), \frac{{b_1^*(\delta + f({C_N}))}}{2}, \frac{{b_2^*(\delta + f({C_N}))}}{2}{\kern 1pt} {\kern 1pt} \} , |
{m_1}(b_1^*, b_2^*) = \alpha + \frac{{c(\alpha + {K_s}V_s^* + {K_r}V_r^*)}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{3K_r^2}}{{2b_2^{\text{*}}(\delta + \beta (u)f({C_N}))}}, |
{m_2}(b_1^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}V_s^*}}) - \frac{{10{\alpha ^2}{\lambda ^2}}}{{{c^2}{{(V_s^*)}^2}b(\delta + f({C_N}))}} - \frac{{5{b_1}N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}, |
{m_3}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}V_s^* + {K_r}V_r^*}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c(u{K_s}V_s^* + {K_r}V_r^*)}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^{\text{*}}(\delta + f({C_N}))}} |
- \frac{{6{\lambda ^2}{\alpha ^2}K_r^2}}{{{c^2}b_2^{\text{*}}{{(u{K_s}V_s^* + {K_r}V_r^*)}^2}(\delta + \beta (u)f({C_N}))}} - \frac{{3b_2^{\text{*}}N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}. |
According to Theorem 3, the solution of Model (3) will oscillate around the equilibrium point of Model (1).The amplitude of oscillation is positively correlated with the noise intensity.
In the special case, when \sigma = 0 , there is
\mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T^*})}^2} + {{({T_s} - T_s^*)}^2} + {{({T_r} - T_r^*)}^2} + {{({V_s} - V_s^*)}^2} + {{({V_r} - V_r^*)}^2})} ds \leqslant 0. |
This indicates that its equilibrium point {E^{\text{*}}} with respect to Model (1) is globally asymptotically stable.
Theorem 4. If {R_s} > 1 and {R_r} < 1 , and satisfy:
{\rm{(H_{1})}} {\Delta _1} = {(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}))^2} - \frac{{100N_s^2{\alpha ^4}{\lambda ^2}}}{{{c^2}{{({V_{s1}})}^2}{{(\delta + f({C_N}))}^2}}} > 0, |
{\rm{(H_{2})}} \max \{ {e_1}, {e_2}\} < {b_{12}}, |
where
{e_1} = \frac{{5\lambda K_s^2}}{{2(\lambda \alpha + c(\alpha + {K_s}{V_{s1}}))(\delta + f({C_N}))}}, {e_2} = \frac{{{{(\frac{{2\lambda \alpha }}{{c{V_{s1}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}(\delta + f({C_N}))\alpha (1 + \frac{{2\alpha }}{{u{K_s}{V_{s1}}}})}}, {b_{12}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}) + \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}. |
{\rm{(H_{3})}} {\Delta _2} = {(B(b_1^{\text{*}}))^2} - \frac{{36{\lambda ^2}{\alpha ^4}N_r^2K_r^2}}{{{c^2}{{(u{K_s}{V_{s1}})}^2}{{(\delta + \beta (u)f({C_N}))}^2}}} > 0, |
\frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}} < \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}, |
where
B(b_1^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}{V_{s1}}}}) - \frac{{{{(\frac{{2\lambda \alpha }}{{c{V_{s1}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^*(\delta + f({C_N}))}}, |
A(b_1^{\text{*}}) = \alpha + \frac{{c(\alpha + {K_s}{V_{s1}})}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}}, |
b_1^{\text{*}} \in ({b_{11}}, {b_{12}}), {b_{11}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}) - \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}. |
{\rm{(H_{4})}} \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}} < \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}, |
where A(b_1^{\text{*}}) = \alpha + \frac{{c(\alpha + {K_s}{V_{s1}})}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}},
Then, the solution (T(t), {T_s}(t), {V_s}(t), {T_r}(t), {V_r}(t)) of Model (3) has
\begin{gathered} \mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T_1})}^2} + {{({T_s} - {T_{s1}})}^2} + T_r^2 + {{({V_s} - {V_{s1}})}^2} + V_r^2)} ds \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \leqslant \frac{{((\frac{1}{2} + \frac{\alpha }{{u{K_s}{V_{s1}}}})\frac{{4{\lambda ^4}N_r^2}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T_1}}}{{{c^2}}}){\sigma ^2}}}{m}, \hfill \\ \end{gathered} |
where
m = \min \{ {m_1}(b_1^*, b_2^*), {m_2}(b_2^*), {m_3}(b_1^*, b_2^*), \frac{{b_1^*(\delta + f({C_N}))}}{2}, \frac{{b_2^*(\delta + f({C_N}))}}{2}{\kern 1pt} {\kern 1pt} \} , |
{m_1}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha + \frac{{c(\alpha + {K_s}{V_{s1}})}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{3K_r^2}}{{2b_2^{\text{*}}(\delta + \beta (u)f({C_N}))}}, |
{m_2}(b_1^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}) - \frac{{10{\alpha ^2}{\lambda ^2}}}{{{c^2}{{({V_{s1}})}^2}b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{5b_1^{\text{*}}N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}, |
\begin{gathered} {m_3}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}{V_{s1}}}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c(u{K_s}{V_{s1}})}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^{\text{*}}(\delta + f({C_N}))}} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{{6{\lambda ^2}{\alpha ^2}K_r^2}}{{{c^2}b_2^{\text{*}}{{(u{K_s}{V_{s1}})}^2}(\delta + \beta (u)f({C_N}))}} - \frac{{3b_2^{\text{*}}N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}, \hfill \\ \end{gathered} |
b_2^{\text{*}} \in (\max \{ {b_{21}}, \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}}\} , {b_{22}}). |
Proof. Define the {C^2} -function {V_i}(i = 1, 2, 3, 4, 5)
{V_1} = \frac{1}{2}{(T - {T_1} + {T_s} - {T_{s1}} + {T_r})^2}, {V_2} = \frac{{{b_1}}}{2}{({V_s} - {V_{s1}})^2}, |
{V_3} = \frac{{{b_2}}}{2}{V_r}^2, {V_4} = \frac{1}{2}{({T_s} - {T_{s1}})^2}, {V_5} = \frac{1}{2}T_r^2, {V_6} = T - {T_1} - {T_1}\ln \frac{T}{{{T_1}}}, |
where {b_1} , {b_2} is the normal number to be determined.
