Research article

Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects


  • Received: 14 October 2023 Revised: 04 December 2023 Accepted: 11 December 2023 Published: 20 December 2023
  • In this paper, we investigate the dynamic behavior of a modified Leslie-Gower predator-prey model with the Allee effect on both prey and predator. It is shown that the model has at most two positive equilibria, where one is always a hyperbolic saddle and the other is a weak focus with multiplicity of at least three by concrete example. In addition, we analyze the bifurcations of the system, including saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. The results show that the model has a cusp of codimension three and undergoes a Bogdanov-Takens bifurcation of codimension two. The system undergoes a degenerate Hopf bifurcation and has two limit cycles (the inner one is stable and the outer one is unstable). These enrich the dynamics of the modified Leslie-Gower predator-prey model with the double Allee effects.

    Citation: Mengyun Xing, Mengxin He, Zhong Li. Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034

    Related Papers:

  • In this paper, we investigate the dynamic behavior of a modified Leslie-Gower predator-prey model with the Allee effect on both prey and predator. It is shown that the model has at most two positive equilibria, where one is always a hyperbolic saddle and the other is a weak focus with multiplicity of at least three by concrete example. In addition, we analyze the bifurcations of the system, including saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. The results show that the model has a cusp of codimension three and undergoes a Bogdanov-Takens bifurcation of codimension two. The system undergoes a degenerate Hopf bifurcation and has two limit cycles (the inner one is stable and the outer one is unstable). These enrich the dynamics of the modified Leslie-Gower predator-prey model with the double Allee effects.



