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Abstract: In this paper, we investigate the dynamic behavior of a modified Leslie-Gower predator-prey
model with the Allee effect on both prey and predator. It is shown that the model has at most two positive
equilibria, where one is always a hyperbolic saddle and the other is a weak focus with multiplicity of
at least three by concrete example. In addition, we analyze the bifurcations of the system, including
saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. The results show that the
model has a cusp of codimension three and undergoes a Bogdanov-Takens bifurcation of codimension
two. The system undergoes a degenerate Hopf bifurcation and has two limit cycles (the inner one
is stable and the outer one is unstable). These enrich the dynamics of the modified Leslie-Gower
predator-prey model with the double Allee effects.
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1. Introduction

Leslie and Gower proposed a predator-prey model [1,2], as follows:

X
X = rx(l - —)—mxy,

1§ (1.1)
N

nx

where x and y denote the average population densities of the prey and predator at time ¢, respectively; K,
r, s, m and n are all positive; K represents the environmental carrying capacity; r and s are the intrinsic
growth rates of the prey and predator, respectively; m is the maximum per capita predation rate; n is a
measure of the quality of the prey as food for the predator. In model (1.1), the environmental capacity of
predators is directly proportional to the number of prey (i.e., n.x), and == is called the Leslie-Gower term.
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Korobeinikov [3] and Hsu and Huang [4] showed that system (1.1) has a globally asymptotically stable
positive equilibrium under certain conditions. Lindstrom [5] studied the nonexistence and existence of
limit cycles of system (1.1).

In system (1.1), predators are thought to feed on a single prey species. In the world, several predators
pursue a wide range of prey. That is, the predator will seek alternative food sources if the predator’s
favorite food is not in sufficient supply. This type of predator is called a generalist predator, and it
includes foxes, common buzzards, cats, etc. [6]. In order to study the situation in which the predator is a
generalist predator, Aziz-Alaoui and Okiye [7] replaced nx with nx + ¢ and considered a predator-prey
model with other food sources and a Holling type II functional response as follows:

X mxy
rx(l - —) -

x = ,
. | Ky a+x (1.2)
Yo sy( _nx+c)’

where —— is called the modified Leslie-Gower term; ¢ can be seen as other food sources for the predator.
The authors [7] studied the boundedness of the solution of system (1.2) and proved that the interior positive
equilibrium is globally asymptotically stable under certain parameter conditions by constructing a suitable
Lyapunov function. Nindjin et al. [8] discussed the effect of time delay on the stability of the positive
equilibrium. Xiang et al. [9] rigorously analyzed the high codimension bifurcation of system (1.2), such
as the Hopf bifurcation of codimension 2 and degenerate Bogdanov-Takens bifurcation of codimension 3.
Under the condition that the coefficients of system (1.2) are periodic, Zhu and Wang [10] proved the existence
of positive periodic solutions and obtained some sufficient conditions for the global attractivity of positive
periodic solutions. For more interesting results on the modified Leslie-Gower term, please refer to [11-13].

Allee [14] pointed out that clustering is conducive to the growth and survival of the population, but
excessive sparsity and overcrowding can prevent the growth of the population; he also found that each
population has its optimal population density. A population is endangered when its density falls below
a certain threshold; that is, it has a minimum density to sustain the population. When the population
density is too low, it will be difficult for individuals to find mates or resist natural enemies, which will
lead to a decrease in the birth rate and an increase in the death rate of the population. This phenomenon is
called the Allee effect, which leads to more complex dynamic behavior. Lots of biological phenomena
can cause the Allee effect, such as mating difficulty, anti predator defense and genetic drift. One of the
Allee effect’s forms expression is the multiplicative Allee effect, which can be written as follows for a
single species:

x:rx(l—%)(x—a),

where a is the Allee threshold. When 0 < a < K, that is, the population density is small, the per capita
growth rate of the population is negative, which is called a strong Allee effect.

Arancibia-Ibarra [15] proposed the following model with the multiplicative Allee effect and a
generalist predator:

X rx(l—%)(x—m)—qu,

(1.3)
sy(l x4 c)'

The author demonstrated the existence of separatrices that separate basins of attraction in the phase
plane, which is associated with the oscillation, coexistence and extinction of predator-prey populations.

y
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Through numerical simulations, they showed that system (1.3) undergoes Hopf bifurcation and Bogdanov-
Takens bifurcation. Considering system (1.3) with Holling’s type II functional response, Arancibia-Ibarra
and Flores [16] investigated the different bifurcation and showed that the system exhibits the multi-stability
phenomenon. Yin et al. [17] studied a predator-prey model with the Allee effect and prey refuge, and they
showed that the system has two limit cycles and a Bogdanov-Takens bifurcation of codimension 3. Some
scholars [18-22] have studied the impact of the other functional response functions and Allee effect on the
dynamical behaviors of Leslie-Gower systems.

Most scholars have considered the impace of the Allee effect on prey. In fact, the Allee effect on
predator populations can also affect the dynamic behavior of the system. For predators, when the
population density is low, the success rate of cooperative hunting will decrease; the probability of
finding a mate will also decrease, which will lead to a decrease in the population birth rate. Therefore,
there is also the Allee effect in predator populations. Recently, the study of predator-prey models with
the Allee effect on the predator has attracted the interest of a number of scholars. Fox example, Feng
and Kang [23] investigated a predator-prey model with the Allee effect on both prey and predator;
they showed that the double Allee effect greatly altered the survival of these two species. Alves and
Hilker [24] studied the relationship between hunting cooperation and the Allee effect in the predator
population, as well as its impact on the predator-prey system.

Therefore, inspired by [15, 23], we consider a modified Leslie-Gower predator-prey system with
double Allee effects on predator and prey, as follows:

X
. |- _) N ,
X rx ( (x —a) — mxy

o (y y) (1.4)
y = sy .

y+b_nx+c

where all parameters are positive and 0 < a < K. Here, y%b represents the Allee effect, and the per capita
growth rate of the predator changes from s to y‘% with the influence of the Allee effect [25]. Obviously,
as b increases, the Allee effect becomes stronger and the per capita growth rate of the predator is slower.

For simplicity, making a dimensionless transformation by using

_ X _ y _ _ a
X=—, V=—, t=rKt, a=—,
K nK K
_mn _ s b _ c
m=—, §=—, p:_’ c=—,
r rK nkK nkK
and dropping the bar, system (1.4) becomes
x = x(1-x)(x—a)—mxy,
S y y (1.5)
po= (),

where 0 < a < 1 and the other parameters are positive. From the biological background, assume that the
following initial conditions:

(x(0),y(0)) € Q = {(x,y) € R}x >0,y > 0}.

The rest of this paper is organized as follows. We respectively discuss the existence and stability
of the equilibria in Sections 2 and 3. In Section 4, we investigate the existence of various bifurcations,
such as saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. In Section 5, we
give numerical simulations to show the influence of the Allee effect in the predator population on the
dynamical behavior of the system. The paper ends with a brief conclusion.
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2. Existence of equilibria

First, we show that all solutions of system (1.5) are positive and bounded if the initial condition is
given by (x(0), y(0)) € Q, = {(x,y) € R?|x > 0,y > 0}.

Lemma 2.1. All solutions of system (1.5) are positive and bounded for the initial condition (x(0), y(0)) € Q,.
Proof. System (1.5) has the solution (x(¢), y(¢)), as follows:

x(t)
y(®)

x(0) exp { fot [(1 = x(1)) (x(7) — a) — my(7)] dT} ,
y@exp {5 (5555 - o) ar)-

Since the initial values x(0) > 0 and y(0) > 0, we get that x(¢#) > 0 and y(¢) > O for t > 0. Therefore,
solutions of system (1.5) are positive.

If x > 1, from the prey equation of system (1.5), we obtain that x < x(1 — x) (x —a) < 0, which
implies that lim sup x(#) < 1. According to lim sup x(#) < 1, we have that x(¢) < 1 for large values of

—00 t—00

time ¢. In addition, from the predator equation of system (1.5), we have that y < sy (1 - l—frc) for large
values of time ¢. Then, we have lim sup y(¢) < 1 + ¢. Hence, solutions of system (1.5) are bounded. The

—o0

proof is completed.

Next, we study the existence of equilibria of system (1.5). Obviously, system (1.5) has a trivial
equilibrium E(0, 0) and two predator-free equilibria E;(1,0) and E;(a,0). When ¢ > p, system (1.5)
has a prey-free equilibrium E3(0, ¢ — p). Note that the positive equilibria of system (1.5) satisfy the
following equations:

1 L, 2.1)

{ (I-x)(x—a)—my=0,
y+p Cx+c
From the first equation of (2.1), we can obtain the prey isocline of system (1.5):
1
y=—U0-xk-a).
m
From the second equation of (2.1), we get the predator isocline of system (1.5):
Ya=X+c—p.

The prey isocline y; is a parabola passing through points E;, E, with vertex at (%, %) The predator

isocline y, is a monotonically increasing straight line passing through E3 with a slope of 1. Also, we
calculate that the slope of curve y; at Ej is 1;1—“
From (2.1), we obtain

f)=x*+(m-1-a)x+cm—pm+a=0. (2.2)

The discriminant of Eq (2.2) is
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A=(m-1-a)-4cm+4pm - 4a.

Define
, a+1l-m—- VA |
= , X

a+1-m+ VA a+1l-m
xl 9 =

2 2= 2 T

Obviously, the number of intersection points of curves y; and y, depends on the sign of A. If A > 0,
Eq (2.2) has two real roots x] and x5, which means that the number of intersection points of curves y;
and y, is 2. If A = 0, Eq (2.2) has a unique real root x,; that is, the curve y; has only one intersection
point with y,.

Note that the positive equilibria are determined by the intersection of the curves y; and y; in the
first quadrant. Based on the positional relationships of E;, E;, E5 and the slope of curve y; at E,, we
consider four cases:

(1) When p — ¢ < a,

(L.a) if lj“ > 1, the number of intersections of y; and y, may be 0, 1 or 2, depending on the sign of A.
For example, y; and y, have two intersections (see Figure 1(a)) or only one intersection (see Figure 1(b))
if A > 0or A =0, respectively;

(1.b)if 0 < lm;“ < 1, the predator isocline is above the prey isocline in the first quadrant, as shown in
Figure 1(c). So, there is no intersection of y; and y;, i.e., system (1.5) has no positive equilibrium.

(2)Whenp—-c=a,

(2.a) if % > 1, y; and y, have only one intersection in the first quadrant; see Figure 1(d). Hence,
system (1.5) has only one positive equilibrium;

2.b)if 0 < l;l—“ < 1, the predator isocline and the prey isocline have only one intersection at E,, as
shown in Figure 1(e). Hence, there is no intersection in the first quadrant, which implies that system (1.5)
has no positive equilibrium.

(3) When a < p — ¢ < 1, there is one intersection of y; and y, in the first quadrant; see Figure 1(f).
Hence, system (1.5) has a positive equilibrium.

(4) When p — ¢ > 1, in the first quadrant, the prey isocline is to the left of the predator isocline, as shown
in Figure 1(g) and (h). Therefore, system (1.5) has no positive equilibrium.

Let

m? —2(a+ )m+ (a - 1)2_
4m ’

pr=a+c, pP=c—c] and c] =
then,
A =4m(p - p).

Notice that p™ > p*. Clearly, when ¢] < 0, or when ¢] > 0 and ¢ > ¢}, we can get that p* > 0.
By a simple calculation, we get that ¢ > 0if 0 < m < (1 — a)*> orm > (1 + Va)?, and ¢} < O if
(1 — va)*> <m < (1 + +/a)*. Based on the above discussion, we derive the following theorem about the
existence of the positive equilibria of system (1.5).
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Figure 1. Graphical representation of predator and prey isoclines. (a) p — ¢ < a, lm;“ > 1,
A>0.B)p-c<a,t>1,A=0.(c)p-c<a,0<2<L.(dp-c=a 2> 1

(e)p—c:a,0<%g1.(f)a<p—c<1.(g)p—c:1.(h)p—c>1.

Theorem 2.1. The existence of the positive equilibria of system (1.5) are classified as follows.

(1) Assume that 0 < m < (1 — \Ja)* and ¢ > ¢}, or (1 — \a)* <m < 1 — a; then,

(l.a) if p< p*or p>1+c, system (1.5) has no positive equilibrium,

(1.b) if p = p*, system (1.5) has a unique positive equilibrium E.(x.,y.), where y, = x, + ¢ — p;

(L.o) if p* < p < p™, system (1.5) has two positive equilibria E4(x},y}) and Es(x3,y5), where
Y =xj+c—pandy;=x;+c—p;

(L.d) if p* < p <1 +c, system (1.5) has a unique positive equilibria Es(x3,y5).
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(2) Assume that 0 < m < (1 — yJa)* and ¢ < ¢; then,

(2.2) if p > 1 + ¢, system (1.5) has no positive equilibrium,
(2.b) if p™ < p <1+ ¢, system (1.5) has a unique positive equilibrium Es(x3,y3);
(2.¢) if p < p™, system (1.5) has two positive equilibria E4(x7],y]) and Es5(x3,y3).

(3) Assume that m > 1 — a; then,

(B.2) if0 < p < p™orp=1+c system (1.5) has no positive equilibrium;
(3.b) if p™ < p <1+ ¢, system (1.5) has a unique positive equilibrium Es(x3, y5).

3. Stability of equilibria

Now we discuss the stability of system (1.5). The Jacobian matrix of any equilibrium of system (1.5) is

1-x)(x—a)—-my—xQ2x—-a-1) —mx
J(E) = 5y? 5 y 5 . 3.1
e GG~ G T e

The local stability of equilibria is determined by the eigenvalues of the Jacobian matrix (3.1) at
each equilibrium.

Theorem 3.1. The boundary equilibrium E;(0, c — p) is always a stable node if ¢ > p.

Proof. The Jacobian matrix of system (1.5) at E3(0,c — p) is

—a —m(c — p) 0

s(c=p)* _ s(c—p)*
c2 2

J(E3) =

Obviously, J(E3) has two eigenvalues 4, = —a —m(c — p) < 0 and A, = —S(CZ—Z”)Z < 0, which implies that

Ej5 is a stable node (see Figure 2(a)).
Theorem 3.2. For equilibrium E\, we have the following conditions:

(1) if p < ¢, Ey is an attracting saddle node, including a hyperbolic sector in the upper half-plane;

(2) if p = ¢, Ey is a stable degenerate node;

(3) if p > ¢, Ey is an attracting saddle node, including a parabolic sector in the upper half-plane.
Proof. The Jacobian matrix of system (1.5) at Ey(0, 0) is

-a 0
Ey) = .
J(Eo) [ 0 0 ]

Obviously, J(Ey) has one zero eigenvalue, which means that Ej is a degenerate equilibrium. Performing a
Taylor expansion at the origin and applying dr = —adt (still denoting 7 as ¢), then system (1.5) becomes

. (a+ Dx*>  myx 3
X = x- + —,
a a a
(3.2)
. s(p—c)y* sy’x sy’
y = - ——+ =5 +o(lx.yP).
pca cca  p-a
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According to Theorem 7.1 in Chapter 2 in [26], if p < ¢, Ej is an attracting saddle node, with a
hyperbolic sector in the upper half-plane (see Figure 2(a)). If p > ¢, E is an attracting saddle node,
with a parabolic sector in the upper half-plane (see Figure 2(c)). If p = ¢, system (3.2) becomes

a+ Dx* myx X3
X = x—( ) + Y + —,
a a a
sYx sy . (3.3)
S— + —— +o(lx, y).
cta  cla

yo= -

From the center manifold theorem, we assume that x = a;y* + 8;y* + o(|y®). Substituting this into the
first equation of system (3.3), we get that @; = 0 and 3, = 0. Substituting x = o(|y|*) into the second
equation of system (3.3), we can obtain the reduced system, restricted to the center manifold:

3
sy
y=—=+o(yP).
cea

Clearly, ﬁ > 0, which implies that E| is a stable degenerate node by Theorem 7.1 in [26] (see Figure 2(b)).
The proof is completed.
Theorem 3.3. For the equilibrium E, we have the following conditions:

(1) if p <1 +c, Eyis an attracting saddle node, with a hyperbolic sector in the upper half-plane;
(2) if p=1+c, E| is a stable degenerate node;
(3) if p > 1 + ¢, E| is an attracting saddle node, with a parabolic sector in the upper half-plane.

Proof. The Jacobian matrix of system (1.5) at E1(1,0) is

O R

which means that J(E) has one zero eigenvalue. So, E| is a degenerate equilibrium. Making the
transformation (x;,y;) = (x — 1,y) to move E to the origin, system (1.5) becomes

X1 = (a—Dx;—my; —mxy; + (=2 + a)x} — x3,
. _ s(c+1—P)Y% Sy%xl sy? 3 (34)
Y= T @z -2 T o(lx, yI).
Letting
1 m 1
X1 = Xy + Y2, Y1 =Yy, [I= T,
a-1 a-1 a-1
system (3.4) becomes
Xy = Xp anX; + ANy + ey, + 30X, + ahy; + 4y + desy; + o(lx, yf), (3.5)
Y2 = boy; + biaxayi + bosy; + o(|xa, yal),
where
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(-2+a)m (a-3)m (c+1=-pa-1)s+(c+1)mp

T Tamy M T T (@- D2+ p !
1 Bc*m + as + 6¢cm + 3m — s)m 3m
T Ty T @ parer . 0 T T a
_ ((a=1?s—m*p))(c+ 1Y’m—(a—Dp*m’s _ (I+c—p)s
o = (a—- D1 + 02 T oD+ op
s ((c+1)*a—-1)—mp?)s

by, = 03 = —

(a—- 121 +0)* (a—1)2(1 + ¢)?p?

According to Theorem 7.1 in [26], if by, # 0, i.e., p # 1 + ¢, E; is an attracting saddle node (see
Figure 2(a), (b) and (¢)). If p = 1 + ¢, system (3.5) is reduced to the following system:

X, = &+ azofc%f a11%23, + G0ay; + a3, + apkays + a5y, + aesy; + o(|%a, a2), (3.6)
Yo = bpky; + byys® + o(|%, al), ‘
where
- m? _ (a—D(a—m—1)sm—m(c+1)?
a = —-— Qoz = ,
0”2 (a—1)2 0 (a—13(c+ 1)
_ (a—m-1)s
bos =

e+ D2a- 12

Based on the center manifold theorem, let X, = n; )7% + o(|5,/*), and substitute it into the first equation of

m?

system (3.6); then, we have that n; = e Substituting x, = %5/5 + o(¥) into the second equation

of system (3.3), we obtain the reduced system restricted to the center manifold, as follows:

1—
B (c(+ 1)6;(2 T)ls)zyg + o([721).

2
E| is a stable degenerate node (see Figure 2(d)) since a < 1 (see [26]). The proof is completed.

Theorem 3.4. For the equilibrium E,, we have the following conclusions.

(1) When p > a + ¢, E; is a repelling saddle node, with a hyperbolic sector in the upper half-plane.
(2) When p = a + c,

(a) E, is an unstable degenerate node if m > 1 — a;
(b) E; is a repelling saddle node, with a parabolic sector in the upper half-plane if m = 1 — a;
(c) E, is a degenerate saddle if m < 1 — a.

3) If p < a+c, E, is a repelling saddle node, with a parabolic sector in the upper half-plane.