Applying {\rm{It\hat o}} formula to {V_i}(i = 1, 2, 3, 4, 5) , we get
d{V_1} = L{V_1}dt, d{V_2} = L{V_2}dt, d{V_3} = L{V_3}dt, d{V_4} = L{V_4}dt, | (32) |
d{V_5} = L{V_5}dt + {T_r}\sigma {V_r}TdB(t), d{V_6} = L{V_6}dt + (1 - \frac{{{T_1}}}{T})\sigma {V_r}TdB(t). |
Same as the proof method of Eqs (23)–(28) in Theorem 3, L{V_i}(i = 1, 2, 3, 4, 5, 6) in Eq (32) is simplified as
\begin{gathered} L{V_1} = - \alpha {(T - {T_1})^2} - \alpha {({T_s} - {T_{s1}})^2} - \alpha T_r^2 - 2\alpha (T - {T_1})({T_s} - {T_{s1}}) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 2\alpha (T - {T_1}){\kern 1pt} {T_r} - 2\alpha ({T_s} - {T_{s1}}){T_r} + \frac{1}{2}{\sigma ^2}V_r^2{T^2}, \hfill \\ \end{gathered} | (33) |
L{V_2} \leqslant \frac{{5{b_1}N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}{({T_s} - {T_{s1}})^2} - \frac{{9{b_1}(\delta + f({C_N}))}}{{10}}{({V_s} - {V_{s1}})^2}, | (34) |
L{V_3} \leqslant \frac{{3{b_2}N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}{T_r}^2 - \frac{{{b_2}(\delta + \beta (u)f({C_N}))}}{6}{V_r}^2, | (35) |
L{V_4} = ({T_s} - {T_{s1}})({K_s}(T({V_s} - {V_{s1}}) + {V_{s1}}(T - {T_1}))) - \alpha {({T_s} - {T_{s1}})^2}, | (36) |
L{V_5} = {T_r}{K_r}{T_1}{V_r}{\kern 1pt} + {K_r}{T_r}{V_r}(T - {T_1}) - \alpha {T_r}^2 + \frac{1}{2}{\sigma ^2}V_r^2{T^2}, | (37) |
\begin{gathered} L{V_6} \leqslant - \frac{{c(\alpha + {K_s}{V_{s1}})}}{\lambda }\frac{{{{(T - {T^*})}^2}}}{T} - {K_s}(T - {T^*})({V_s} - {V_{s1}}) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {K_r}(T - {T^*}){V_r}. \hfill \\ \end{gathered} | (38) |
We can define the function V From {V_i}(i = 1, 2, 3, 4, 5)
V = {V_1} + {V_2} + {V_3} + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}{V_4} + \frac{{2\alpha }}{{u{K_s}{V_{s1}}}}{V_5} + {V_6}. |
Substituting Equations (33)–(38) into Eq (32), we get
dV = LVdt + \frac{{2\alpha }}{{u{K_s}{V_{s1}}}}{T_r}\sigma {V_r}TdB(t) + (1 - \frac{{{T_1}}}{T})\sigma {V_r}TdB(t). | (39) |
Then, LV in Eq (39) can be obtained from inequality 2ab \leqslant {a^2} + {b^2} and condition (H)
\begin{gathered} LV \leqslant {\kern 1pt} {\kern 1pt} - {m_1}({b_1}, {b_2}){(T - {T_1})^2} - {m_2}({b_1}){({T_s} - {T_{s1}})^2} - {\kern 1pt} \frac{{{b_1}(\delta + f({C_N}))}}{2}{({V_s} - {V_{s1}})^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}({b_1}, {b_2})T_r^2 - \frac{{{b_2}(\delta + \beta (u)f({C_N}))}}{2}V_r^2 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (\frac{1}{2} + \frac{\alpha }{{u{K_s}{V_{s1}}}}){\sigma ^2}V_r^2{T^2} + \frac{1}{2}{\sigma ^2}V_r^2{T_1}, \hfill \\ \end{gathered} | (40) |
where
{m_1}({b_1}, {b_2}) = A({b_1}) - \frac{{3K_r^2}}{{2{b_2}(\delta + \beta (u)f({C_N}))}}, {m_2}({b_1}) = \frac{{f({b_1})}}{{{b_1}}}, {m_3}({b_1}, {b_2}) = \frac{{g({b_1}, {b_2})}}{{{b_2}}}, | (41) |
f({b_1}) = - \frac{{5b_1^2N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}} + \alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}){b_1} - \frac{{10{\alpha ^2}{\lambda ^2}}}{{{c^2}V_{s1}^2(\delta + f({C_N}))}}, |
g({b_1}, {b_2}) = B({b_1}){b_2} - \frac{{6{\lambda ^2}{\alpha ^2}K_r^2}}{{{c^2}{{(u{K_s}{V_{s1}})}^2}(\delta + \beta (u)f({C_N}))}} - \frac{{3N_r^2{\alpha ^2}b_2^2}}{{2(\delta + \beta (u)f({C_N}))}}, |
A({b_1}) = \alpha + \frac{{c(\alpha + {K_s}{V_{s1}})}}{\lambda } - \frac{{5K_s^2}}{{2{b_1}(\delta + f({C_N}))}}, B({b_1}) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}{V_{s1}}}}) - \frac{{{{(\frac{{2\lambda \alpha }}{{c{V_{s1}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}{b_1}(\delta + f({C_N}))}}. |
Same as the proof of Theorem 3, under the conditions (H1)–(H4), we can find positive values b_1^{\text{*}} and b_2^{\text{*}} such that {m_2}(b_1^{\text{*}}) > 0 and {m_3}(b_1^*, b_2^*) > 0 . Here, the discriminants are respectively
{\Delta _1} = {(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}))^2} - \frac{{100N_s^2{\alpha ^4}{\lambda ^2}}}{{{c^2}V_{s1}^2{{(\delta + f({C_N}))}^2}}}, |
{\Delta _2} = {(B(b_1^{\text{*}}))^2} - \frac{{36{\lambda ^2}{\alpha ^4}N_r^2K_r^2}}{{{c^2}{{(u{K_s}{V_{s1}})}^2}{{(\delta + \beta (u)f({C_N}))}^2}}}. |
b_1^{\text{*}} and b_2^{\text{*}} satisfy the following conditions
b_1^* \in ({b_{11}}, {b_{12}}), |
{b_{11}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}) - \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}, {b_{12}} = \frac{{(\delta + f({C_N}))(\alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}) + \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}, |
b_2^{\text{*}} \in (\max \{ {b_{21}}, \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}}\} {b_{21}}, {b_{22}}), |
{b_{21}} = \frac{{(\delta + f({C_N}))(B(b_1^*) - \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}, {b_{22}} = \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}. |
The selected parameters b_1^* and b_2^* are substituted into Eq (40), and LV is simplified as
\begin{gathered} LV \leqslant {\kern 1pt} {\kern 1pt} - {m_1}(b_1^*, b_2^*){(T - {T_1})^2} - {m_2}(b_1^*){({T_s} - {T_{s1}})^2} - {\kern 1pt} \frac{{b_1^*(\delta + f({C_N}))}}{2}{({V_s} - {V_{s1}})^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}(b_1^*, b_2^*){T_r}^2 - \frac{{b_2^*(\delta + \beta (u)f({C_N}))}}{2}{V_r}^2 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (\frac{1}{2} + \frac{\alpha }{{u{K_s}{V_{s1}}}}){\sigma ^2}V_r^2{T^2} + \frac{1}{2}{\sigma ^2}V_r^2{T_1}. \hfill \\ \end{gathered} |
Integrate Eq (39) from 0 to t and take the expectation of both ends, and we get
\begin{gathered} E(V(t) - V(0)) \leqslant - {m_1}(b_1^*, b_2^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{(T - {T_1})}^2}ds} {\kern 1pt} - {m_2}(b_1^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({T_s} - {T_{s1}})}^2}ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}(b_1^*, b_2^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{T_r}^2ds} - \frac{{b_1^*(\delta + f({C_N}))}}{2}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({V_s} - {V_{s1}})}^2}ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{{b_2^*(\delta + \beta (u)f({C_N}))}}{2}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{V_r}^2ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + ((\frac{1}{2} + \frac{\alpha }{{u{K_s}{V_{s1}}}})\frac{{4{\lambda ^4}N_r^2{\sigma ^2}}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T_1}{\sigma ^2}}}{{{c^2}}}){\kern 1pt} {\kern 1pt} t. \hfill \\ \end{gathered} |
Therefore
\begin{gathered} \mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T_1})}^2} + {{({T_s} - {T_{s1}})}^2} + {T_r}^2 + {{({V_s} - {V_{s1}})}^2} + {V_r}^2)} ds \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \leqslant \frac{{((\frac{1}{2} + \frac{\alpha }{{u{K_s}{V_{s1}}}})\frac{{4{\lambda ^4}N_r^2}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T_1}}}{{{c^2}}}){\sigma ^2}}}{m}, \hfill \\ \end{gathered} |
where m = \min \{ {m_1}(b_1^*, b_2^*), {m_2}(b_2^*), {m_3}(b_1^*, b_2^*), \frac{{b_1^*(\delta + f({C_N}))}}{2}, \frac{{b_2^*(\delta + f({C_N}))}}{2}{\kern 1pt} {\kern 1pt} \} ,
{m_1}(b_1^*, b_2^*) = \alpha + \frac{{c(\alpha + {K_s}{V_{s1}})}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{3K_r^2}}{{2b_2^{\text{*}}(\delta + \beta (u)f({C_N}))}}, |
{m_2}(b_1^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{(1 - u){K_s}{V_{s1}}}}) - \frac{{10{\alpha ^2}{\lambda ^2}}}{{{c^2}V_{s1}^2b_1^*(\delta + f({C_N}))}} - \frac{{5b_1^*N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}, |
\begin{gathered} {m_3}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{u{K_s}{V_{s1}}}}) - \frac{{{{(\frac{{2\lambda \alpha }}{{c{V_{s1}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^{\text{*}}(\delta + f({C_N}))}} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{{6{\lambda ^2}{\alpha ^2}K_r^2}}{{{c^2}b_2^{\text{*}}{{(u{K_s}{V_{s1}})}^2}(\delta + \beta (u)f({C_N}))}} - \frac{{3b_2^{\text{*}}N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}. \hfill \\ \end{gathered} |
According to Theorem 4, the solution of Model (3) will oscillate around the equilibrium point {E^*} of Model (1). The amplitude of oscillation is positively correlated with the value of noise intensity.
In the special case, when \sigma = 0 , there is
\mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T_1})}^2} + {{({T_s} - {T_{s1}})}^2} + {T_r}^2 + {{({V_s} - {V_{s1}})}^2} + {V_r}^2)} ds \leqslant 0. |
This indicates that its equilibrium point {E_s} with respect to Model (1) is globally asymptotically stable.
Theorem 5. If {R_s} < 1 and {R_r} > 1 , and satisfy:
{\rm{(H_{1})}} {\Delta _1} = {\alpha ^2}(1 - \frac{{25N_s^2{{(1 - u)}^2}K_s^2{\lambda ^2}}}{{{c^2}{{(\delta + f({C_N}))}^2}}}) > 0, |
{\rm{(H_{2})}} \max \{ {e_1}, {e_2}\} < {b_{12}}, |
where
{e_1} = \frac{{5\lambda K_s^2}}{{2(\lambda \alpha + c(\alpha + {K_r}{V_{r2}}))(\delta + f({C_N}))}}, {e_2} = \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c{K_r}{V_{r2}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}(\delta + f({C_N}))\alpha (1 + \frac{{2\alpha }}{{{K_r}{V_{r2}}}})}}, \\ {b_{12}} = \frac{{(\delta + f({C_N}))(\alpha + \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}. |
{\rm{(H_{3})}} {\Delta _2} = {(B(b_1^{\text{*}}))^2} - \frac{{36{\lambda ^2}{\alpha ^4}N_r^2}}{{{c^2}V_{r2}^2{{(\delta + \beta (u)f({C_N}))}^2}}} > 0, |
where
B(b_1^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{{K_r}{V_{r2}}}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c{K_r}{V_{r2}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^{\text{*}}(\delta + f({C_N}))}}, b_1^{\text{*}} \in ({b_{11}}, {b_{12}}), {b_{11}} = \frac{{(\delta + f({C_N}))(\alpha - \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}. |
{\rm{(H_{4})}} \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}} < \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}, |
where A(b_1^{\text{*}}) = \alpha + \frac{{c(\alpha + {K_r}{V_{r2}})}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}}.
Then, the solution (T(t), {T_s}(t), {V_s}(t), {T_r}(t), {V_r}(t)) of Model (3) has
\begin{gathered} \mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T_2})}^2} + {T_s}^2 + {{({T_r} - {T_{r2}})}^2} + {V_s}^2 + {{({V_r} - {V_{r2}})}^2})} ds \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \leqslant \frac{{((\frac{1}{2} + \frac{\alpha }{{{K_r}{V_{r2}}}})\frac{{4{\lambda ^4}N_r^2}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T_2}}}{{{c^2}}}){\sigma ^2}}}{m}, \hfill \\ \end{gathered} |
where m = \min \{ {m_1}(b_1^*, b_2^*), {m_2}(b_2^*), {m_3}(b_1^*, b_2^*), \frac{{b_1^*(\delta + f({C_N}))}}{2}, \frac{{b_2^*(\delta + f({C_N}))}}{2}{\kern 1pt} {\kern 1pt} \} ,
{m_1}(b_1^*, b_2^*) = \alpha + \frac{{c(\alpha + {K_r}{V_{r2}})}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{3K_r^2}}{{2b_2^{\text{*}}(\delta + \beta (u)f({C_N}))}}, |
{m_2}(b_1^{\text{*}}) = \alpha - \frac{{5{{(1 - u)}^2}K_s^2{\lambda ^2}}}{{2{c^2}b_1^*(\delta + f({C_N}))}} - \frac{{5b_1^*N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}, |
\begin{gathered} {m_3}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{{K_r}{V_{r2}}}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c{K_r}{V_{r2}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^*(\delta + f({C_N}))}} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{{6{\lambda ^2}{\alpha ^2}}}{{{c^2}b_2^*V_{r2}^2(\delta + \beta (u)f({C_N}))}} - \frac{{3b_2^*N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}, \hfill \\ \end{gathered} |
b_2^{\text{*}} \in (\max \{ {b_{21}}, \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}}\} , {b_{22}}). |
Proof. Define the {C^2} -function {V_i}(i = 1, 2, 3, 4, 5)
{V_1} = \frac{1}{2}{(T - {T_2} + {T_s} + {T_r} - {T_{r2}})^2}, {V_2} = \frac{{{b_1}}}{2}{V_s}^2, {V_3} = \frac{{{b_2}}}{2}{({V_r} - {V_{r2}})^2}, |
{V_4} = \frac{1}{2}{T_s}^2, {V_5} = \frac{1}{2}{({T_r} - {T_{r2}})^2}, {V_6} = T - {T_2} - {T_2}\ln \frac{T}{{{T_2}}}, |
where {b_1}, {b_2} is the normal number to be determined.
Applying {\rm{It\hat o}} formula to {V_i}(i = 1, 2, 3, 4, 5) , we get
d{V_1} = L{V_1}dt, d{V_2} = L{V_2}dt, d{V_3} = L{V_3}dt, |
d{V_4} = L{V_4}dt, d{V_5} = L{V_5}dt + ({T_r} - {T_{r2}})\sigma {V_r}TdB(t), | (42) |
d{V_6} = L{V_6}dt + (1 - \frac{{{T_2}}}{T})\sigma {V_r}TdB(t). |
Same as the proof method of Equations (23)–(28) in Theorem 3, L{V_i}(i = 1, 2, 3, 4, 5, 6) in Eq (42) is simplified as
\begin{gathered} L{V_1} = - \alpha {(T - {T^*})^2} - \alpha T_s^2 - \alpha {({T_r} - {T_{r2}})^2} - 2\alpha (T - {T_2}){T_s} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 2\alpha (T - {T^*}){\kern 1pt} ({T_r} - {T_{r2}}) - 2\alpha {T_s}({T_r} - {T_{r2}}) + \frac{1}{2}{\sigma ^2}V_r^2{T^2}, \hfill \\ \end{gathered} | (43) |
L{V_2} \leqslant \frac{{5{b_1}N_s^2{\alpha ^2}}}{2}T_s^2 + \frac{{{b_1}}}{{10}}V_s^2 - {b_1}(\delta + f({C_N}))V_s^2, | (44) |
L{V_3} = \frac{{3{b_2}N_r^2{\alpha ^2}}}{2}{({T_r} - {T_{r2}})^2} + \frac{{{b_2}}}{6}{({V_r} - {V_{r2}})^2} - {b_2}(\delta + \beta (u)f({C_N})){({V_r} - {V_{r2}})^2}, | (45) |
L{V_4} = (1 - u){K_s}{T_s}{V_s}(T - {T_2}) + (1 - u){K_s}{T_2}{T_s}{V_s} - \alpha {T_s}^2, | (46) |
\begin{gathered} L{V_5} = ({T_r} - {T_{r2}})(u{K_s}T{V_s}) + ({T_r} - {T_{r2}})({K_r}(T({V_r} - {V_{r2}}) + {V_{r2}}(T - {T^*}))) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \alpha {({T_r} - {T_{r2}})^2} + \frac{1}{2}{\sigma ^2}V_r^2{T^2}, \hfill \\ \end{gathered} | (47) |
\begin{gathered} L{V_6} \leqslant - \frac{{c(\alpha + {K_r}{V_{r2}})}}{\lambda }\frac{{{{(T - {T_2})}^2}}}{T} - {K_s}(T - {T_2}){V_s} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {K_r}(T - {T_2})({V_r} - {V_{r2}}) + \frac{1}{2}{\sigma ^2}{T_2}V_r^2. \hfill \\ \end{gathered} | (48) |
We can define the function V From {V_i}(i = 1, 2, 3, 4, 5)
V = {V_1} + {V_2} + {V_3} + {V_4} + \frac{{2\alpha }}{{{K_r}{V_{r2}}}}{V_5} + {V_6}. |
Substituting Eqs (43)–(48) into Eq (42), we get
dV = LVdt + \frac{{2\alpha }}{{{K_r}{V_{r2}}}}({T_r} - {T_{r2}})\sigma {V_r}TdB(t) + (1 - \frac{T}{{{T_2}}})\sigma {V_r}TdB(t). | (49) |
Then, LV in Eq (46) can be obtained from inequality 2ab \leqslant {a^2} + {b^2}
\begin{gathered} LV \leqslant {\kern 1pt} {\kern 1pt} - {m_1}({b_1}, {b_2}){(T - {T_2})^2} - {m_2}({b_1}){T_s}^2 - {\kern 1pt} \frac{{{b_1}(\delta + f({C_N}))}}{2}{V_s}^2 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}({b_1}, {b_2}){({T_r} - {T_{r2}})^2} - \frac{{{b_2}(\delta + \beta (u)f({C_N}))}}{2}{({V_r} - {V_{r2}})^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (\frac{1}{2} + \frac{\alpha }{{{K_r}{V_{r2}}}}){\sigma ^2}V_r^2{T^2} + \frac{1}{2}{\sigma ^2}V_r^2{T_2}, \hfill \\ \end{gathered} | (50) |
where
{m_1}({b_1}, {b_2}) = A({b_1}) - \frac{{3K_r^2}}{{2{b_2}(\delta + \beta (u)f({C_N}))}}, {m_2}({b_1}) = \frac{{f({b_1})}}{{{b_1}}}, {m_3}({b_1}, {b_2}) = \frac{{g({b_1}, {b_2})}}{{{b_2}}}, | (51) |
f({b_1}) = - \frac{{5b_1^2N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}} + \alpha {b_1} - \frac{{5{{(1 - u)}^2}K_s^2{\lambda ^2}}}{{2{c^2}(\delta + f({C_N}))}}, \\ g({b_1}, {b_2}) = B({b_1}){b_2} - \frac{{6{\lambda ^2}{\alpha ^2}}}{{{c^2}V_{r2}^2(\delta + \beta (u)f({C_N}))}} - \frac{{3N_r^2{\alpha ^2}b_2^2}}{{2(\delta + \beta (u)f({C_N}))}}, |
A({b_1}) = \alpha + \frac{{c(\alpha + {K_r}{V_{r2}})}}{\lambda } - \frac{{5K_s^2}}{{2{b_1}(\delta + f({C_N}))}}, |
B({b_1}) = \alpha (1 + \frac{{2\alpha }}{{{K_r}{V_{r2}}}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c{K_r}{V_{r2}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}{b_1}(\delta + f({C_N}))}}. |
Same as the proof of Theorem 3, under the conditions (H1)–(H4), we can find positive values b_1^{\text{*}} and b_2^{\text{*}} such that {m_2}(b_1^{\text{*}}) > 0 and {m_3}(b_1^{\text{*}}, b_2^{\text{*}}) > 0 . Here, the discriminants are respectively
{\Delta _1} = {\alpha ^2}(1 - \frac{{25N_s^2{{(1 - u)}^2}K_s^2{\lambda ^2}}}{{{c^2}{{(\delta + f({C_N}))}^2}}}), |
{\Delta _2} = {(B(b_1^{\text{*}}))^2} - \frac{{36{\lambda ^2}{\alpha ^4}N_r^2}}{{{c^2}V_{r2}^2{{(\delta + \beta (u)f({C_N}))}^2}}}. |
b_1^{\text{*}} and b_2^{\text{*}} satisfy the following conditions
b_1^* \in ({b_{11}}, {b_{12}}), {b_{11}} = \frac{{(\delta + f({C_N}))(\alpha - \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}, {b_{12}} = \frac{{(\delta + f({C_N}))(\alpha + \sqrt {{\Delta _1}} )}}{{5N_s^2{\alpha ^2}}}, |
b_2^{\text{*}} \in (\max \{ {b_{21}}, \frac{{3K_r^2}}{{2A(b_1^*)(\delta + \beta (u)f({C_N}))}}\} , {b_{22}}), |
{b_{21}} = \frac{{(\delta + f({C_N}))(B(b_1^*) - \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}, {b_{22}} = \frac{{(\delta + f({C_N}))(B(b_1^*) + \sqrt {{\Delta _2}} )}}{{3N_r^2{\alpha ^2}}}. |
Therefore, defined by Eq (41), the selected parameters b_1^{\text{*}} and b_2^{\text{*}} are substituted into Eq (50) to be simplified as
\begin{gathered} LV \leqslant {\kern 1pt} {\kern 1pt} - {m_1}(b_1^*, b_2^*){(T - {T_2})^2} - {m_2}(b_1^*){T_s}^2 - {\kern 1pt} \frac{{b_1^*(\delta + f({C_N}))}}{2}{V_s}^2 \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}(b_1^*, b_2^*){({T_r} - {T_{r2}})^2} - \frac{{b_2^*(\delta + \beta (u)f({C_N}))}}{2}{({V_r} - {V_{r2}})^2} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + (\frac{1}{2} + \frac{\alpha }{{{K_r}{V_{r2}}}}){\sigma ^2}V_r^2{T^2} + \frac{1}{2}{\sigma ^2}V_r^2{T_2}. \hfill \\ \end{gathered} |
Integrate Eq (49) from 0 to t and take the expectation of both ends, and we get
\begin{gathered} E(V(t) - V(0)) \leqslant - {m_1}(b_1^*, b_2^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{(T - {T_2})}^2}ds} {\kern 1pt} - {m_2}(b_1^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{T_s}^2ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {m_3}(b_1^*, b_2^*)E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({T_r} - {T_{r2}})}^2}ds} - \frac{{b_1^*(\delta + f({C_N}))}}{2}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{V_s}^2ds} \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - \frac{{b_2^*(\delta + \beta (u)f({C_N}))}}{2}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {{{({V_r} - {V_{r2}})}^2}d} s \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + ((\frac{1}{2} + \frac{\alpha }{{{K_r}{V_{r2}}}})\frac{{4{\lambda ^4}N_r^2{\sigma ^2}}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T_2}{\sigma ^2}}}{{{c^2}}}){\kern 1pt} {\kern 1pt} t. \hfill \\ \end{gathered} |
Therefore
\begin{gathered} \mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T_2})}^2} + {T_s}^2 + {{({T_r} - {T_{r2}})}^2} + {V_s}^2 + {{({V_r} - {V_{r2}})}^2})} ds \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \leqslant \frac{{((\frac{1}{2} + \frac{\alpha }{{{K_r}{V_{r2}}}})\frac{{4{\lambda ^4}N_r^2}}{{{c^4}}} + \frac{{2{\lambda ^2}N_r^2{T_2}}}{{{c^2}}}){\sigma ^2}}}{m}, \hfill \\ \end{gathered} |
where
{m_1}(b_1^*, b_2^*) = \alpha + \frac{{c(\alpha + {K_r}{V_{r2}})}}{\lambda } - \frac{{5K_s^2}}{{2b_1^{\text{*}}(\delta + f({C_N}))}} - \frac{{3K_r^2}}{{2b_2^{\text{*}}(\delta + \beta (u)f({C_N}))}}, |
{m_2}(b_1^{\text{*}}) = \alpha - \frac{{5{{(1 - u)}^2}K_s^2{\lambda ^2}}}{{2{c^2}b_1^*(\delta + f({C_N}))}} - \frac{{5b_1^*N_s^2{\alpha ^2}}}{{2(\delta + f({C_N}))}}, |
{m_3}(b_1^{\text{*}}, b_2^{\text{*}}) = \alpha (1 + \frac{{2\alpha }}{{{K_r}{V_{r2}}}}) - \frac{{{{(\frac{{2\lambda \alpha u{K_s}}}{{c{K_r}{V_{r2}}}})}^2} + {{(\frac{{2\alpha }}{{{{\tilde k}_1}}})}^2}}}{{\frac{2}{5}b_1^*(\delta + f({C_N}))}} \\ - \frac{{6{\lambda ^2}{\alpha ^2}}}{{{c^2}b_2^*V_{r2}^2(\delta + \beta (u)f({C_N}))}} - \frac{{3b_2^*N_r^2{\alpha ^2}}}{{2(\delta + \beta (u)f({C_N}))}}. |
According to Theorem 5, the solution of Model (3) will oscillate around the equilibrium point {E_r} of Model (1). The amplitude of oscillation is positively correlated with the noise intensity \sigma .
In the special case, when \sigma = 0 , there is
\mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{t}E\int_{{\kern 1pt} 0}^{{\kern 1pt} t} {({{(T - {T_2})}^2} + {T_s}^2 + {{({T_r} - {T_{r2}})}^2} + {V_s}^2 + {{({V_r} - {V_{r2}})}^2})} ds \leqslant 0. |
This indicates that its equilibrium point {E_r} with respect to Model (1) is globally asymptotically stable.
The resistance of hepatitis B virus due to individual differences or the interference of factors such as environmental changes may cause the virus to mutate and change the original infection rate. The drug cannot accurately act on the mutant virus, and the infection rate is uncertain, so it will be affected by the clinic. Treatment brings many unknown results. By studying the asymptotic behavior of the mathematical model solution with random noise, understanding the influence of the interference of uncertain factors on the model solution can provide a theoretical basis for determining the treatment plan. The following is numerical simulation of the influence of random noise intensity on the model solution.
Some of the parameters in Model (1), such as the growth rate \lambda of healthy liver cells, the mortality rate \alpha of liver cells, the mortality rate \delta of viruses, the number of viruses {N_s} and {N_r} produced in the life cycle of sensitive and drug-resistant infected liver cells, are shown in Table 2 [24], and the average steady-state plasma concentration is {C_N} = 0.8 ng/ml.
symbol | instructions | Value | unit |
λ | the growth rate of uninfected hepatocytes | 2.527×105 | day-1 (ml)-1 |
α | the death rates of hepatocytes | 0.012 | day-1 |
δ | the death rates of viruses | 0.67 | day-1 |
Ns | the total number of viruses produced by sensitive infected hepatocytes during their life cycle | 2 | — |
Nr | the total number of viruses produced by drug-resistant hepatocytes during their life cycle | 2 | — |
Choose four situations to simulate the difference caused by noise. Related parameters such as virus mutation rate u , drug inhibition rate \beta of virus, sensitive HBV infection rate {K_s} , drug-resistant HBV infection rate {K_r} and noise intensity \sigma are shown in Table 3.
case | Mutation rate u | Drug inhibiti-on rate β | the infection rate of sensitive HBV on uninfected hepatocytes Ks/day-1(mL)-1 | the infection rate of drug-resistant HBV on uninfected hepatocytes Kr/day-1(mL)-1 | Noise intensity σ (smaller) | Noise intensity σ (larger) |
1 | 0.3 | 0.7 | 3.8×10-8 | 1.2×10-8 | 0.0000008 | 0.0000010 |
2 | 0.02 | 0.98 | 8×10-8 | 1.2×10-8 | 0.0000008 | 0.0000015 |
3 | 0.5 | 0.5 | 2.8×10-7 | 5.2×10-8 | 0.00000008 | 0.00000015 |
4 | 0.9 | 0.1 | 3.8×10-8 | 3.6×10-8 | 0.00000008 | 0.00000020 |
In order to better understand the interference of noise on virus changes, Models (1) and (3) are simulated and compared. Divide Models (1) and (3) into sensitive sub-models and drug-resistant sub-models. The initial values of the model are taken as follows
T(0) = 1.9 \times {10^7}, {T_s}(0) = 2.79 \times {10^8}, {T_r}(0) = 2.79 \times {10^7}, |
{V_s}(0) = {10^7}, {V_r}(0) = {10^6}. |
Case 1: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate {R_s} = 0.5778 and {R_r} = 0.1825 . It can be seen from paper [14] that Model (1) has a disease-free equilibrium point {E_0} , which is a global asymptotically stable point. From Theorem 2, we can see that the solution trajectory of Model (1) is asymptotically oscillating around {E_0} . The simulation results are shown in Figures 3 and 4.
Comparing Figures 3 and 4, it can be found that when the noise intensity increases, the vibration amplitude of the solution of the Model (3) around {E_0} will also increase.
Case 2: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate {R_s} = 1.1920 and {R_r} = 1.1853 . It can be seen from paper [14] that Model (1) has a drug-sensitive type virus equilibrium point {E_s} , which is a global asymptotically stable point. From Theorem 4, we can see that the solution trajectory of Model (1) is asymptotically oscillating around {E_s} . The simulation results are shown in Figures 5 and 6.
Comparing Figures 5 and 6, it can be found that when the noise intensity increases, the vibration amplitude of the solution of the Model (3) around {E_s} will also increase.
Case 3: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate {R_s} = 2.1286 and {R_r} = 1.2733 . It can be seen from paper [14] that Model (1) has double virus equilibrium point {E^*} , which is a global asymptotically stable point. From Theorem 3, we can see that the solution trajectory of Model (1) is asymptotically oscillating around {E^*} . The simulation results are shown in Figures 7 and 8.
Comparing Figures 7 and 8, it can be found that when the noise intensity increases, the vibration amplitude of the solution of the Model (3) around {E^*} will also increase.
Case 4: Substituting the parameters in Tables 2 and 3 into Eq (2) can calculate {R_s} = 0.0578 and {R_r} = 1.7230 . It can be seen from paper [14] that Model (1) has a drug-resistance type virus equilibrium point {E_r} , which is a global asymptotically stable point. From Theorem 5, we can see that the solution trajectory of Model (1) is asymptotically oscillating around {E_r} . The simulation results are shown in Figures 9 and 10.