    加载中


    [1] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342
    [2] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
    [3] A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697–699. https://doi.org/10.1016/s0893-9659(01)80029-x doi: 10.1016/s0893-9659(01)80029-x
    [4] S. B. Hsu, T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763–783. https://doi.org/10.1137/s0036139993253201 doi: 10.1137/s0036139993253201
    [5] T. Lindstrom, Qualitative analysis of a predator-prey system with limit cycles, J. Math. Biol., 31 (1993), 541–561. https://doi.org/10.1007/bf00161198 doi: 10.1007/bf00161198
    [6] I. Hanski, L. Hansson, H. Henttonen, Specialist predators, generalist predators and the microtine rodent cycle, J. Anim. Ecol., 60 (1991), 353–367. https://doi.org/10.2307/5465 doi: 10.2307/5465
    [7] M. A. Aziz-Alaoui, M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069–1075. https://doi.org/10.1016/s0893-9659(03)90096-6 doi: 10.1016/s0893-9659(03)90096-6
    [8] A. F. Nindjin, M. A. Aziz-Alaoui, M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal. Real World Appl., 7 (2006), 1104–1118. https://doi.org/10.1016/j.nonrwa.2005.10.003 doi: 10.1016/j.nonrwa.2005.10.003
    [9] C. Xiang, J. Huang, H. Wang, Linking bifurcation analysis of Holling-Tanner model with generalist predator to a changing environment, Stud. Appl. Math., 149 (2022), 124–163. https://doi.org/10.1111/sapm.12492 doi: 10.1111/sapm.12492
    [10] Y. L. Zhu, K. Wang, Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes, J. Math. Anal. Appl., 384 (2011), 400–408. https://doi.org/10.1016/j.jmaa.2011.05.081 doi: 10.1016/j.jmaa.2011.05.081
    [11] M. K. Singh, B. K. Singh, Poonam, C. Cattani, Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model, Math. Biosci. Eng., 20 (2023), 9625–9644. https://doi.org/10.3934/mbe.2023422 doi: 10.3934/mbe.2023422
    [12] J. Gine, C. Valls, Nonlinear oscillations in the modified Leslie-Gower model, Nonlinear Anal. Real World Appl., 51 (2020), 103010. https://doi.org/10.1016/j.nonrwa.2019.103010 doi: 10.1016/j.nonrwa.2019.103010
    [13] M. M. Chen, Y Takeuchi, J. F. Zhang, Dynamic complexity of a modified Leslie-Gower predator-prey system with fear effect, Commun. Nonlinear Sci. Numer. Simulat., 119 (2023), 107109. https://doi.org/10.1016/j.cnsns.2023.107109 doi: 10.1016/j.cnsns.2023.107109
    [14] W. C. Allee, Animal Aggregations: A Study in General Sociology, University of Chicago Press, Chicago, 1931. https://doi.org/10.5962/bhl.title.7313
    [15] C. Arancibia-Ibarra, The basins of attraction in a modified May-Holling-Tanner predator-prey model with Allee affect, Nonlinear Anal., 185 (2018), 15–28. https://doi.org/10.1016/j.na.2019.03.004 doi: 10.1016/j.na.2019.03.004
    [16] C. Arancibia-Ibarra, J. Flores, Dynamics of a Leslie-Gower predator-prey model with Holling type II functional response, Allee effect and a generalist predator, Math. Comput. Simulation, 188 (2021), 1–22. https://doi.org/10.1016/j.matcom.2021.03.035 doi: 10.1016/j.matcom.2021.03.035
    [17] W. Q. Yin, Z. Li, F. D. Chen, M. X. He, Modeling Allee effect in the Leslie-Gower predator-prey system incorporating a prey pefuge, Int. J Bifurcat. Chaos, 6 (2022), 2250086. https://doi.org/10.1142/s0218127422500869 doi: 10.1142/s0218127422500869
    [18] Y. Z. Liu, Z. Li, M. X. He, Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect, Math. Biosci. Eng., 20 (2023), 8632–8665. https://doi.org/10.3934/mbe.2023379 doi: 10.3934/mbe.2023379
    [19] N. Martinez-Jeraldo, P. Aguirre, Allee effect acting on the prey species in a Leslie-Gower predation model, Nonlinear Anal. Real World Appl., 45 (2019), 895–917. https://doi.org/10.1016/j.nonrwa.2018.08.009 doi: 10.1016/j.nonrwa.2018.08.009
    [20] P. J. Pal, P. K. Mandal, Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect, Math. Comput. Simulation, 97 (2014), 123–146. https://doi.org/10.1016/j.matcom.2013.08.007 doi: 10.1016/j.matcom.2013.08.007
    [21] Y. J. Li, M. X. He, Z. Li, Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect, Math. Comput. Simulation, 201 (2022), 417–439. https://doi.org/10.1016/j.matcom.2022.05.017 doi: 10.1016/j.matcom.2022.05.017
    [22] Z. C. Shang, Y. H. Qiao, Multiple bifurcations in a predator-prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting, Math. Comput. Simulation, 205 (2023), 745–764. https://doi.org/10.1016/j.matcom.2022.10.028 doi: 10.1016/j.matcom.2022.10.028
    [23] P. Feng, Y. Kang, Dynamics of a modified Leslie-Gower model with double Allee effects, Nonlinear Dyn., 80 (2015), 1051–1062. https://doi.org/10.1007/s11071-015-1927-2 doi: 10.1007/s11071-015-1927-2
    [24] M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13–22. https://doi.org/10.1016/j.jtbi.2017.02.002 doi: 10.1016/j.jtbi.2017.02.002
    [25] S. Zhou, Y. Liu, G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23–31. https://doi.org/10.1016/j.tpb.2004.06.007 doi: 10.1016/j.tpb.2004.06.007
    [26] Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, New Jersey, 1992. https://doi.org/10.1090/mmono/101
    [27] J. C. Huang, Y. J. Gong, J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Int. J Bifurcat. Chaos, 23 (2013), 1350164. https://doi.org/10.1142/s0218127413501642 doi: 10.1142/s0218127413501642
    [28] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996. https://doi.org/10.1007/978-1-4684-0392-3
    [29] M. Lu, J. C. Huang, S. G. Ruan, P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differ. Equation, 267 (2019), 1859–1898. https://doi.org/10.1016/j.jde.2019.03.005 doi: 10.1016/j.jde.2019.03.005
    [30] Y. F. Dai, Y. L. Zhao, B. Sang, Four limit cycles in a predator-prey system of Leslie type with generalized Holling type III functional response, Nonlinear Anal. Real World Appl., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1292) PDF downloads(169) Cited by(1)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog