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Abstract: In this paper, we investigate the dynamic behavior of a modified Leslie-Gower predator-prey
model with the Allee effect on both prey and predator. It is shown that the model has at most two positive
equilibria, where one is always a hyperbolic saddle and the other is a weak focus with multiplicity of
at least three by concrete example. In addition, we analyze the bifurcations of the system, including
saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. The results show that the
model has a cusp of codimension three and undergoes a Bogdanov-Takens bifurcation of codimension
two. The system undergoes a degenerate Hopf bifurcation and has two limit cycles (the inner one
is stable and the outer one is unstable). These enrich the dynamics of the modified Leslie-Gower
predator-prey model with the double Allee effects.
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1. Introduction

Leslie and Gower proposed a predator-prey model [1, 2], as follows:

ẋ = rx
(
1 −

x
K

)
− mxy,

ẏ = sy
(
1 −

y
nx

)
,

(1.1)

where x and y denote the average population densities of the prey and predator at time t, respectively; K,
r, s, m and n are all positive; K represents the environmental carrying capacity; r and s are the intrinsic
growth rates of the prey and predator, respectively; m is the maximum per capita predation rate; n is a
measure of the quality of the prey as food for the predator. In model (1.1), the environmental capacity of
predators is directly proportional to the number of prey (i.e., nx), and y

nx is called the Leslie-Gower term.
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Korobeinikov [3] and Hsu and Huang [4] showed that system (1.1) has a globally asymptotically stable
positive equilibrium under certain conditions. Lindstrom [5] studied the nonexistence and existence of
limit cycles of system (1.1).

In system (1.1), predators are thought to feed on a single prey species. In the world, several predators
pursue a wide range of prey. That is, the predator will seek alternative food sources if the predator’s
favorite food is not in sufficient supply. This type of predator is called a generalist predator, and it
includes foxes, common buzzards, cats, etc. [6]. In order to study the situation in which the predator is a
generalist predator, Aziz-Alaoui and Okiye [7] replaced nx with nx + c and considered a predator-prey
model with other food sources and a Holling type II functional response as follows:

ẋ = rx
(
1 −

x
K

)
−

mxy
a + x

,

ẏ = sy
(
1 −

y
nx + c

)
,

(1.2)

where y
nx+c is called the modified Leslie-Gower term; c can be seen as other food sources for the predator.

The authors [7] studied the boundedness of the solution of system (1.2) and proved that the interior positive
equilibrium is globally asymptotically stable under certain parameter conditions by constructing a suitable
Lyapunov function. Nindjin et al. [8] discussed the effect of time delay on the stability of the positive
equilibrium. Xiang et al. [9] rigorously analyzed the high codimension bifurcation of system (1.2), such
as the Hopf bifurcation of codimension 2 and degenerate Bogdanov-Takens bifurcation of codimension 3.
Under the condition that the coefficients of system (1.2) are periodic, Zhu and Wang [10] proved the existence
of positive periodic solutions and obtained some sufficient conditions for the global attractivity of positive
periodic solutions. For more interesting results on the modified Leslie-Gower term, please refer to [11–13].

Allee [14] pointed out that clustering is conducive to the growth and survival of the population, but
excessive sparsity and overcrowding can prevent the growth of the population; he also found that each
population has its optimal population density. A population is endangered when its density falls below
a certain threshold; that is, it has a minimum density to sustain the population. When the population
density is too low, it will be difficult for individuals to find mates or resist natural enemies, which will
lead to a decrease in the birth rate and an increase in the death rate of the population. This phenomenon is
called the Allee effect, which leads to more complex dynamic behavior. Lots of biological phenomena
can cause the Allee effect, such as mating difficulty, anti predator defense and genetic drift. One of the
Allee effect’s forms expression is the multiplicative Allee effect, which can be written as follows for a
single species:

ẋ = rx
(
1 −

x
K

)
(x − a) ,

where a is the Allee threshold. When 0 < a < K, that is, the population density is small, the per capita
growth rate of the population is negative, which is called a strong Allee effect.

Arancibia-Ibarra [15] proposed the following model with the multiplicative Allee effect and a
generalist predator:

ẋ = rx
(
1 −

x
K

)
(x − m) − qxy,

ẏ = sy
(
1 −

y
nx + c

)
.

(1.3)

The author demonstrated the existence of separatrices that separate basins of attraction in the phase
plane, which is associated with the oscillation, coexistence and extinction of predator-prey populations.
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Through numerical simulations, they showed that system (1.3) undergoes Hopf bifurcation and Bogdanov-
Takens bifurcation. Considering system (1.3) with Holling’s type II functional response, Arancibia-Ibarra
and Flores [16] investigated the different bifurcation and showed that the system exhibits the multi-stability
phenomenon. Yin et al. [17] studied a predator-prey model with the Allee effect and prey refuge, and they
showed that the system has two limit cycles and a Bogdanov-Takens bifurcation of codimension 3. Some
scholars [18–22] have studied the impact of the other functional response functions and Allee effect on the
dynamical behaviors of Leslie-Gower systems.

Most scholars have considered the impace of the Allee effect on prey. In fact, the Allee effect on
predator populations can also affect the dynamic behavior of the system. For predators, when the
population density is low, the success rate of cooperative hunting will decrease; the probability of
finding a mate will also decrease, which will lead to a decrease in the population birth rate. Therefore,
there is also the Allee effect in predator populations. Recently, the study of predator-prey models with
the Allee effect on the predator has attracted the interest of a number of scholars. Fox example, Feng
and Kang [23] investigated a predator-prey model with the Allee effect on both prey and predator;
they showed that the double Allee effect greatly altered the survival of these two species. Alves and
Hilker [24] studied the relationship between hunting cooperation and the Allee effect in the predator
population, as well as its impact on the predator-prey system.

Therefore, inspired by [15, 23], we consider a modified Leslie-Gower predator-prey system with
double Allee effects on predator and prey, as follows:

ẋ = rx
(
1 −

x
K

)
(x − a) − mxy,

ẏ = sy
(

y
y + b

−
y

nx + c

)
,

(1.4)

where all parameters are positive and 0 < a < K. Here, y
y+b represents the Allee effect, and the per capita

growth rate of the predator changes from s to sy
y+b with the influence of the Allee effect [25]. Obviously,

as b increases, the Allee effect becomes stronger and the per capita growth rate of the predator is slower.
For simplicity, making a dimensionless transformation by using

x̄ =
x
K
, ȳ =

y
nK
, t̄ = rKt, ā =

a
K
,

m̄ =
mn
r
, s̄ =

s
rK
, p =

b
nK
, c̄ =

c
nK
,

and dropping the bar, system (1.4) becomes

ẋ = x (1 − x) (x − a) − mxy,
ẏ = sy

(
y

y+p −
y

x+c

)
,

(1.5)

where 0 < a < 1 and the other parameters are positive. From the biological background, assume that the
following initial conditions:

(x(0), y(0)) ∈ Ω ≜ {(x, y) ∈ R2|x ≥ 0, y ≥ 0}.

The rest of this paper is organized as follows. We respectively discuss the existence and stability
of the equilibria in Sections 2 and 3. In Section 4, we investigate the existence of various bifurcations,
such as saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. In Section 5, we
give numerical simulations to show the influence of the Allee effect in the predator population on the
dynamical behavior of the system. The paper ends with a brief conclusion.
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2. Existence of equilibria

First, we show that all solutions of system (1.5) are positive and bounded if the initial condition is
given by (x(0), y(0)) ∈ Ω+ ≜ {(x, y) ∈ R2|x > 0, y > 0}.

Lemma 2.1. All solutions of system (1.5) are positive and bounded for the initial condition (x(0), y(0)) ∈ Ω+.

Proof. System (1.5) has the solution (x(t), y(t)), as follows:

x(t) = x(0) exp
{∫ t

0

[
(1 − x(τ)) (x(τ) − a) − my(τ)

]
dτ

}
,

y(t) = y(0) exp
{∫ t

0

[
s
(

y(τ)
y(τ)+p −

y(τ)
x(τ)+c

)]
dτ

}
.

Since the initial values x(0) > 0 and y(0) > 0, we get that x(t) > 0 and y(t) > 0 for t > 0. Therefore,
solutions of system (1.5) are positive.

If x ≥ 1, from the prey equation of system (1.5), we obtain that ẋ < x (1 − x) (x − a) ≤ 0, which
implies that lim sup

t→∞
x(t) ≤ 1. According to lim sup

t→∞
x(t) ≤ 1, we have that x(t) < 1 for large values of

time t. In addition, from the predator equation of system (1.5), we have that ẏ < sy
(
1 − y

1+c

)
for large

values of time t. Then, we have lim sup
t→∞

y(t) < 1 + c. Hence, solutions of system (1.5) are bounded. The

proof is completed.

Next, we study the existence of equilibria of system (1.5). Obviously, system (1.5) has a trivial
equilibrium E0(0, 0) and two predator-free equilibria E1(1, 0) and E2(a, 0). When c > p, system (1.5)
has a prey-free equilibrium E3(0, c − p). Note that the positive equilibria of system (1.5) satisfy the
following equations: 

(1 − x) (x − a) − my = 0,
1

y + p
−

1
x + c

= 0. (2.1)

From the first equation of (2.1), we can obtain the prey isocline of system (1.5):

y1 =
1
m

(1 − x) (x − a) .

From the second equation of (2.1), we get the predator isocline of system (1.5):

y2 = x + c − p.

The prey isocline y1 is a parabola passing through points E1, E2 with vertex at
(

a+1
2 ,

(a−1)2

4m

)
. The predator

isocline y2 is a monotonically increasing straight line passing through E3 with a slope of 1. Also, we
calculate that the slope of curve y1 at E2 is 1−a

m .
From (2.1), we obtain

f (x) = x2 + (m − 1 − a)x + cm − pm + a = 0. (2.2)

The discriminant of Eq (2.2) is
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∆ = (m − 1 − a)2 − 4cm + 4pm − 4a.

Define

x∗1 =
a + 1 − m −

√
∆

2
, x∗2 =

a + 1 − m +
√
∆

2
, x∗ =

a + 1 − m
2

.

Obviously, the number of intersection points of curves y1 and y2 depends on the sign of ∆. If ∆ > 0,
Eq (2.2) has two real roots x∗1 and x∗2, which means that the number of intersection points of curves y1

and y2 is 2. If ∆ = 0, Eq (2.2) has a unique real root x∗; that is, the curve y1 has only one intersection
point with y2.

Note that the positive equilibria are determined by the intersection of the curves y1 and y2 in the
first quadrant. Based on the positional relationships of E1, E2, E3 and the slope of curve y1 at E2, we
consider four cases:

(1) When p − c < a,
(1.a) if 1−a

m > 1, the number of intersections of y1 and y2 may be 0, 1 or 2, depending on the sign of ∆.
For example, y1 and y2 have two intersections (see Figure 1(a)) or only one intersection (see Figure 1(b))
if ∆ > 0 or ∆ = 0, respectively;

(1.b) if 0 < 1−a
m ≤ 1, the predator isocline is above the prey isocline in the first quadrant, as shown in

Figure 1(c). So, there is no intersection of y1 and y2, i.e., system (1.5) has no positive equilibrium.
(2) When p − c = a,
(2.a) if 1−a

m > 1, y1 and y2 have only one intersection in the first quadrant; see Figure 1(d). Hence,
system (1.5) has only one positive equilibrium;

(2.b) if 0 < 1−a
m ≤ 1, the predator isocline and the prey isocline have only one intersection at E2, as

shown in Figure 1(e). Hence, there is no intersection in the first quadrant, which implies that system (1.5)
has no positive equilibrium.
(3) When a < p − c < 1, there is one intersection of y1 and y2 in the first quadrant; see Figure 1(f).
Hence, system (1.5) has a positive equilibrium.
(4) When p− c ≥ 1, in the first quadrant, the prey isocline is to the left of the predator isocline, as shown
in Figure 1(g) and (h). Therefore, system (1.5) has no positive equilibrium.

Let

p∗∗ = a + c, p∗ = c − c∗1 and c∗1 =
m2 − 2(a + 1)m + (a − 1)2

4m
;

then,
∆ = 4m(p − p∗).

Notice that p∗∗ ≥ p∗. Clearly, when c∗1 ≤ 0, or when c∗1 > 0 and c > c∗1, we can get that p∗ > 0.
By a simple calculation, we get that c∗1 > 0 if 0 < m < (1 −

√
a)2 or m > (1 +

√
a)2, and c∗1 ≤ 0 if

(1 −
√

a)2 ≤ m ≤ (1 +
√

a)2. Based on the above discussion, we derive the following theorem about the
existence of the positive equilibria of system (1.5).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1. Graphical representation of predator and prey isoclines. (a) p − c < a, 1−a
m > 1,

∆ > 0. (b) p − c < a, 1−a
m > 1, ∆ = 0. (c) p − c < a, 0 < 1−a

m ≤ 1. (d) p − c = a, 1−a
m > 1.

(e)p − c = a, 0 < 1−a
m ≤ 1. (f) a < p − c < 1. (g) p − c = 1. (h) p − c > 1.

Theorem 2.1. The existence of the positive equilibria of system (1.5) are classified as follows.

(1) Assume that 0 < m < (1 −
√

a)2 and c > c∗1, or (1 −
√

a)2 ≤ m < 1 − a; then,

(1.a) if p < p∗ or p ≥ 1 + c, system (1.5) has no positive equilibrium;
(1.b) if p = p∗, system (1.5) has a unique positive equilibrium E∗(x∗, y∗), where y∗ = x∗ + c − p;
(1.c) if p∗ < p < p∗∗, system (1.5) has two positive equilibria E4(x∗1, y

∗
1) and E5(x∗2, y

∗
2), where

y∗1 = x∗1 + c − p and y∗2 = x∗2 + c − p;
(1.d) if p∗∗ ≤ p < 1 + c, system (1.5) has a unique positive equilibria E5(x∗2, y

∗
2).

Mathematical Biosciences and Engineering Volume 21, Issue 1, 792–831.
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(2) Assume that 0 < m < (1 −
√

a)2 and c ≤ c∗1; then,

(2.a) if p ≥ 1 + c, system (1.5) has no positive equilibrium;
(2.b) if p∗∗ ≤ p < 1 + c, system (1.5) has a unique positive equilibrium E5(x∗2, y

∗
2);

(2.c) if p < p∗∗, system (1.5) has two positive equilibria E4(x∗1, y
∗
1) and E5(x∗2, y

∗
2).

(3) Assume that m ≥ 1 − a; then,

(3.a) if 0 < p ≤ p∗∗ or p ≥ 1 + c, system (1.5) has no positive equilibrium;
(3.b) if p∗∗ < p < 1 + c, system (1.5) has a unique positive equilibrium E5(x∗2, y

∗
2).

3. Stability of equilibria

Now we discuss the stability of system (1.5). The Jacobian matrix of any equilibrium of system (1.5) is

J(E) =
 (1 − x)(x − a) − my − x(2x − a − 1) −mx

s y2

(x+c)2 sy( 2
y+p −

y
(y+p)2 −

2
x+c )

 . (3.1)

The local stability of equilibria is determined by the eigenvalues of the Jacobian matrix (3.1) at
each equilibrium.

Theorem 3.1. The boundary equilibrium E3(0, c − p) is always a stable node if c > p.

Proof. The Jacobian matrix of system (1.5) at E3(0, c − p) is

J(E3) =
[
−a − m(c − p) 0

s(c−p)2

c2 −
s(c−p)2

c2

]
.

Obviously, J(E3) has two eigenvalues λ1 = −a −m(c − p) < 0 and λ2 = −
s(c−p)2

c2 < 0, which implies that
E3 is a stable node (see Figure 2(a)).

Theorem 3.2. For equilibrium E0, we have the following conditions:

(1) if p < c, E0 is an attracting saddle node, including a hyperbolic sector in the upper half-plane;
(2) if p = c, E0 is a stable degenerate node;
(3) if p > c, E0 is an attracting saddle node, including a parabolic sector in the upper half-plane.

Proof. The Jacobian matrix of system (1.5) at E0(0, 0) is

J(E0) =
[
−a 0
0 0

]
.

Obviously, J(E0) has one zero eigenvalue, which means that E0 is a degenerate equilibrium. Performing a
Taylor expansion at the origin and applying dτ = −adt (still denoting τ as t), then system (1.5) becomes

ẋ = x −
(a + 1)x2

a
+

myx
a
+

x3

a
,

ẏ =
s(p − c)y2

pca
−

s y2x
c2a
+

s y3

p2a
+ o(|x, y|3).

(3.2)

Mathematical Biosciences and Engineering Volume 21, Issue 1, 792–831.
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According to Theorem 7.1 in Chapter 2 in [26], if p < c, E0 is an attracting saddle node, with a
hyperbolic sector in the upper half-plane (see Figure 2(a)). If p > c, E0 is an attracting saddle node,
with a parabolic sector in the upper half-plane (see Figure 2(c)). If p = c, system (3.2) becomes

ẋ = x −
(a + 1)x2

a
+

myx
a
+

x3

a
,

ẏ = −
s y2x
c2a
+

s y3

c2a
+ o(|x, y|3).

(3.3)

From the center manifold theorem, we assume that x = α1y2 + β1y3 + o(|y|3). Substituting this into the
first equation of system (3.3), we get that α1 = 0 and β1 = 0. Substituting x = o(|y|3) into the second
equation of system (3.3), we can obtain the reduced system, restricted to the center manifold:

ẏ =
s y3

c2a
+ o(|y|3).

Clearly, s
c2a > 0, which implies that E0 is a stable degenerate node by Theorem 7.1 in [26] (see Figure 2(b)).

The proof is completed.

Theorem 3.3. For the equilibrium E1, we have the following conditions:

(1) if p < 1 + c, E1 is an attracting saddle node, with a hyperbolic sector in the upper half-plane;
(2) if p = 1 + c, E1 is a stable degenerate node;
(3) if p > 1 + c, E1 is an attracting saddle node, with a parabolic sector in the upper half-plane.

Proof. The Jacobian matrix of system (1.5) at E1(1, 0) is

J(E1) =
[

a − 1 −m
0 0

]
,

which means that J(E1) has one zero eigenvalue. So, E1 is a degenerate equilibrium. Making the
transformation (x1, y1) = (x − 1, y) to move E1 to the origin, system (1.5) becomes

ẋ1 = (a − 1)x1 − my1 − mx1y1 + (−2 + a)x2
1 − x3

1,

ẏ1 =
s(c+1−p)y2

1
p(c+1) +

s y2
1 x1

(c+1)2 −
s y3

1
p2 + o(|x, y|3).

(3.4)

Letting

x1 =
1

a − 1
x2 +

m
a − 1

y2, y1 = y2, t =
1

a − 1
τ,

system (3.4) becomes

ẋ2 = x2 + a20x2
2 + a11x2y2 + a02y2

2 + a30x3
2 + a12x2y2

2 + a21x2
2y2 + a03y3

2 + o(|x2, y2|
3),

ẏ2 = b02y2
2 + b12x2y2

2 + b03y3
2 + o(|x2, y2|

3),
(3.5)

where

Mathematical Biosciences and Engineering Volume 21, Issue 1, 792–831.
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a20 =
(−2 + a) m

(a − 1)2 , a11 =
(a − 3) m
(a − 1)2 , a02 = −

(c + 1 − p)(a − 1) s + (c + 1) mp
(a − 1)2 (c + 1)p

,

a30 = −
1

(a − 1)3 , a12 = −
(3c2m + as + 6cm + 3m − s)m

(a − 1)3(1 + c)2 , a21 = −
3m

(a − 1)3 ,

a03 =
((a − 1)2s − m2 p2)(c + 1)2m − (a − 1)p2m2s

(a − 1)3(1 + c)2 p2 , b02 =
(1 + c − p)s

(a − 1)(1 + c)p
,

b12 =
s

(a − 1)2(1 + c)2 , b03 = −
((c + 1)2(a − 1) − m p2)s

(a − 1)2(1 + c)2 p2 .

According to Theorem 7.1 in [26], if b02 , 0, i.e., p , 1 + c, E1 is an attracting saddle node (see
Figure 2(a), (b) and (c)). If p = 1 + c, system (3.5) is reduced to the following system:

˙̄x2 = x̄2 + a20 x̄2
2 + a11 x̄2ȳ2 + ā02ȳ2

2 + a30 x̄3
2 + a12 x̄2ȳ2

2 + a21 x̄2
2ȳ2 + ā03ȳ3

2 + o(|x̄2, ȳ2|
3),

˙̄y2 = b12 x̄2ȳ2
2 + b̄03ȳ2

3 + o(|x̄2, ȳ2|
3),

(3.6)

where

ā02 = −
m2

(a − 1)2 , ā03 =
(a − 1)(a − m − 1)sm − m3(c + 1)2

(a − 1)3(c + 1)2 ,

b̄03 = −
(a − m − 1)s

(c + 1)2(a − 1)2 .

Based on the center manifold theorem, let x̄2 = η1ȳ2
2 + o(|ȳ2|

2), and substitute it into the first equation of
system (3.6); then, we have that η1 =

m2

(a−1)2 . Substituting x̄2 =
m2

(a−1)2 ȳ2
2 + o(ȳ2

2) into the second equation
of system (3.3), we obtain the reduced system restricted to the center manifold, as follows:

˙̄y2 =
(1 − a + m)s

(c + 1)2(a − 1)2 ȳ3
2 + o(|ȳ2|

3).

E1 is a stable degenerate node (see Figure 2(d)) since a < 1 (see [26]). The proof is completed.

Theorem 3.4. For the equilibrium E2, we have the following conclusions.

(1) When p > a + c, E2 is a repelling saddle node, with a hyperbolic sector in the upper half-plane.
(2) When p = a + c,

(a) E2 is an unstable degenerate node if m > 1 − a;
(b) E2 is a repelling saddle node, with a parabolic sector in the upper half-plane if m = 1 − a;
(c) E2 is a degenerate saddle if m < 1 − a.

(3) If p < a + c, E2 is a repelling saddle node, with a parabolic sector in the upper half-plane.

Proof. The Jacobian matrix of system (1.5) at E2(a, 0) is

J(E2) =
[

(1 − a)a −am
0 0

]
.
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The two eigenvalues of J(E2) are λ1 = (1 − a)a and λ2 = 0; that is, E2 is a degenerate equilibrium. By
the transformation (x1, y1) = (x − a, y), we have

ẋ1 = (1 − a)ax1 − may1 − mx1y1 + (−2a + 1)x2
1 − x3

1,

ẏ1 =
s(c+a−p)y2

1
p(c+a) +

s y2
1 x1

(c+a)2 −
s y3

1
p2 +

s y2
1 x2

1
(a+c)3 +

s y4
1

p3 + o(|x1, y1|
4).

(3.7)

Next, making the transformation (
x1

y1

)
=

(
am am
0 (1 − a)a

) (
x2

y2

)
,

and applying dτ = (1 − a)adt (still rewriting τ as t), system (3.7) becomes the following system:

ẋ2 = x2 + c20x2
2 + c11x2y2 + c02y2

2 + c30x3
2 + c12x2y2

2 + c21x2
2y2 + c03y3

2
+c22x2

2y2
2 + c13x2y3

2 + c04y4
2 + o(|x2, y2|

4),
ẏ2 = d02y2

2 + d12x2y2
2 + d03y3

2 + d22x2
2y2

2 + d13x2y3
2 + d04y4

2 + o(|x2, y2|
4),

(3.8)

where

c20 =
(2a − 1) m

a − 1
, c02 =

amp(a + c) − s(a − 1)(a + c − p)
(a + c)(a − 1) p

, c11 =
(3a − 1) m

a − 1
,

c12 =
(3a2m + 6acm + 3c2m − sa + s) am

(a + c)2(a − 1)
, c21 =

3a m2

a − 1
, c30 =

a m2

a − 1
,

c03 = −
((a − 1)2(a + c)2s + ((a − 1)s − (a + c)2m) p2m) a

(a − 1)(a + c)2 p2 , c22 =
s a2m2

(a + c)3 ,

c13 =
2s a2m2

(a + c)3 , c04 = −
((a − 1)2(a + c)3 − m2 p3)a2s

(a + c)3 p3 , d02 =
(c + a − p) s

(c + a) p
,

d12 =
asm

(a + c)2 , d03 =
((a − 1)(a + c)2 + m p2) as

(a + c)2 p2 , d22 = −
s a2m2

(a + c)3 ,

d13 = −
2s a2m2

(a + c)3 , d04 =
((a − 1)2(a + c)3 − m2 p3)a2s

(a + c)3 p3 .

From Theorem 7.1 in [26], if d02 , 0, i.e., p , a + c, E2 is a repelling saddle node (see Figure 2(a), (b)
and (d)). Assume that p = a + c; system (3.8) becomes

˙̄x2 = x̄2 + c20 x̄2
2 + c11 x̄2ȳ2 + c̄02ȳ2

2 + c30 x̄3
2 + c12 x̄2ȳ2

2 + c21 x̄2
2ȳ2 + c̄03ȳ3

2
+c22 x̄2

2ȳ2
2 + c13 x̄2ȳ3

2 + c̄04ȳ4
2 + o(|x̄2, ȳ2|

4),
˙̄y2 = d12 x̄2ȳ2

2 + d̄03ȳ3
2 + d22 x̄2

2ȳ2
2 + d13 x̄2ȳ3

2 + d̄04ȳ4
2 + o(|x̄2, ȳ2|

4),
(3.9)

where

c̄02 =
am

a − 1
, c̄03 =

(m2(a + c)2 − (a − 1)(a − 1 + m)s) a
(a − 1)(a + c)2 , d̄03 =

(a + m − 1) as
(a + c)2 ,

c̄04 = −
(a2 − m2 − 2a + 1)a2s

(a + c)3 , d̄04 =
(a2 − m2 − 2a + 1)a2s

(a + c)3 .

By using the center manifold theorem and the first equation of system (3.9), we have

x̄2 =
am

a − 1
ȳ2

2 +
a((a − 1)2(a − 1 + m)s + 2a m2(a + c)2)

(a − 1)2(a + c)2 ȳ3
2 + o(ȳ3

2). (3.10)
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Substituting (3.10) into the second equation of system (3.9), we obtain the reduced system, restricted to
the center manifold, as follows:

˙̄y2 =
(a+m−1)as

(a+c)2 ȳ3
2 +

a2 s((1−2a−c)m2+(a−1)3)
(a+c)3(a−1) ȳ4

2 + o(ȳ4
2). (3.11)

Since a < 1, E2 is an unstable degenerate node (or degenerate saddle) if m > 1− a (or m < 1− a). When
m = 1 − a, (3.11) becomes

˙̄y2 =
a2s(1 − a)
(a + c)2 ȳ4

2 + o(ȳ4
2).

Hence, E2 is a repelling saddle node since a2 s(1−a)
(a+c)2 > 0 (see [26]). The proof is completed.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

E
3

E
1

E
2

E
0

(a)

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

y

E
0

E
2

E
1

(b)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

x

y

E
0

E
2

E
1

(c)

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

y

E
1

E
2E

0

(d)

Figure 2. (a) E0, E1 are both attracting saddle nodes, E2 is a repelling saddle node and E3 is a
stable node with a = 0.5, m = 0.8, s = 0.6, c = 1.2, p = 0.5. (b) E0 is a stable node, E1 is
an attracting saddle node and E2 is a repelling saddle node with a = 0.5, m = 0.8, s = 0.6,
c = 0.5, p = 0.5. (c) E0, E1 is an attracting saddle node and E2 is an unstable node with
a = 0.5, m = 0.8, s = 0.6, c = 0.5, p = 1. (d) E0 is an attracting saddle node, E1 is a stable
node and E2 is a repelling saddle node with a = 0.5, m = 0.8, s = 0.6, c = 0.5, p = 1.5.
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Next, we study the stability of the positive equilibria of system (1.5). The Jacobian matrix of
system (1.5) at positive equilibria is

J(E) =
 −x(2x − a − 1) −mx

(x+c−p)2 s
(x+c)2 −

(x+c−p)2 s
(x+c)2

 . (3.12)

The determinant and trace of (3.12) are, respectively,

Det(J(E)) = −
xs(x + c − p)2(−2x + a + 1 − m)

(x + c)2

and

Tr(J(E)) = −x(2x − a − 1) −
(x + c − p)2s

(x + c)2 .

By simple calculation, we get

Det(J(E4)) = −
x∗1s(x∗1 + c − p)2

√
∆

(x∗1 + c)2 < 0,

which means that E4 is a saddle. Hence, we have the following theorem about the stability of positive
equilibria E4 and E5.

Theorem 3.5. Assume that E4 exists; then, E4 is a saddle.

Define

s̄ =
x∗2(a − 2x∗2 + 1)(x∗2 + c)2

(x∗2 + c − p)2 .

Theorem 3.6. Assume that E5 exists; then, E5 is

(1) stable if s̄ ≤ 0 or s > s̄ > 0,
(2) unstable if 0 < s < s̄,
(3) a focus or center if s = s̄ > 0.

Proof. By simple calculation, we obtain

Det(J(E5)) =
x∗2s(x∗2 + c − p)2

√
∆

(x∗2 + c)2 > 0,

and

Tr(J(E5)) =
(x∗2 + c − p)2

(x∗2 + c)2 (s̄ − s).

So, if s̄ ≤ 0, we get that Tr(J(E5)) < 0; that is, E5 is stable. If 0 < s < s̄, we get that Tr(J(E5)) > 0,
which means that E5 is unstable. If s > s̄ > 0, we get that Tr(J(E5)) < 0, which implies that E5 is
stable. If s = s̄ > 0, we get that Tr(J(E5)) = 0, which implies that the eigenvalues of J(E5) are a pair of
conjugate complex roots and E5 is a focus or center. The proof is completed.
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Define

s∗ =
2m3(−m + 1 + a)(−m + 1 + a + 2c)2

(a2 − m2 − 2a + 1)2 .

If the conditions of Theorem 2.1(1.b) hold, then s∗ > 0. When p = p∗, by simple computation, we obtain

Det(J(E∗)) = 0

and

Tr(J(E∗)) =
(a2 − m2 − 2a + 1)2

4m2(−m + 1 + a + 2c)2 (s∗ − s),

which implies that J(E∗) has at least one zero eigenvalue. From the conditions of Theorem 2.1(1.b), we
have that a2 − m2 − 2a + 1 = (a − 1 − m)(a − 1 + m) > 0 and −m + 1 + a + 2c > 0. Then, the sign of
Tr(J(E∗)) is determined by s∗ − s.

Now, the following theorem shows that E∗ is a saddle node if s , s∗.

Theorem 3.7. Assume that the conditions of Theorem 2.1(1.b) hold. Moreover,

(1) if s > s∗, E∗ is an attracting saddle node;
(2) if s < s∗, E∗ is a repelling saddle node.

Proof. We move E∗ to the origin by applying the transformations x1 = x − x∗ and y1 = y − y∗; then, system
(1.5) becomes

ẋ1 = e10x1 + e01y1 + e20x2
1 + e11x1y1 + o(|x1, y1|

2),
ẏ1 = f10x1 + f01y1 + f20x2

1 + f11x1y1 + f02y2
1 + o(|x1, y1|

2),
(3.13)

where

e10 =
m(−m + 1 + a)

2
, e01 = −

m(−m + 1 + a)
2

, e20 =
3m − a − 1

2
, e11 = −m,

f10 =
s(a2 − m2 − 2a + 1)2

4m2(−m + 1 + a + 2c)2 , f01 = −
s(a2 − m2 − 2a + 1)2

4m2(−m + 1 + a + 2c)2 ,

f20 = −
s(a2 − m2 − 2a + 1)2

2m2(−m + 1 + a + 2c)3 , f11 =
2s(a2 − m2 − 2a + 1)
m(−m + 1 + a + 2c)2 ,

f02 =
s(a2 − m2 − 2a + 1)((a − 1)2 − m(4a + 8c − 3m + 4))

2m2(−m + 1 + a + 2c)3 .

Assume that s , s∗, that is Tr(J(E∗)) , 0. By applying the transformation(
x1

y1

)
=

1 m(−m+1+a)
2

1 s(a2−m2−2a+1)2

4m2(−m+1+a+2c)2

 (x2

y2

)
and dτ = s∗−s

4m2(−m+1+a+2c)2 dt (still denoting τ as t), system (3.13) becomes

ẋ2 = ē20x2
2 + ē11x2y2 + ē02y2

2 + o(|x2, y2|
2),

ẏ2 = y2 + f̄20x2
2 + f̄11x2y2 + f̄02y2

2 + o(|x2, y2|
2),

where
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ē20 =
(m − 1 + a)2(−m + 1 + a)(−m − 1 + a)2s

8m2(−m + 1 + a + 2c)2(s − s∗)2 ,

ē11 =
s(a2 − m2 − 2a + 1)2A1

16m3(−m + 1 + a + 2c)5(s − s∗)2 , f̄11 =
A3

4m4(−m + 1 + a + 2c)5(s − s∗)2 ,

ē02 = −
(−m + 1 + a)s(a2 − m2 − 2a + 1)2A2

64m5(−m + 1 + a + 2c)7(s − s∗)2 , f̄20 =
m − 1 − a

2
,

f̄02 =
A4

32m6(−m + 1 + a + 2c)7(s − s∗)2

and the coefficients Ai (i = 1, 2, 3, 4) are given in Appendix A. Using the conditions of Theorem 2.1(1.b),
we get that ē20 > 0. From Theorem 7.1 in [26], E∗ is a saddle node. Considering the time variable, E∗ is an
attracting saddle node if s > s∗ (see Figure 3(a)), and a repelling saddle node if 0 < s < s∗ (see Figure 3(b)).
The proof is completed.
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Figure 3. (a) E∗ is an attracting saddle node with a = 3
5 , m = 1

10 , s = 2, c = 1, p = 11
8 . (b) E∗

is a repelling saddle node with a = 2
5 , m = 1

5 , s = 4
5 , c = 6

5 , p = 7
5 .

When the conditions of Theorem 2.1(1.b) hold and s = s∗, that is, Tr(J(E∗)) = 0, J(E∗) has two zero
eigenvalues. Using the following two lemmas, E∗ is a cusp of codimension 2 or 3.

Lemma 3.1 ( [27]). The system given by

ẋ = y + Ax2 + Bxy +Cy2 + o(|x, y|2),
ẏ = Dx2 + Exy + Fy2 + o(|x, y|2)

is equivalent to
ẋ = y,
ẏ = Dx2 + (E + 2A)xy + o(|x, y|2)

by some nonsingular transformations in the neighborhood of (0, 0).
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Lemma 3.2 ( [27]). The system given by

ẋ = y,
ẏ = x2 + a30x4 + y(a21x2 + a31x3) + y2(a12x + a22x2) + o(|x, y|4)

is equivalent to
ẋ = y,
ẏ = x2 +Gx3y + o(|x, y|4)

by some nonsingular transformations in the neighborhood of (0, 0), where G = a31 − a30a21.

Define

c∗2 = −
(1 + a − m)((3a + 3)m2 + (a − 1)2(a + 1 − 4m))

2(a − 1)2(a + 1 − 2m) + 2m2(3a − 2m + 3)
,

∆1 = 4(a − 1)2(a2 − 14a + 1),

M1 =
4 (a − 1)2 +

√
∆1

6a + 6
.

Theorem 3.8. Assume that p = p∗ and s = s∗. E∗ is a cusp of codimension 2 if one of the following
conditions holds:

(1) 0 < a < 7 − 4
√

3, and either

(1.a) 0 < m ≤ 1+a
2 and c > c∗1;

(1.b) 1+a
2 < m < (1 −

√
a)2, c > c∗1 and c , c∗2;

(1.c) (1 −
√

a)2 ≤ m < M1 and c , c∗2;
(1.d) M1 ≤ m < 1 − a;

(2) 7 − 4
√

3 ≤ a < 1.

Proof. If s = s∗, then J(E∗) has two zero eigenvalues and system (3.13) can be written as follows:

ẋ1 = g10x1 + g01y1 + g20x2
1 + g11x1y1 + o(|x1, y1|

2),
ẏ1 = h10x1 + h01y1 + h20x2

1 + h11x1y1 + h02y2
1 + o(|x1, y1|

2),
(3.14)

where

g10 =
m(−m + 1 + a)

2
, g01 = −

m(−m + 1 + a)
2

, g20 =
3m − a − 1

2
,

g11 = −m, h10 =
m(−m + 1 + a)

2
, h01 = −

m(−m + 1 + a)
2

,

h20 = −
m(−m + 1 + a)
−m + 1 + a + 2c

, h11 =
4m2(−m + 1 + a)
a2 − m2 − 2a + 1

,

h02 =
(−m + 1 + a)m((a − 1)2 − m(4a + 8c − 3m + 4))

(a2 − m2 − 2a + 1)(−m + 1 + a + 2c)
.

Taking the transformation (
x1

y1

)
=

(
−

m(−m+1+a)
2 0

−
m(−m+1+a)

2 1

) (
X
Y

)
,
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we get
Ẋ = Y + ḡ20X2 + ḡ11XY + o(|X,Y |2),
Ẏ = h̄20X2 + h̄11XY + h̄02Y2 + o(|X,Y |2),

(3.15)

where

ḡ20 =
m(−m + 1 + a)2

4
, ḡ11 = −m, h̄20 =

m2(−m + 1 + a)3

8
,

h̄11 =
m2(m − 1 − a)[2c((a − 1)2 − m(4a − 3m + 4)) + (−m + 1 + a)(3(a − 1)2 − m(4a − m + 4))]

2(m − 1 + a)(a − m − 1)(−m + 1 + a + 2c)
,

h̄02 =
m(−m + 1 + a)(a2 − 4ma − 8mc + 3m2 − 2a − 4m + 1)

(m − 1 + a)(a − m − 1)(−m + 1 + a + 2c)
.

According to Lemma 3.1, system (3.15) is equivalent to

Ẋ = Y,
Ẏ = h̄20X2 + EXY + o(|X,Y |2),

where

E = h̄11 + 2ḡ20 =
m(−m + 1 + a)(c − c∗2)A5

2(m − 1 + a)(a − m − 1)(−m + 1 + a + 2c)
,

with

A5 = 2(a − 1)2(a + 1 − 2m) + 2m2(3a + 3 − 2m),
g(m) = (3a + 3) m2 − 4(a − 1)2 m + (a + 1)(a − 1)2,

c∗2 = −
(−m + 1 + a) g(m)

A5
.

If the conditions of Theorem 2.1(1.b) hold, we have that m(−m+1+a)
2(m−1+a)(a−m−1)(−m+1+a+2c) > 0 and h̄20 > 0.

Define
Ã5 = (10a + 2)m2 − 4(a − 1)2m + 2(a − 1)2(a + 1).

By simple calculation, the discriminant of Ã5 is ∆Ã5
= −64(a − 1)2(a + 2)a < 0, that is, Ã5 > 0. When

0 < m < 1 − a, we have that A5 − Ã5 = 4m2(1 − a − m) > 0, i.e., A5 > 0. Hence, the sign of c∗2 depends
on g(m). If g(m) < 0 (= 0, > 0), then c∗2 > 0 (= 0, < 0). The discriminant of g(m) is

∆1 = 4 (a − 1)2
(
a2 − 14a + 1

)
.

If ∆1 ≤ 0, that is, 7 − 4
√

3 ≤ a < 1, we have that g(m) ≥ 0. Then, E > 0, that is, E∗ is a cusp of
codimension 2 for 7 − 4

√
3 ≤ a < 1 [28].

If ∆1 > 0, that is, 0 < a < 7 − 4
√

3, g(m) has two positive roots M0 ≜
4 (a−1)2−

√
∆1

6a+6 and M1 ≜
4 (a−1)2+

√
∆1

6a+6 . When 0 < a < 7 − 4
√

3, we obtain the following: g(a+1
2 ) = −1

4(a + 1)(a2 − 14a + 1) < 0,
g((1−

√
a)2) = −4

√
a(a−4

√
a+1)(

√
a−1)2 < 0, g(1−a) = 8a(a−1)2 > 0, (1−

√
a)2− a+1

2 =
a−4
√

a+1
2 > 0.

Therefore, M0 <
a+1

2 < (1 −
√

a)2 < M1 < 1 − a for 0 < a < 7 − 4
√

3.
By calculation, we have

c∗1 − c∗2 =
(a + 1 − 2m)(a − 1 + m)2(a − m − 1)2

2mA5
.
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Assume that 0 < a < 7 − 4
√

3 holds. According to the conditions of Theorem 2.1(1.b), E , 0 if one of
the following conditions holds:

(1) 0 < m ≤ 1+a
2 , c > c∗1;

(2) 1+a
2 < m < (1 −

√
a)2, c > c∗1, c , c∗2;

(3) (1 −
√

a)2 ≤ m < M1, c , c∗2;
(4) M1 ≤ m < 1 − a,

which implies that E∗ is a cusp of codimension 2 [28] (see Figure 4(a)). The proof is completed.

From the proof of Theorem 3.8, if 0 < a < 7 − 4
√

3, 1+a
2 < m < M1 and c = c∗2, we have that E = 0.

Define

B0 ≜ −12m5 + 32(a + 1)m4 − (41a2 + 2a + 41)m3 + 2(a + 1)(17a2 − 30a + 17)m2

− 15(a − 1)2(a + 1)2m + 2(a − 1)2(a + 1)3.

Hence, the following theorem shows that E∗ is a cusp of codimension of at least 4.

Theorem 3.9. Assume that 0 < a < 7 − 4
√

3, 1+a
2 < m < M1, p = p∗, s = s∗ and c = c∗2 hold. Moreover,

(1) if B0 , 0, E∗ is a cusp of codimension 3;
(2) if B0 = 0, E∗ is a cusp of codimension of at least 4.

Proof. If c = c∗2, system (3.14) becomes

ẋ1 =
m(a+1−m)

2 x1 +
m(a+1−m)

2 y1 − mx1y1 −
(a−3m+1)

2 x2
1 − x3

1,

ẏ1 = b10x1 + b01y1 + b20x2
1 + b11x1y1 + b02y2

1 + b30x3
1 + b12x1y2

1 + b21x2
1y1

+b03y3
1 + b40x4

1 + b22x2
1y2

1 + b31x3
1y1 + b04y4

1 + o(|x1, y1|
4),

(3.16)

where

b10 =
m(a + 1 − m)

2
, b01 = −

m(a + 1 − m)
2

, b20 = −
A5

4(a2 − m2 − 2a + 1)
,

b11 =
4m2(a + 1 − m)

a2 − m2 − 2a + 1
, b02 =

(a − 1)2(a + 1 − 2m) + m2(6m − 5a − 5)
2(a2 − m2 − 2a + 1)

,

b30 =
A2

5

8m(a + 1 − m)(a2 − m2 − 2a + 1)2 , b21 = −
2mA5

(a2 − m2 − 2a + 1)2 ,

b12 =
8m3(a + 1 − m)

(a2 − m2 − 2a + 1)2 , b40 = −
A3

5

16m2(a + 1 − m)2(a2 − m2 − 2a + 1)3 ,

b03 = −
(a + 1 − 2m)2

2m(a + 1 − m)
, b31 =

A2
5

(a + 1 − m)(a2 − m2 − 2a + 1)3 ,

b22 = −
4m2A5

(a2 − m2 − 2a + 1)3 , b40 =
(1 + a − 2m)2A5

4m2(a + 1 − m)2(a2 − m2 − 2a + 1)
.

Letting
x2 = x1,

y2 =
m(a+1−m)

2 x1 +
m(a+1−m)

2 y1 − mx1y1 −
(a−3m+1)

2 x2
1 − x3

1,
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system (3.16) can be rewritten as

ẋ2 = y2,

ẏ2 = c20x2
2 + c02y2

2 + c30x3
2 + c12x2y2

2 + c21x2
2y2 + c03y3

2 + c40x4
2 + c13x2y3

2

+ c22x2
2y2

2 + c31x3
2y2 + c04y4

2 + o(|x2, y2|
4),

(3.17)

where the coefficients of system (3.17) are given in Appendix B. Next, applying the transformations
x3 = x2 and y3 = y2(1 − c02x2) and dτ = 1

1−c02 x2
dt (rewritten τ as t), system (3.17) becomes

ẋ3 = y3,

ẏ3 = d20x2
3 + d30x3

3 + d12x3y2
3 + d21x2

3y3 + d03y3
3 + d40x4

3 + d13x3y3
3 + d22x2

3y2
3

+ d31x3
3y3 + d04y4

3 + o(|x3, y3|
4),

(3.18)

where

d20 = c20, d30 = c30 − 2c20c02, d12 = c12 − c2
02, d21 = c21, d03 = c03, d04 = c04,

d22 = c22 − c3
02, d40 = c2

02c20 − 2c02c30 + c40, d13 = c02c03 + c13, d31 = c31 − c21c02.

Through the following two transformations:

x3 = x4 +
d03

2
x2

4y4 +
d13

6
x3

4y4 +
d04

2
x2

4y2
4, y3 = y4 + d03x4y2

4 +
d13

2
x2

4y2
4 + d04x4y3

4,

x4 = x5, y4 = y5 +
d20d03

2
x4

5,

system (3.18) is transformed into

ẋ5 = y5,

ẏ5 = e20x2
5 + e30x3

5 + e12x5y2
5 + e21x2

5y5 + e40x4
5 + e22x2

5y2
5 + e31x3

5y5 + o(|x5, y5|
4),

(3.19)

where

e20 = d20, e30 = d30, e12 = d12, e21 = d21, e40 = d40, e22 = d22, e31 = d31 − 3d20d03.

Note that e20 = −
m(−m+1+a)2

4 < 0. Making the following transformation

x6 = −x5, y6 = −
y5
√
−e20
, τ =

√
−e20t,

system (3.19) becomes

ẋ6 = y6,

ẏ6 = x2
6 + α30x3

6 + α12x6y2
6 + α21x2

6y6 + α40x4
6 + α22x2

6y2
6 + α31x3

6y6 + o(|x6, y6|
4),

(3.20)

where

α30 = −
e30

e20
, α12 = e12, α21 =

e21
√
−e20
, α40 =

e40

e20
, α22 = −e22, α31 = −

e31
√
−e20
.
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From Lemma 3.2, system (3.20) is equivalent to

ẋ7 = y7,

ẏ7 = x2
7 +Gx3

7y7 + o(|x7, y7|
4),

where
G = −

B0
√

m (−1 − m + a)(m − 1 + a)(−m + 1 + a)3m2
.

Clearly, − 1
√

m (−1−m+a)(m−1+a)(−m+1+a)3m2 < 0. Then, the sign of G is determined by B0. In fact, from [28],
E∗ is a cusp of codimension 3 if B0 , 0 (see Figure 4(b)). E∗ is a cusp of codimension of at least 4 if
B0 = 0.

Remark 3.1. Because B0 is a complicated polynomial with respect to a and m, it is difficult to discuss
whether B0 is zero. Next, by numerical simulation, we find that the value of B0 can be zero or nonzero.
Let a = 0.01; then, 1+a

2 = 0.505,M1 = 0.949947725 and

B0 = −12m5 + 32.32m4 − 41.0241m3 + 33.737434m2 − 14.99700015m + 2.0195960202.

When a = 0.01, we have that 0.505 < m < 0.949947725. By calculation, we find that B0 < 0 if
0.505 < m < 0.849804962; B0 = 0 if m = 0.849804962 and B0 > 0 if 0.849804962 < m < 0.949947725.
Therefore, B0 = 0 may occur and E∗ is a cusp of codimension of at least 4 under some suitable conditions.
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Figure 4. (a) E∗ is a cusp of codimension 2 with a = 2
5 , m = 1

5 , s = 243
400 , c = 3

10 , p = 1
2 . (b) E∗

is a cusp of codimension 3 with a = 3
50 , m = 27

50 , s = 31524548679
215853160000 , c = 4537

232300 , p = 1369
250884 .
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4. Bifurcation

In this section, we will discuss some bifurcation phenomena that occur in system (1.5), such as
saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation.

4.1. Saddle-node bifurcation

From Theorem 2.1, when p < p∗, p = p∗ and p∗ < p < p∗∗, system (1.5) has 0, 1 and 2 positive
equilibria, respectively. Therefore, selecting the Allee threshold p = pS N = p∗ as the bifurcation
parameter, and by using Sotomayor’s theorem in [28], we verify that system (1.5) undergoes a saddle-
node bifurcation around the positive equilibrium E∗.