Numerical simulation results show that:
Case 4 is different from Cases 1–3. Comparing Figures 9 and 10, when the noise intensity is \sigma = 0.00000008 , the solution of Model (3) will eventually oscillate around the drug-resistance equilibrium point {E_r} ; When the noise intensity increases to \sigma = 0.0000002 , it can be seen from H2) and H4 in Figure 10 that, with the increase of noise intensity, the number of drug-resistant infected cells and drug-resistant HBV will gradually decrease and eventually reach a disease-free equilibrium point. In the other three cases, the oscillations only increased. Therefore, it can be inferred that the increase of noise intensity, which affects the infection rate of drug-resistant HBV, can inhibit the increase of drug-resistant infected cells and drug-resistant HBV when the degree of drug resistance of the virus in patients is high. All Cases 1–4 indicate that with the increase of noise intensity, the oscillation amplitude of the solution of Model (3) will increase, which verifies the conclusion of Theorems 2–5. Case 4 also shows that when drug resistance is high, the increase of noise intensity will inhibit the replication of the virus, that is to say, the interference of human factors can be increased in real life, so that the number of viruses in the patient's body is decrease.
If drug-resistant virus has been produced in the treatment process, the interference of noise will produce uncertainty phenomenon, so the change trend of virus cannot be accurately judged, and the subsequent treatment cannot achieve the expected goal. Taking the drug-resistance equilibrium point as an example, the initial value in 4.2 and the parameter value in Table 2 are still selected. The average steady state plasma concentration {C_N} is still 0.8 ng/ml. The infection rate {K_s} of sensitive HBV and the infection rate {K_r} drug-resistant HBV is 9 \times {10^{ - 8}} and 5.2 \times {10^{ - 8}} , the mutation rate u is 0.4, and the drug inhibition rate \beta is 0.6. At this time, the Model (1) has a globally asymptotically stable equilibrium point {E_r} . The changing law of the solution of Model (3) is numerically simulated, and the simulation result is shown in Figure 11.
It can be seen from Figure 11 that due to the influence of noise factors, the number of viruses may fluctuate around the lower limit of detection ( {10^3} copies/mL, the critical value for clinical treatment). For example, in Figure11 i1), during the period of 1070 to 1324 days of antiviral treatment, the number of virus will be below the lower limit of detection many times. From i1) to i3) in Figure 11, it can be seen that as the noise intensity increases, the fluctuations near the lower detection limit ( {10^3} copies/mL) become more frequent. When it is clinically detected that the HBV DNA of a patient is below the lower limit of detection for many times, the drug will be stopped, but the actual patient is still at the equilibrium point of drug resistance. Stopping the drug will lead to a rapid increase in the number of viruses. The intensity of noise provides an illusion for clinical detection of HBV DNA.
The simulation results found that when the drug-resistant HBV in the patient is the main group of viruses, the increase in noise intensity that affects the infection rate of drug-resistant HBV can effectively inhibit virus replication and reduce drug-resistant infected cells and HBV. But it will also interfere with the correct detection of HBV DNA. Therefore, it is recommended that in the process of clinical treatment, when the patient has strong drug resistance, measures should be taken to suppress the infection rate of the mutant strain, such as dressing change or combined drug therapy, so as to achieve the purpose of treating resistant infection cells and eliminating HBV. When the noise intensity is large, the number of detections should be strengthened during the treatment process, and the time of two detections should be lengthened to improve the accuracy of detection. Even when the number of viruses in the patient's body reaches the lower limit of detection, reasonable consolidation treatment should be carried out to make the patient's treatment more thorough. Avoid noise interference to make the detection inaccurate and affect the patient's antiviral treatment.
This paper established a hepatitis B virus dynamic model with random interference infection rate, proved the existence and uniqueness of the global positive solution, and obtained the asymptotic behavior of the model solution near the equilibrium point of the deterministic model. Through numerical simulation, the conclusion of the theorem is verified, and when the random interference is small enough, the solution of the random model vibrates around the equilibrium point of the determined model. It is found that the amplitude of the oscillation is proportional to the noise intensity.
This work was supported by the project of Nature Scientific Foundation of Heilongjiang Province (A2016004).
The authors declare there is no conflict of interest.
[1] | J. Zhang, W. J. Xu, G. Wang, Analysis of lamivudine-resistant mutations in 268 patients with chronic hepatitis B during lamivudine therapy(In Chinese), Chin. J. Health Lab. Technol., 18 (2008), 2343–2344. |
[2] | Y. Su, G. F. Gao, G. M. Li, Research progress on hepatitis B virus mutations and resistance to nucleosides, 2011. Available from: https://www.doc88.com/p-1963143564969.html. |
[3] | J. Deng, X. X. Zhang, Nucleoside (acid) drug resistance mechanism and its countermeasures, Chin. J. Prac. Int. Med., 27 (2007), 1402–1404. |
[4] | H. Y. Pang, W. D. Wang, Deterministic and stochastic analysis of a cell-to-cell virus dynamics model with immune impairment, J. Southwest Chin. Norm. Univ. (Nat. Sci. Ed.), 31 (2006), 26–30. |
[5] | H. Y. Pang, W. D. Wang, Global properties of virus dynamics with CTL immune response, J. Southwest Chin. Norm. Univ. (Nat. Sci. Ed.), 30 (2005), 38–41. |
[6] | F. L. Xie, M. J. Shan, X. Z. Lian, Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth, Appl. Math. Comput., 293 (2017), 630–641. |
[7] | Y. Wang, X. N. Liu, An HBV infection model with logistic growth, cure rate and CTL immune response, J. Southwest Chin. Norm. Univ. (Nat. Sci. Ed.), 38 (2016), 1–6. |
[8] | H. W. Hui, The Analysis of Virus Model and Population Model with Stochastic Perturbation, MA. Thesis, Xinjiang University, 2018. |
[9] |
K. B. Bao, Q. M. Zhang, X. N. Li, A model of HBV infection with intervention strategies: dynamics analysis and numerical simulations, Math. Biosci. Eng., 16 (2019), 2562–2586. doi: 10.3934/mbe.2019129
![]() |
[10] |
Y. L. Cai, Y. Kang, M. Banerjee, W. M. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502. doi: 10.1016/j.jde.2015.08.024
![]() |
[11] |
Q. Liu, D. Q. Jiang, N. Z. Shi, T. Hayat, A. Alsaedi, Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth, Acta Math. Sci., 37 (2017), 927–940. doi: 10.1016/S0252-9602(17)30048-6
![]() |
[12] | M. Zhao, X. Y. Wang, Asymptotic behavior of global positive solution to stochastic SIQR epidemic model, J. Univ. Jinan (Sci. Technol.), 33 (2019), 88–94. |
[13] | F. Y. Wei, Y. H. Cai. Y. H. Zhao, The asymptotic behavior of a stochastic SIQS epidemic model with nonlinear incidence, J. Biomath., 31 (2016), 109–117. |
[14] | P. Y. Xia, The Dynamic Behavior of Several Stochastic Virus Models, Ph.D thesis, Northeast Normal University, 2018. |
[15] |
Y. N. Zhao, D. Q. Jiang, The extinction and persistence of the stochastic SIS epidemic model with vaccination, Phys. A Stat. Mech. Appl., 392 (2013), 4916–4927. doi: 10.1016/j.physa.2013.06.009
![]() |
[16] | Y. Muroya, Y. Enatsu, H. Li, Global stability of a delayed HTLV–I infection model with a class of nonlinear incidence rates and CTLs immune response, Appl. Math. Comput., 219 (2013), 10559–10573. |
[17] | X. W. Cui, Dynamic Behavior Analysis of Virus Infection Model Induced by Random Noise, MA. Thesis, Taiyuan University of Technology, 2018. |
[18] |
H. Srivastava, K. Saad, J. Gómez-Aguilar, A. A. Almadiy, Some new mathematical models of the fractional-order system of human immune against IAV infection, Math. Biosci. Eng., 17 (2020), 4942–4969. doi: 10.3934/mbe.2020268
![]() |
[19] |
K. Saad, J. Gómez–Aguilar, A. Almadiyd, A fractional numerical study on a chronic hepatitis C virus infection model with immune response, Chaos Solitons Fractals, 139 (2020), 110062. doi: 10.1016/j.chaos.2020.110062
![]() |
[20] |
H. Srivastava, K. Saad, Numerical simulation of the fractal-fractional Ebola virus, Fractal Fractional, 4 (2020), 49. doi: 10.3390/fractalfract4040049
![]() |
[21] |
D. M. Li, B. Chai, A dynamic model of hepatitis B virus with drug-resistant treatment, AIMS Math., 5 (2020), 4734–4753. doi: 10.3934/math.2020303
![]() |
[22] | N. Wang, The research status of hepatitis B Virus cccDNA, Immunol. Studies, 3 (2015), 15–18. |
[23] | X. Y. Liu, Q. H. Shang, X. S. Liu, Relationship between the serum HBV DNA and the change of the intrahepatic HBV cceDNA levels in antiviral therapy for chronic hepatitis B, Chin. Hepatol., 20 (2015), 591–596. |
[24] | L. Min, Y. Su, Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky Mt. J. Math., 38 (2008), 1573–1585. |
1. | Baolin Li, Fengqin Zhang, Xia Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response, 2022, 45, 0170-4214, 11930, 10.1002/mma.8547 | |
2. | Benito Chen-Charpentier, A Model of Hepatitis B Viral Dynamics with Delays, 2024, 4, 2673-9909, 182, 10.3390/appliedmath4010009 |
DNA(log10 copies/ ml) | Before treatment | 24 weeks | 48 weeks | 60 weeks |
hepatic tissue cccDNA | 3.83 | 2.30 | 1.25 | 0.94 |
serum cccDNA | 7.12 | 3.37 | 1.40 | 0.21 |
serum HBV DNA | 6.22 | 3.01 | 0.62 | 0.29 |
symbol | instructions | Value | unit |
λ | the growth rate of uninfected hepatocytes | 2.527×105 | day-1 (ml)-1 |
α | the death rates of hepatocytes | 0.012 | day-1 |
δ | the death rates of viruses | 0.67 | day-1 |
Ns | the total number of viruses produced by sensitive infected hepatocytes during their life cycle | 2 | — |
Nr | the total number of viruses produced by drug-resistant hepatocytes during their life cycle | 2 | — |
case | Mutation rate u | Drug inhibiti-on rate β | the infection rate of sensitive HBV on uninfected hepatocytes Ks/day-1(mL)-1 | the infection rate of drug-resistant HBV on uninfected hepatocytes Kr/day-1(mL)-1 | Noise intensity σ (smaller) | Noise intensity σ (larger) |
1 | 0.3 | 0.7 | 3.8×10-8 | 1.2×10-8 | 0.0000008 | 0.0000010 |
2 | 0.02 | 0.98 | 8×10-8 | 1.2×10-8 | 0.0000008 | 0.0000015 |
3 | 0.5 | 0.5 | 2.8×10-7 | 5.2×10-8 | 0.00000008 | 0.00000015 |
4 | 0.9 | 0.1 | 3.8×10-8 | 3.6×10-8 | 0.00000008 | 0.00000020 |
DNA(log10 copies/ ml) | Before treatment | 24 weeks | 48 weeks | 60 weeks |
hepatic tissue cccDNA | 3.83 | 2.30 | 1.25 | 0.94 |
serum cccDNA | 7.12 | 3.37 | 1.40 | 0.21 |
serum HBV DNA | 6.22 | 3.01 | 0.62 | 0.29 |
symbol | instructions | Value | unit |
λ | the growth rate of uninfected hepatocytes | 2.527×105 | day-1 (ml)-1 |
α | the death rates of hepatocytes | 0.012 | day-1 |
δ | the death rates of viruses | 0.67 | day-1 |
Ns | the total number of viruses produced by sensitive infected hepatocytes during their life cycle | 2 | — |
Nr | the total number of viruses produced by drug-resistant hepatocytes during their life cycle | 2 | — |
case | Mutation rate u | Drug inhibiti-on rate β | the infection rate of sensitive HBV on uninfected hepatocytes Ks/day-1(mL)-1 | the infection rate of drug-resistant HBV on uninfected hepatocytes Kr/day-1(mL)-1 | Noise intensity σ (smaller) | Noise intensity σ (larger) |
1 | 0.3 | 0.7 | 3.8×10-8 | 1.2×10-8 | 0.0000008 | 0.0000010 |
2 | 0.02 | 0.98 | 8×10-8 | 1.2×10-8 | 0.0000008 | 0.0000015 |
3 | 0.5 | 0.5 | 2.8×10-7 | 5.2×10-8 | 0.00000008 | 0.00000015 |
4 | 0.9 | 0.1 | 3.8×10-8 | 3.6×10-8 | 0.00000008 | 0.00000020 |