Theorem 4.1. Assume that 0 < m < (1 −
√

a)2 and c > c∗1, or that (1 −
√

a)2 ≤ m < 1 − a. System (1.5)
undergoes a saddle-node bifurcation around E∗ if p = pS N .

Proof. The Jacobian matrix of the positive equilibrium E∗ can be expressed as

J(E∗; pS N) =
 m(−m+1+a)

2 −
m(−m+1+a)

2
s(a2−m2−2a+1)2

4m2(−m+1+a+2c)2 −
s(a2−m2−2a+1)2

4m2(−m+1+a+2c)2

 .
Then, Det(J(E∗; pS N)) = 0 and Tr(J(E∗; pS N)) , 0. So, J(E∗; pS N) has a zero eigenvalue. Let V and
W be the eigenvectors corresponding to the zero eigenvalues of the matrix J(E∗; pS N) and J(E∗; pS N)T ,
respectively. By computation, we obtain

V =
(
V1

V2

)
=

(
1
1

)
, W =

(
W1

W2

)
=

 s(a2−m2−2a+1)2

4m2(−m+1+a+2c)2

−
m(−m+1+a)

2

 .
Let

F(x, y) =
(
F1(x, y)
F2(x, y)

)
=

x (1 − x) (x − a) − mxy
sy

(
y

y+p −
y

x+c

)  .
Hence,

Fp(E∗; pS N) =
 0
−

s(a2−m2−2a+1)2

4m2(−m+1+a+2c)2

 ,
D2F(E∗; pS N)(V,V) =

∂2F1
∂x2 V2

1 + 2∂
2F1
∂x∂y V1V2 +

∂2F1
∂y2 V2

2
∂2F2
∂x2 V2

1 + 2∂
2F2
∂x∂y V1V2 +

∂2F2
∂y2 V2

2


(E∗;pS N )

=

(
m − 1 − a

0

)
.

Thus, we have

WT · FP(E∗; pS N) =
s(a2 − m2 − 2a + 1)2(−m + 1 + a)

8m(−m + 1 + a + 2c)2 , 0,

WT · D2F(E∗; pS N)(V,V) =
s(a2 − m2 − 2a + 1)2(m − 1 − a)

4m2(−m + 1 + a + 2c)2 , 0.

According to Sotomayor’s theorem [26], system (1.5) undergoes a saddle-node bifurcation at E∗. The
proof is completed.
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4.2. Hopf bifurcation

It follows from Theorem 3.6 that the stability of the positive equilibrium E5 is closely related to
the value of T r(J(E5)). When T r(J(E5)) = 0, i.e., s = s̄, J(E5) has a pair of pure imaginary roots,
which implies that system (1.5) may undergo Hopf bifurcation at E5. For simplicity, we apply the
following (see [29, 30]):

x̄ =
x
x∗2
, ȳ =

y
y∗2
, t̄ = x∗2

2t, ā =
a
x∗2
, k̄ =

1
x∗2
,

m̄ =
my∗2
x∗2
, s̄ =

s
x∗2

2 , p̄ =
p
y∗2
, n̄ =

x∗2
y∗2
, c̄ =

c
y∗2
.

Dropping the bar, system (1.5) becomes

ẋ = x (k − x) (x − a) − mxy,

ẏ = sy
(

y
y + p

−
y

nx + c

)
,

(4.1)

where 0 < a < k and all parameters are positive. Apparently, Ē5(1, 1) is an equilibrium of system (4.1),
which yields that m = (k − 1)(1 − a) > 0 (i.e., 0 < a < 1 < k) and n = p + 1 − c > 0. In addition, there
exists another positive equilibrium Ē4(x̄1, ȳ1), with x̄1 satisfying the following equation:

x2 + (mn − a − k)x + ka + mc − pm = 0. (4.2)

Substituting m = (k − 1)(1 − a) and n = p + 1 − c into (4.2), we obtain

x2 + ((k − 1)(1 − a)(p + 1 − c) − a − k)x + ka + (k − 1)(1 − a)(c − p) = 0.

Notice that x̄1 < 1. From Vieta’s theorem, we can get

x̄1 · 1 = ka + (k − 1)(1 − a)(c − p) < 1.

Introducing a time variation dt = (y + p)(nx + c)dτ and rewriting τ as t, system (4.1) becomes

ẋ = (x(k − x)(x − a) − (k − 1)(1 − a)xy)(y + p)((p + 1 − c)x + c),
ẏ = s y2((p + 1 − c)x + c − p − y).

(4.3)

The Jacobian matrix of system (4.2) at Ē5(1, 1) is

J(Ē5) =
[

(−2 + a + k)(p + 1)2 −(k − 1)(1 − a)(p + 1)2

s(p + 1 − c) −s

]
.

Letting
s∗ = (−2 + a + k)(p + 1)2,

the determinant and trace of J(Ē5) are, respectively,

Det(J(Ē5)) = (p + 1)2s(1 − (ka + (k − 1)(1 − a)(c − p)))

and
Tr(J(Ē5)) = s∗ − s.

Clearly, when Det(J(Ē5)) > 0, the stability of the equilibrium Ē5 is determined by the trace Tr(J(Ē5)).
Hence, we have the following theorem.
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Theorem 4.2. Suppose that

0 < a < 1 < k, c < p + 1 and 0 < ka + (k − 1)(1 − a)(c − p) < 1;

then, for system (4.3), Ē5 is

(1) a stable hyperbolic focus or node if s∗ ≤ 0 or s > s∗ > 0;
(2) an unstable hyperbolic focus or node if 0 < s < s∗;
(3) a center or fine focus if s = s∗ > 0.

Now, if Theorem 4.2(3) holds, system (4.3) may undergo Hopf bifurcation at Ē5. First, we check the
transversality condition for the occurrence of Hopf bifurcation. By calculation, we get

d
ds

Tr(J(Ē5))
∣∣∣∣∣
s=s∗
= −1 , 0.

Next, we calculate the first Lyapunov coefficient that can determine the stability of limit cycles
around Ē5. In biology, if two species coexist in the form of periodic oscillations, the system will have a
limit cycle. Making the transformations X = x − 1 and Y = y − 1, we have

Ẋ = a10X + a01Y + a20X2 + a11XY + a02Y2 + o(|X,Y |2),
Ẏ = b10X + b01Y + b20X2 + b11XY + b02Y2 + o(|X,Y |2),

(4.4)

where

a10 = (a + k − 2)(p + 1)2, a01 = −(k − 1)(1 − a)(p + 1)2,

a20 = −((a + k − 2)c − (p + 1)(2a + 2k − 5))(p + 1), a02 = (k − 1)(a − 1)(p + 1),
a11 = −((k − 1)(a − 1)(c − 2p) + (−2a + 1)k + a)(p + 1), b20 = 0,
b10 = (a + k − 2)(p + 1 − c)(p + 1)2, b01 = −(a + k − 2)(p + 1)2,

b11 = 2(a + k − 2)(p + 1 − c)(p + 1)2, b02 = −2(a + k − 2)(p + 1)2.

Letting D = a10b01 − a01b10, obviously,

D = (p + 1)4(a + k − 2)(1 − (ka + (k − 1)(1 − a)(c − p))) > 0.

Taking the following transformation(
X
Y

)
=

−a01
√

D
a2

10+D −
a01a10
a2

10+D

0 1

 (X1

Y1

)
,

system (4.4) can be expressed as follows

Ẋ1 = −
√

DY1 + H1(X1,Y1),
Ẏ1 =

√
DX1 + H2(X1,Y1),
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where

H1(X1,Y1) = c20X2
1 + c11X1Y1 + c02Y2

1 + c30X3
1 + c12X1Y2

1 + c21X2
1Y1 + c03Y3

1 + o(|X1,Y1|
3),

H2(X1,Y1) = d20X2
1 + d11X1Y1 + d02Y2

1 + d30X3
1 + d12X1Y2

1 + d21X2
1Y1 + d03Y3

1 + o(|X1,Y1|
3),

and the coefficients of H1(X1,Y1) and H2(X1,Y1) are given in Appendix C.
The first-order Lyapunov number in [26] at Ē5 is given by the following formula

l1 =
1

16

[
6c30 + 2c12 + 2d21 + 6d03 +

1
√

D
(2c11(c20 + c02) − 2d11(d20 + d02) − 4c20d20 + 4c02d02)

]
=

(p + 1)4C6

8(−p − 1 + c)D
,

where the coefficient C6 is given in Appendix D. Clearly, the sign of l1 is determined by C6. Hence, we
have the following theorem.

Theorem 4.3. Assume that the condition of Theorem 4.2(3) holds.

(1) System (4.3) undergoes a subcritical Hopf bifurcation and an unstable limit cycle around Ē5 when
C6 < 0 (see Figure 5(a) and (b)).

(2) System (4.3) undergoes a supercritical Hopf bifurcation and a stable limit cycle around Ē5 when
C6 > 0 (see Figure 5(c) and (d)).

(3) System (4.3) undergoes a degenerate Hopf bifurcation and at least two limit cycles around Ē5

when C6 = 0 (see Figure 5(e) and (f)).

Because the first-order Lyapunov number l1 is too complicated, we give an example to show that
system (1.5) undergoes a degenerate Hopf bifurcation of codimension 3. Letting a = 1

2 and c = 1,
system (4.3) becomes

ẋ = (y + p)(px + 1)(x(k − x)(x − 1
2 ) − ( k

2 −
1
2 )xy),

ẏ = s∗y(y(px + 1) − y(y + p)),
(4.5)

where k > 3
2 and p > 2k−3

k−1 . Through a series of transformations and methods described in [26], the first
and two Lyapunov numbers are obtained as follows:

L1 = −
C7

√
(p + 1)4(2k − 3)(kp − 2k − p + 3)

4 p (kp − 2k − p + 3)2(2k − 3)2(p + 1)4 ,

L2 =
C8

√
(p + 1)4(2k − 3)(kp − 2k − p + 3)

24 p3 (kp − 2k − p + 3)3(2k − 3)4(p + 1)6 ,

and the coefficients C7 and C8 are given in Appendix E.
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Figure 5. (a) Selecting a = 3
10 , k = 19

10 , c = 3
5 , p = 7

10 , s = 289
500 +

1
100 , system (4.3) undergoes

a subcritical Hopf bifurcation and an unstable limit cycle around Ē5. (b) Amplified phase
portrait of (a). (c) Selecting a = 1

5 , k = 19
10 , c = 3

5 , p = 7
10 , s = 289

1000 −
1

100 , system (4.3)
undergoes a supercritical Hopf bifurcation and a stable limit cycle around Ē5. (d) Amplified

phase portrait of (c). (e) Selecting a = 3
10 , k = 19

10 , c = 1031438
438165 −

√
113429142649

175266 , p = 6
10 +

1
10 ,

s = 289
500 +

1
1000 , system (4.3) underdoes a degenerate Hopf bifurcation and multiple two-limit

cycles (the inner one is stable and the outer one is unstable) around Ē5. (f) Amplified phase
portrait of (e).
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In order to investigate whether system (4.5) will undergo a degenerate Hopf bifurcation of
codimension 3, we need to discuss whether L1 and L2 will be 0 at the same time. In fact, we need to
analyze whether C7 and C8 have a common zero root under certain parameter conditions. Using the
command “resultant” in Maple software, we obtain

C78 = res(C7,C8, p) = −128(10k3 − 37k2 + 51k − 26)(2k + 1)2(3k − 4)2(k − 1)8(−3 + 2k)8C9,

where the coefficient C9 is given in Appendix E. Let C78 = 0, that is k = 1.7017166155. Applying
C7 = 0 and C8 = 0, we obtain that p = 2.6992221856. Hence, L1 = L2 = 0 for k = 1.7017166155 and
p = 2.6992221856. Selecting the parameters as

(a1, c1, k1, p1, s1) = (0.5, 1, 1.6, 2.5495696920, 1.2599444999),

(a2, c2, k2, p2, s2) = (0.5, 1, 1.7017166155, 2.6992221856, 2.7603395424),

we can get

L1|(a, c, k, p, s)=(a1, c1, k1, p1, s1) = 0, L2|(a, c, k, p, s)=(a1, c1, k1, p1, s1) = 0.5939540338,

L1|(a, c, k, p, s)=(a2, c2, k2, p2, s2) = L2|(a, c, k, p, s)=(a2, c2, k2, p2, s2) = 0,

and
∂
(
Tr(J(Ē5), L1)

)
∂ (s, p)

∣∣∣∣∣∣∣∣
(a, c, k, p, s)=(a1, c1, k1, p1, s1)

= 1.6413885919 , 0,

∂
(
Tr(J(Ē5), L1, L2)

)
∂ (s, p, k)

∣∣∣∣∣∣∣∣
(a, c, k, p, s)=(a2, c2, k2, p2, s2)

= −0.4620942636 , 0.

Therefore, system (4.5) can undergo Hopf bifurcation of codimension 2 and 3. According to the above
analysis, we can summarize the following remark.

Remark 4.1. Assume that the condition of Theorem 4.2(3) holds.

(1) Ē5 is a weak focus of order 1 if L1 , 0.
(2) Ē5 is a weak focus of order 2 if L1 = 0 and L2 , 0.
(3) Ē5 is a weak focus of order of at least 3 if L1 = L2 = 0.

4.3. Bogdanov-Takens bifurcation

From Thoerem 3.8, the unique positive equilibrium E∗ is a cusp of codimension 2 under some
suitable conditions. In this section, we choose some suitable parameters as bifurcation parameters to
show that system (1.5) undergoes a Bogdognov-Taken bifurcation of codimension 2.

Theorem 4.4. Assume that the conditions of Theorem 3.8 hold. Choosing p and c as two bifurcation
parameters, system (1.5) undergoes a Bogdanov-Takens bifurcation of codimension 2 around E∗.
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Proof. Letting p = p∗ and s = s∗, and substituting p = p∗ + λ1 and c = c + λ2 into system (1.5), we get
the following system:

ẋ = x(1 − x)(x − a) − mxy,

ẏ = s∗y
(

y
y + p∗ + λ1

−
y

x + c + λ2

)
,

(4.6)

where (λ1, λ2) is in a small neighborhood of (0, 0).
Making the transformations X = x − x∗ and Y = y − (x∗ + c − p), system (4.6) becomes

Ẋ = ã10X + ã01Y + ã20X2 + ã11XY + o(|X,Y |2),
Ẏ = b̃00 + b̃10X + b̃01Y + b̃20X2 + b̃11XY + b̃02Y2 + o(|X,Y |2),

(4.7)

where

ã10 =
m(a + 1 − m)

2
, ã01 = −

m(a + 1 − m)
2

, ã20 = −
a + 1 − 3m

2
,

ã11 = −m, ã30 = −1, b̃00 = −
m(a + 1 − m + 2c)2(a + 1 − m)(−λ2 + λ1)

2(−m + a + 2c + 1 + 2λ1)(a + 1 − m + 2c + 2λ2)
,

b̃01 =
(a + 1 − m + 2c)2(a + 1 − m)mÃ1

2(a − 1 + m)(a − m − 1)(−m + a + 2c + 1 + 2λ1)2(a + 1 − m + 2c + 2λ2)
,

b̃10 =
m(a + 1 − m)(a + 1 − m + 2c)2

2(a + 1 − m + 2c + 2λ2)2 , b̃20 =
(a + 1 − m + 2c)2(a + 1 − m)m

(a + 1 − m + 2c + 2λ2)3 ,

b̃11 =
4m2(a + 1 − m)(a + 1 − m + 2c)2

(a − 1 + m)(a − m − 1)(a + 1 − m + 2c + 2λ2)2 ,

b̃02 =
m(a + 1 − m)(a + 1 − m + 2c)2Ã2

(a2 − m2 − 2a + 1)2(−m + a + 2c + 1 + 2λ1)3(a + 1 − m + 2c + 2λ2)
,

and

Ã1 = 16λ2
1m + 8mλ1(a + 2c − 2λ2 − m + 1) + 2λ2(3m2 − 4m(a + 2c + 1) + (a − 1)2)

+ (a − 1 + m)(a − 1 − m)(−m + 1 + a + 2c),
Ã2 = (−m + 1 + a + 2c)[(a2 − m2 − 2a + 1)(3m2 − 4m(a + 2c + 1) + (a − 1)2)

+ 8mλ1(2m2 − (a + 2c + 1)m − (a − 1)2)] + 2λ2(m2 − 2m(a + 2c + 1) + (a − 1)2)2

− 16mλ2λ1(m2 − 2m(a + 2c + 1) + (a − 1)2) − 32λ2
1m2(λ1 + a + 2c − λ2 − m + 1).

Taking the following transformations

X1 = X,
Y1 = ã10X + ã01Y + ã20X2 + ã11XY + o(|X,Y |2),

system (4.7) becomes

Ẋ1 = Y1,

Ẏ1 = c̃00 + c̃10X1 + c̃01Y1 + c̃20X2
1 + c̃11X1Y1 + c̃02Y2

1 + o(|X1,Y1|
2),

(4.8)

where

c̃00 = ã01b̃00, c̃10 = ã01b̃10 − b̃01ã10 + ã11b̃00, c̃01 = b̃01 + ã10,
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c̃11 =
(b̃11 + 2ã20)ã01 − ã10(ã11 + 2b̃02)

ã01
, c̃02 =

ã11 + b̃02

ã01
,

c̃20 =
b̃20 ã2

01 + (−b̃11ã10 + ã11b̃10 − b̃01ã20)ã01 + b̃02 ã2
10

ã01
.

Using the transformations X2 = X1, Y2 = Y1(1 − c̃02X1) and dt = (1 − c̃02X1)dτ, system (4.8) can be
written as

Ẋ2 = Y2,

Ẏ2 = d̃00 + d̃10X2 + d̃01Y2 + d̃20X2
2 + d̃11X2Y2 + o(|X2,Y2|

2),
(4.9)

where

d̃00 = c̃00, d̃10 = −2c̃00c̃02 + c̃10, d̃01 = c̃01,

d̃11 = −c̃01c̃02 + c̃11, d̃20 = c̃00c̃2
02 − 2c̃02c̃10 + c̃20.

When λ1 and λ2 are sufficiently small, we have

d̃20 = −
(a + 1 − m)2m

4
+ O(λ) < 0.

Let

X3 = X2, Y3 =
Y2√
−d̃20

, τ =

√
−d̃20t;

then, system (4.9) becomes (still denoting τ as t)

Ẋ3 = Y3,

Ẏ3 = ẽ00 + ẽ10X3 + ẽ01Y3 − X2
3 + ẽ11X3Y3 + o(|X3,Y3|

2),
(4.10)

where

ẽ00 = −
d̃00

d̃20
, ẽ10 = −

d̃10

d̃20
, ẽ01 =

d̃01√
−d̃20

, ẽ11 =
d̃11√
−d̃20

.

Besides, taking the transformations X4 = X3 −
ẽ10
2 and Y4 = Y3, system (4.10) becomes

Ẋ4 = Y4,

Ẏ4 = f̃00 + f̃01Y4 − X2
4 + f̃11X4Y4 + o(|X4,Y4|

2),
(4.11)

where

f̃00 = ẽ +
ẽ2

10

4
, f̃01 =

ẽ10ẽ11 + 2ẽ01

2
, f̃11 = ẽ11.

Note that c , c∗2. When λ1 and λ2 are sufficiently small,

d̃11 = −
(c − c∗2)A5

(a + 1 − m + 2c)(a − m − 1)(a − 1 + m)
+ O(λ) , 0.
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Finally, letting

X5 = − f̃ 2
11X4, Y5 = f̃ 3

11Y4, τ = −
t

f̃11
,

and rewriting τ as t, system (4.11) becomes

Ẋ5 = Y5,

Ẏ5 = µ1 + µ2Y5 + X2
5 + X5Y5 + o(|X5,Y5|

2),
(4.12)

where

µ1 = − f̃ 4
11 f̃00, µ2 = − f̃11 f̃01.

We express µ1 and µ2 in terms of λ1 and λ2, as follows:

µ1 = α1λ1 + α2λ2 + o(|λ1, λ2|),
µ2 = α3λ1 + α4λ2 + o(|λ1, λ2|),

where

α1 = −
16(c − c∗2)4A4

5

(a + 1 − m + 2c)4(a + 1 − m)4(a − 1 + m)4(a − m − 1)4m
,

α2 =
16(c − c∗2)4A4

5

(a + 1 − m + 2c)4(a + 1 − m)4(a − 1 + m)4(a − m − 1)4m
,

α3 =
4(c − c∗2)A5Λ1

(a + 1 − m)3(a − m − 1)3(a − 1 + m)3(a + 1 − m + 2c)2 ,

α4 = −
4(c − c∗2)A5(Λ1 − 2(a − m − 1)2(a − 1 + m)2(a + 1 − m)2)
(a + 1 − m)3(a − m − 1)3(a − 1 + m)3(a + 1 − m + 2c)2 ,

and

Λ1 = cm3(28m2 + 48a) + m3(a2 + 1)(40c − 57m) − 4m2(a − 1)2(2a2 + (c + 10)a + c + 2)
+ m3(a + 1)(23m2 + 14a − 62mc) + (a − 1)4[(3a + 2c + 3)(a + 1) − (9a + 4c + 9)m]
+ m3[50(a3 + 1) − 2m3 − 34am].

Note that the transversality condition for the existence of Bogdanov-Takens bifurcation, i.e.,∣∣∣∣∣∂(µ1, µ2)
∂(λ1, λ2)

∣∣∣∣∣
λ1=λ2=0

= −
128(c − c∗2)5A5

5

m(a − m − 1)5(a − 1 + m)5(a + 1 − m)5(a + 1 − m + 2c)6, 0

holds. According to the result in [28], system (1.5) undergoes a Bogdanov-Takens bifurcation of
codimension 2 when (λ1, λ2) is in a small neighborhood of (0, 0). The proof is completed.

Theorem 4.5. Assume that the conditions of Theorem 3.8 hold. System (1.5) undergoes a Bogdanov-
Takens bifurcation of codimension 2 around E∗ when (λ1, λ2) is in a small neighborhood of (0, 0).
Moreover, there are three bifurcation curves as depicted below.
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(I) When 0 < c < c∗2,

S N+ = {(λ1, λ2)
∣∣∣ λ1 = λ2 + o(|λ2|), λ2 < 0}, S N− = {(λ1, λ2)

∣∣∣ λ1 = λ2 + o(|λ2|), λ2 > 0};

H = {(λ1, λ2)| λ1 = λ2 +
4(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

(c − c∗2)2A2
5

λ2
2 + o(|λ2|

2), λ2 < 0};

HL = {(λ1, λ2)| λ1 = λ2 +
196(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

25(c − c∗2)2A2
5

λ2
2 + o(|λ2|

2), λ2 < 0}.

(II) When c > c∗2,

S N+ = {(λ1, λ2)
∣∣∣ λ1 = λ2 + o(|λ2|), λ2 > 0}, S N− = {(λ1, λ2)

∣∣∣ λ1 = λ2 + o(|λ2|), λ2 < 0};

H = {(λ1, λ2)| λ1 = λ2 +
4(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

(c − c∗2)2A2
5

λ2
2 + o(|λ2|

2), λ2 > 0};

HL = {(λ1, λ2)| λ1 = λ2 +
196(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

25(c − c∗2)2A2
5

λ2
2 + o(|λ2|

2), λ2 > 0}.

S N, H and HL respectively denote the saddle-node bifurcation curve, Hopf bifurcation curve and
homoclinic bifurcation curve of system (1.5) around E∗.

Proof. According to [28], the local bifurcation curve can be expressed as follows:
(i) The saddle-node bifurcation curve:

S N+ = {(λ1, λ2) : µ1(λ1, λ2) = 0, µ2(λ1, λ2) > 0}, S N− = {(λ1, λ2) : µ1(λ1, λ2) = 0, µ2(λ1, λ2) < 0}.

(ii) The Hopf bifurcation curve:

H =
{
(λ1, λ2) : µ1(λ1, λ2) < 0, µ2(λ1, λ2) =

√
−µ1(λ1, λ2)

}
.

(iii) The homoclinic bifurcation curve:

HL =
{

(λ1, λ2) : µ1(λ1, λ2) < 0, µ2(λ1, λ2) =
5
7

√
−µ1(λ1, λ2)

}
.

By the implicit function theorem, we can solve λ1 and λ2 from µ1 = µ1(λ1, λ2, a,m, c) and µ2 =

µ2(λ1, λ2, a,m, c) in (4.12) as follows:

λ1 = β1µ1 + β2µ2 + o(|µ1, µ2|),
λ2 = β3µ1 + β4µ2 + o(|µ1, µ2|),

(4.13)

where

β1 = β3 −
(a2 − m2 − 2a + 1)4(a + 1 − m + 2c)4(a + 1 − m)4m

16(c − c∗2)4A4
5

,

β2 =
(a − m − 1)(a − 1 + m)(a + 1 − m)(a + 1 − m + 2c)2

8(c − c∗2)A5
,
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β3 =
m(a − m − 1)2(a − 1 + m)2(a + 1 − m)2(a + 1 − m + 2c)4Λ1

32(c − c∗2)4A4
5

,

β4 =
(a − m − 1)(a − 1 + m)(a + 1 − m)(a + 1 − m + 2c)2

8(c − c∗2)A5

with Λ1 being defined in Theorem 4.4.
First, we prove the case (I). When 0 < c < c∗2, we get that β4 < 0. The saddle-node bifurcation curve

is given by Γ1 ≜ µ1(λ1, λ2) = 0. From Γ1 = 0, we can obtain a function λ1 = λ2 + o(|λ2|) which satisfies
the conditions that λ1(0) = 0 and Γ1(λ1(λ2), λ2) = 0, as follows:

∂Γ1

∂λ1

∣∣∣∣∣
λ=0
= −

16(c − c∗2)4A4
5

(a + 1 − m + 2c)4(a + 1 − m)4(a − 1 + m)4(a − m − 1)4m
, 0.

On the curve Γ1 = 0, it folllows from (4.13) that λ2 = β4µ2 + o(|µ2|). Then, λ2 > 0 (< 0) if µ2 < 0 (> 0).
Hence, we have

S N+ = {(λ1, λ2)
∣∣∣ λ1 = λ2 + o(|λ2|), λ2 < 0}, S N− = {(λ1, λ2)

∣∣∣ λ1 = λ2 + o(|λ2|), λ2 > 0}.

The Hopf bifurcation curve is given by Γ2 ≜ µ1(λ1, λ2) + µ2
2(λ1, λ2) = 0. Notice that

∂Γ2

∂λ1

∣∣∣∣∣
λ=0
= −

16(c − c∗2)4A4
5

(a + 1 − m + 2c)4(a + 1 − m)4(a − 1 + m)4(a − m − 1)4m
, 0.

By the implicit function theorem, there exists a unique function

λ1 = λ2 +
4(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

(c − c∗2)2A2
5

λ2
2 + 0(|λ2|

2),

which satisfies the conditions that λ1(0) = 0 and Γ2(λ1(λ2), λ2) = 0. On the curve Γ2 = 0, we get that
λ2 = β4µ2 + o(|µ2|) < 0 if µ2 > 0. Therefore, the Hopf bifurcation curve can be expressed as

H = {(λ1, λ2)| λ1 = λ2 +
4(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

(c − c∗2)2A2
5

λ2
2 + o(|λ2|

2), λ2 < 0}.

The homoclinic bifurcation curve is given by Γ3 ≜
25
49µ1(λ1, λ2) + µ2

2(λ1, λ2) = 0. Note that

∂Γ3

∂λ1

∣∣∣∣∣
λ=0
= −

400(c − c∗2)4A4
5

49(a + 1 − m + 2c)4(a + 1 − m)4(a − 1 + m)4(a − m − 1)4m
, 0.

From Γ3 = 0 and the implicit function theorem, there exists a unique function

λ1 = λ2 +
196(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

25(c − c∗2)2A2
5

λ2
2 + o(|λ2|

2)

satisfying that λ1(0) = 0 and Γ3(λ1(λ2), λ2) = 0. On the curve Γ3 = 0, we obtain that λ2 = β4µ2+o(|µ2|) <
0 if µ2 > 0. Hence, the homoclinic bifurcation curve can be written as

HL = {(λ1, λ2)| λ1 = λ2 +
196(a + 1 − m)2(a − m − 1)2(a − 1 + m)2m

25(c − c∗2)2A2
5

λ2
2 + o(|λ2|

2), λ2 < 0}.
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The proof of the case (II) is similar to that of the case (I), so we omit it here. The proof is completed.
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Figure 6. Phase portraits of system (4.6) with a = 3
50 , m = 3

5 , c = 1
2 , p = 3071

6000 , s = 13237236
8567405 .

(a) A cusp of codimension 2 when (λ1, λ2) = (0, 0). (b) Case of no positive equilibria
when (λ1, λ2) = (−0.05, 0.06). (c) Case of a saddle and an unstable focus when (λ1, λ2) =
(0.061, 0.06). (d) Case of an unstable limit cycle when (λ1, λ2) = (0.062, 0.06). (e) Case of
an unstable homoclinic loop when (λ1, λ2) = (0.0641, 0.06). (f) Case of a saddle and a stable
focus when (λ1, λ2) = (0.067, 0.06).

Assume that a = 3
50 , m = 3

5 and c = 1
2 ; we can get p∗ = 3071

6000 and s∗ = 13237236
8567405 . When (λ1, λ2) = (0, 0),

E∗ is a cusp of codimension 2; see Figure 6(a). When (λ1, λ2) = (−0.05, 0.06), system (1.5) has no
positive equilibrium and all trajectories converge to E3; see Figure 6(b). When (λ1, λ2) = (0.061, 0.06),
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system (1.5) has two positive equilibria, where one is a hyperbolic saddle and the other is a hyperbolic
unstable focus; see Figure 6(c). When (λ1, λ2) = (0.062, 0.06), system (1.5) undergoes a subcritical
Hopf bifurcation and an unstable limit cycle appears around E5; see Figure 6(d). When (λ1, λ2) =
(0.0641, 0.06), the unstable limit cycle expands to the unstable homoclinic loop; see Figure 6(e). When
(λ1, λ2) = (0.067, 0.06), system (1.5) has two positive equilibria, where one is a hyperbolic saddle and
the other is a hyperbolic stable focus; see Figure 6(f).

5. Numerical simulations

We discuss the influence of the Allee effect in the predator population on the dynamical behavior
of system (1.5). Letting a = 0.45, m = 0.14, c = 3 and s = 1, Figure 7 shows the bifurcation diagram
in the (p, y)-plane of system (1.5). We find that there exist four Allee thresholds: p = p∗ ≈ 3.14982,
p = pH ≈ 3.17156, p = p∗∗ = 3.45 and p = 1 + c ≜ p∗ = 4. According to Theorem 2.1 and the
bifurcation diagram, if the Allee effect parameter satisfies that p < p∗ or p ≥ p∗, system (1.5) has no
positive equilibrium. If the Allee effect parameter satisfies that p = p∗, system (1.5) has a unique positive
equilibrium E∗. If p∗ < p < p∗∗, system (1.5) has two positive equilibria E4 and E5, where E4 is always
a saddle and E5 is unstable if p∗ < p < pH, and stable if pH < p < p∗∗. If the Allee effect parameter
satisfies that p∗∗ ≤ p < p∗, system (1.5) has a unique positive equilibria E5, which is stable. Also, we
give the two-parameter bifurcation diagram of system (1.5) in the (a, p)-plane, as shown in Figure 8.

We selected p as the control parameter and plotted the phase portraits of system (1.5) at different values
(see Figure 9). If p = 0, that is, the predator population exists without the Allee effect, system (1.5) has
no positive equilibrium and the boundary equilibrium E3 is globally asymptotically stable, which means
that the predator can survive and the prey will tend to extinction (see Figure 9(a)). When p = 3.1 (p < p∗),
system (1.5) has no positive equilibrium and the origin is globally asymptotically stable. That is, the predator
will become extinct with the influence of the Allee effect on the predator population, which means that
both predator and prey will tend to extinction (see Figure 9(b)). When p = 3.165 (p∗ < p < pH), system
(1.5) has two positive equilibria, where E4 is a saddle and E5 is an unstable focus; see Figure 9(c). In this
case, the predator and prey will still become extinct. When p = 3.1725 (pH < p < p∗∗), E4 is still a
saddle but E5 becomes a stable focus; also, an unstable limit cycle appears around E5; see Figure 6(d).
Hence, the unstable limit cycle acts as a separatrix between the attraction of the origin and E5. When
p = 3.17642 (pH < p < p∗∗), there exists an unstable homoclinic loop in system (1.5); see Figure 9(e).
When p = 3.1767 (pH < p < p∗∗), the homoclinic loop disappears and system (1.5) has a hyperbolic
saddle E4 and a hyperbolic stable focus E5; see Figure 9(f). That is, the two stable manifolds of saddle
E4 act as a separatrix between the attraction of the origin and E5. When p = 3.45 (p∗∗ ≤ p < p∗), system
(1.5) has a unique positive stable equilibrium E5 and a degenerate saddle E2; see Figure 9(g). Obviously,
the stable manifold of degenerate saddle E2 is taken as a separatrix between the attraction of the origin
and E5. When p = 4 (p ≥ p∗), system (1.5) has no positive equilibrium and a repelling saddle node E2;
see Figure 9(h). From Figure 9(h), the stable manifold of E2 acts as a separatrix between the attraction of
the origin and E1.

As shown in Figure 9(a), if the predator has no Allee effect, the prey will tend to extinction, but
the predator can survive because they have alternative food. When the Allee constant p increases, the
alternative food source does not guarantee the survival of the predator. Then, both the predator and
prey will become extinct; see Figure 9(b)–(c). However, when the Allee effect on the predator is strong
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(i.e., the Allee effect constant p is large), there is a bistable phenomenon (see Figure 9(d)–(g)). The
unstable limit cycle or the stable manifold of E2 acts as a separatrix between the origin and E5. That is,
the prey and predator may be able to coexist. Finally, under the condition that the Allee effect on the
predator is strong enough, Figure 9(h) shows that the predator will become extinct, whereas the prey
may become extinct or survive, depending on the initial value. On the whole, when the Allee effect
in the predator population is strong enough, the predator will become extinct, whereas the prey will
survive or become extinct, depending on the initial value. Hence, in contrast to the dynamic behavior of
the predator without the Allee effect, a strong Allee effect can lead to the extinction of the predator and
the increase of the survival rate of the prey.

(a) (b)

Figure 7. (a) Bifurcation diagram in (p, y)-plane for system (1.5) with a = 0.45, m = 0.14,
c = 3, s = 1. S N, H and LPC represent the saddle node, Hopf point and limit point of cycles,
respectively. (b) Amplified phase portrait of (a).
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Figure 8. Bifurcation diagram in (a, p)-plane for system (1.5) with m = 3
5 , c = 14

25 , s = 13237236
8567405 .

GH and BT represent degenerate Hopf bifurcation and Bogdanov-Takens bifurcation, respectively.
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Figure 9. Phase portraits of system (1.5) with a = 0.45, m = 0.14, c = 3 and s = 1.
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6. Conclusions

In this manuscript, a modified Leslie-Gower predator-prey model with Allee effect on both prey and
predator is proposed. We showed that the boundary equilibrium E3(0, c − p) is a stable node, while E0,E1

and E2 are unstable if c > p. Hence, E3 is globally asymptotically stable if system (1.5) has no positive
equilibrium. That is, a weak Allee effect on the predator is conducive to the survival of the predator.
However, if p > 1 + c, that is, the Allee effect in the predator population is strong, system (1.5) has no
positive equilibrium by Theorem 2.1. Then, the predator and prey do not coexist, which means that a
strong Allee effect on the predator is detrimental to the survival of both predator and prey. Moreover,
the other three boundary equilibria E0,E1 and E2 are non-hyperbolic (see Figure 2). We proved that the
unique positive equilibrium E∗ is a saddle node or a cusp of codimension 3 (see Figures 3 and 4). Further,
because the expression of B0 is complicated, we showed that E∗ is a cusp of codimension of at least 4 by
concrete example (see Remark 3.1).

We showed that system (1.5) undergoes saddle-node bifurcation, Hopf bifurcation and Bogdanov-
Takens bifurcation. In more detail, system (1.5) can undergo a degenerate Hopf bifurcation for some
suitable parameter values and result in two limit cycles (the inner one is stable and the outer one is
unstable; see Figure 5). Biologically, this indicates the bistable phenomenon, where the predator and
prey will oscillate periodically or become extinct, depending on the initial values. That is, the predator
will coexist and oscillate periodically if the initial values lie within the unstable limit cycle. However,
the predator and prey will tend to extinction if the initial values lie outside of the unstable limit cycle.

In addition, we give an example to illustrate that system (1.5) has a weak focus of order of at least 3 and
can undergo a degenerate Hopf bifurcation of codimension 3. Moreover, we proved that, within system (1.5),
there is a Bogdanov-Takens bifurcation of codimension 2; we also presented its bifurcation curves.

In the absence of an Allee effect on the predator, that is, p = 0, system (1.5) reduces to system (1.3).
Arancibia-Ibarra [15] proved the existence of separatrices in the phase plane separating basins of
attraction. They showed that system (1.3) has at most two positive equilibria, where the smaller positive
equilibrium is always a saddle, whereas the larger positive equilibrium can be either an attractor or a
repeller surrounded by a limit cycle. They showed that system (1.3) undergoes Hopf bifurcation and
Bogdanov-Takens bifurcation without rigorous mathematical proof.

Incorporating the Allee effect on the predator into system (1.3), we investigated the stability and
bifurcation of system (1.5) by using the Allee effect as a threshold condition. When the Allee effect on
the predator is weak (i.e., p < c), E3 is globally asymptotically stable if system (1.5) has no positive
equilibrium (see Figure 9(a)). As the Allee effect constant on predator increases, E3 disappears, which
means that the origin is globally asymptotically stable (see Figure 9(b)–(c)). However, in [15], the
predator always can always survive due to alternative food. Hence, we showed that, even if the predator
has the alternative food source, as long as the Allee effect on the predator is strong enough, both prey
and predator will become extinct, which is different from [15]. When the Allee effect on the predator is
sufficiently strong, the predator will tend to extinction and the extinction and existence of the prey depend
on the initial value. Therefore, a strong Allee effect on the predator is beneficial to the survival of the
prey, but detrimental to the survival of the predator. Unlike [15], we give rigorous mathematical proof to
prove that E∗ is a cusp of codimension 3, and that system (1.5) undergoes degenerate Hopf bifurcation
and Bogdanov-Takens bifurcation of codimension 2. We also showed that system (1.5) has a cusp of
codimension of at least 4 and can undergo a degenerate Hopf bifurcation of codimension 3 by concrete
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examples. Therefore, compared with system (1.3), the Allee effect on the predator greatly affects the
dynamical behavior of the system, resulting in more complex dynamical behavior. This enriches the
dynamics of the modified Leslie-Gower predator-prey model with the double Allee effect.
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Appendix A. Coefficients in the proof of Theorem 3.7

A1 = (a2 − m2 − 2a + 1)(1 − m + a + 2c)(5m2 + 2a − a2 − 4am − 4m − 1)(s + s∗) + 2[m2(3m − a

−1)(−m + 1 + a + 2c)3 + (a2 − m2 − 2a + 1)(s∗(a2 − m2 − 2a + 1) − s(a2 − 4am − 8cm

+3m2 − 2a − 4m + 1))](1 − m + a),
A2 = 2m3(1 − m + a + 2c)3{m2(1 − m + a)(1 − m + a + 2c)[2m(1 − m + a) + (3m − a − 1)(1 − m

+a + 2c)] − s(a2 − m2 − 2a + 1)(a2 + 4am − 5m2 − 2a + 4m + 1)} − s2(a2 − 4am − 8cm

+3m2 − 2a − 4m + 1)(a2 − m2 − 2a + 1)3,

A3 = −2m5(1 − m + a + 2c)5(1 − m + a)(a − 2m + 1) + sm3[(1 − m + a + 2c)3(a2 − m2 − 2a

+1)(m(5m − 4 − 4a) − (a − 1)2) + 2(1 − m + a + 2c)2(1 − m + a)(a2 − m2 − 2a + 1)2]
−s2(a2 − m2 − 2a + 1)3(m2 + (−2a − 4c − 2)m + (−1 + a)2),

A4 = 4m8(1 − m + a)2(3m − a − 1)(1 − m + a + 2c)7 − s3(a2 − m2 − 2a + 1)5(a2 − 4am − 8cm

+3m2 − 2a − 4m + 1) − 8cm6s(a2 − m2 − 2a + 1)2(1 − m + a)(1 − m + a + 2c)4

−8m4s2(1 − m + a + 2c)3(a2 − m2 − 2a + 1)3(1 − m + a).

Appendix B. Coefficients in the proof of Theorem 3.9

c20 = −
m(−m + 1 + a)2

4
, c02 = −

(a − 1)2(a + 1 − 4m) + m2(8m − 5a − 5)
m(−m + 1 + a)(a2 − m2 − 2a + 1)

,

c30 =
(−m + 1 + a)(−3m + a + 1)

2
, c12 =

B1

m2(−m + 1 + a)2(a2 − m2 − 2a + 1)2 ,
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c21 =
m2((6a + 6 − 4m)m + 7a2 − 34a + 7) − 14(a + 1)(a − 1)2m + 5a4 − 10a2 + 5

−2m(−m + 1 + a)(a2 − m2 − 2a + 1)
,

c03 = −
2(a − 2m + 1)2

m3(−m + 1 + a)3 , c22 =
−B2

m3(−m + 1 + a)3(a2 − m2 − 2a + 1)3 ,

c40 = −
(22m − 19a − 19)(a − 1)2m + (3a + 3 − 10m)m3 + 4a4 − 8a2 + 4

4m(a2 − m2 − 2a + 1)
,

c13 =
8(a2 + 3m2 − 2a + 1)(a − 2m + 1)2

m4(−m + 1 + a)3(a2 − m2 − 2a + 1)
, c31 =

B3

m2(1 + a − m)2(a2 − m2 − 2a + 1)2 ,

c04 = −
4((a − 1)2(a + 1 − 2m) + m2(3a + 3 − 2m))(a − 2m + 1)2

m5(−m + 1 + a)5(−1 − m + a)(m − 1 + a)
,

B1 = (a + 1)(a − 1)4(3a + 3 − 10m) + 2(a − 1)2m2(6(a + 1)m − a2 − 10a − 1) − m4(20m2

−10(3a + 3)m + 13(a + 1)2),
B2 = (a + 1)2(a − 1)6(9a + 9 − 45m) + (a − 1)4m2((134a − 37a2 − 37)m + 73a3 − 85a2

−85a + 73) + (a − 1)2m4((213a2 + 122a + 213)m − 89a3 − 59a2 − 59a − 89)
+m6(36m3 − (76a + 76)m2 + (89a2 + 162a + 89)m − 173a3 + 41a2 + 41a − 173),

B3 = (a + 1)2(a − 1)4(5a + 5 − 27m) + (a − 1)2m2((50a2 − 92a + 50)(a + 1) − (34a2

−44a + 34)m) + m4(4m3 − (16a + 16)m2 + (25a2 + 18a + 25)m − 7(a + 1)3).

Appendix C. Coefficients in the proof of Theorem 4.2

c20 =
((a + k − 2)(c − 2p − 2) + p + 1)

√
D

(p + 1)(a + k − 2)(c − p − 1)
, c02 =

s∗(p + 1)C2

(p + 1 − c)
√

D
, c11 =

(p + 1) C1

p + 1 − c
,

c30 =
(c − (p + 1 − c)(a + k − 4))D

(−p − 1 + c)2(a + k − 2)2(p + 1)3 , c21 =

√
DC4

(p + 1)2(a + k − 2)(−p − 1 + c)2 ,

c12 =
−C3

(−p − 1 + c)2 , c03 = −
(a + k − 2)(p + 1)2C5

(−p − 1 + c)2
√

D
, d20 = 0, d11 = 2

√
D,

d02 = 0, d12 =
√

D, d21 = 0, d30 = 0, d03 = 0,
C1 = (p + 1)(1 − ak)(3c − 2p − 2) + (a + k − 2)(5pc + 2c + (1 − 4p)(p + 1)) − 2p − 2

+(k − 1)(a − 1)c2,

C2 = (p + 1)(1 − ak)(5c − 3p − 3) + (a + k − 2)(5pc + 3c − 3p(p + 1)) − p − 1
+2(k − 1)(a − 1)c2,

C3 = (p + 1)(1 − ak)(6c2 − 9(p + 1)c + 4(p + 1)2) + (a + k − 2)[(p2 + 8p + 5)c2

−(2p2 + 13p + 2)(p + 1)c + (p + 1)2(p2 + 6p − 2)] − (p + 1)(5c − 8p − 8)
+(k − 1)(a − 1)c3,

C4 = (p + 1)(ak − 1)(c − p − 1)2 − (cp − p2 + 3p + 4)(a + k − 2)(c − p − 1)
+(p + 1)(4c − 7p − 7),
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C5 = (p + 1)(1 − ak)(5c2 − 7(p + 1)c + 3(p + 1)2) + (a + k − 2)[(5p + 4)c2

−(7p + 3)(p + 1)c + 3p(p + 1)2] − (p + 1)(2c − 3p − 3) + (k − 1)(a − 1)c3.

Appendix D. Coefficient C6 in the proof of Theorem 4.2

C6 = [((a + k − 2)2 p2 + (p + 1)(k − 1)(a − 1)(a + k − 4))(k − 1)(a − 1)]c2

+[−2(k − 1)(a − 1)(a + k − 2)2 p3 − ((ak − a − k + 2)2 + a2k2)(a + k − 2)p2

−6(a + k − ak)akp2 + 2(a + k)2 p2 − 2p2 − (k − 1)(a − 1)(−(3p + 1)(a + k − 6)2 + 4
+2(2(ak − 5)p + ak − 3)(a + k − 5))]c + (ak − 1)(a + k − 2)(ak(p + 1) + 5p + 12)p2

+2(a + k − 2)(ak − a − k + 2)2 p2 − (a + k − 2)2(2p + 1)p2 − 2(ak − 1)(2(ak − 1)p

+6ak − 5)p2 + (k − 1)(a − 1)(ak(a + k − 6)(3p + 1) − p(a + k)(a + k − 5) + 2p + 2).

Appendix E. Coefficients C7, C8 and C9 in the proof of Theorem 4.3

C7 = 4k3 p4 − 10k3 p3 − 16k2 p4 + 2k3 p2 + 43k2 p3 + 21k p4 + 4k3 p − 17k2 p2 − 58kp3 − 9p4

−28k2 p + 31kp2 + 26p3 − 4k2 + 37kp − 16p2 + 2k − 13p + 2,
C8 = 256k6 p8 + 320k6 p7 − 2208k5 p8 − 3928k6 p6 − 3264k5 p7 + 7808k4 p8 + 2376k6 p5

+36780k5 p6 + 13224k4 p7 − 14488k3 p8 + 5528k6 p4 − 24076k5 p5 − 141438k4 p6

−27536k3 p7 + 14872k2 p8 − 872k6 p3 − 55700k5 p4 + 100314k4 p5 + 286221k3 p6

+31130k2 p7 − 8004k p8 − 2768k6 p2 + 15172k5 p3 + 226154k4 p4 − 218561k3 p5

−321839k2 p6 − 18088kp7 + 1764p8 − 768k6 p + 37872k5 p2 − 86238k4 p3 − 472315k3 p4

+262673k2 p5 + 191032k p6 + 4218p7 + 12560k5 p − 188056k4 p2 + 232883k3 p3

+535400k2 p4 − 165765kp5 − 46792p6 + 768k5 − 65992k4 p + 452172k3 p2 − 327614k2 p3

−314876k p4 + 43410p5 − 5184k4 + 157020k3 p − 562997k2 p2 + 228497k p3 + 76337p4

+12000k3 − 180054k2 p + 343616k p2 − 61624p3 − 9360k2 + 90240kp − 79839p2

−1608k − 13006p + 3384.
C9 = 46448640k20 − 1616621568k19 + 24638291968k18 − 226672889856k17 + 1437092961792k16

−6740635675392k15 + 24417648365952k14 − 70226640103872k13 + 163306362727264k12

−310683308489888k11 + 486912516445288k10 − 630448297873396k9 + 673792412980232k8

−591555007568776k7 + 422673274021358k6 − 242089444966568k5 + 108573246582396k4

−36754214233392k3 + 8836596249839k2 − 1345620472722k + 97623820593.
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