Proof. The Jacobian matrix of system (1.5) at E»(a, 0) is

0 0

J(Ey) = [ (1-a)a -am ]

Mathematical Biosciences and Engineering Volume 21, Issue 1, 792-831.
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The two eigenvalues of J(E,) are 4; = (1 — a)a and A, = 0; that is, E; is a degenerate equilibrium. By
the transformation (x1,y;) = (x — a,y), we have

3

. 2

X = (- a)cixl - rznayl - inxlylzt (—2a4+ Dxy = x{, 3.7
. _ s(e+a—py; SY[X1 sy SYTXY Sy 4 .
Y1 = plc+a) (c+a)? - 7 (a+c)? + F + 0(|x1’)’1| )

Next, making the transformation

()= %)
) Lo (-aal\y)

and applying dt = (1 — a)adt (still rewriting 7 as ¢), system (3.7) becomes the following system:

Xy = Xp 4 C0X5 + C11XoYa + CoaY; + C30X; + ClaXaY5 + €21 X532 + Co3Y)
+C20X3Y5 + C13X2Y; + CosYs + 0(|x2, al*), (3.8)
Yo = doyi + dixys + doys + dnxsy; + dizxays + dosys + o(lx2, yal*),
where
Ra-1)m amp(a+c)—sta—1)a+c—p) Ba-1)m
Co = ——— > Co2 = s cn=—-7,">
a-—1 (a+c)a-1Dp a—1
(3a*m + 6acm + 3¢*m — sa + s) am 3am? am?
C = 5 C = ) c = ’
= (a+ca-1) T a1 Va1
((a=D*@a+c)s+(a-1)s—(a+c)’m)p*m)a sa*m?
c3 = — ) s C»n = —37
(a—D(a+c)p (a+c¢)
2s a’m? ((a = D*a+c)’ —m?*pa’s J (c+a-p)s
C = —, Coa = — s = —_—
B (a+c) 04 (a+c)p3 0 (c+a)p
asm ((a—1(a+c)P+mp*as sa*m?
dp = ——, 03 = o) ) dyp =—"—3,
(a+c) (a+c)p (a+c)
d = 2s a’m? _((a=1D*a+c) -m?pa’s
BT @t 0= (a+c)lp?

From Theorem 7.1 in [26], if dy, # 0, i.e., p # a + ¢, E, is a repelling saddle node (see Figure 2(a), (b)
and (d)). Assume that p = a + ¢; system (3.8) becomes

X = X+ 00X + ciikada + Cad; + 30X, + Cnkads + €21 X502 + Co3Y)
+CnX5V5 +_C13562)_€ + CoaPy + 0(|762,)72|42, (3.9
Yo = diky; + dp; + dnXoy; + dizkay; + duds + o(1%, ¥olh),
where
_ am _ m*(a+c)Y—(a-Da-1+m)s)a p (a+m-1as
Co2 = s Co3 = s 03 =" o
a—1 (a-1(a+c)? (a +c)?
_ (@ —m?*=2a+ Da’s - (@ —m?>=2a+ Da’s
Coa = — s 04 =
(a+c¢) (a+c)

By using the center manifold theorem and the first equation of system (3.9), we have

am , a(@—17%@—-1+m)s+2am*(a+c)) 4

B=—— i+ PR TPy yi + 0(73). (3.10)
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Substituting (3.10) into the second equation of system (3.9), we obtain the reduced system, restricted to
the center manifold, as follows:

_ (@m-lass3 | a?s((1-2a—)m?+(a—1)%) =

572 (a+c)? Y2 (a+c)(a—1) Yot 0(‘)_742‘) 3.11)

Since a < 1, E, is an unstable degenerate node (or degenerate saddle) if m > 1 —a (orm < 1 —a). When
m=1-a, (3.11) becomes

. as(l-a), »
2= o )2 +0(3).

Hence, E; is a repelling saddle node since % > 0 (see [26]). The proof is completed.

0.251
0.2

(a) (b)

() ()

Figure 2. (a) E,, E are both attracting saddle nodes, E, is a repelling saddle node and E; is a
stable node witha = 0.5, m = 0.8, s = 0.6, c = 1.2, p = 0.5. (b) E is a stable node, E| is
an attracting saddle node and Ej is a repelling saddle node with a = 0.5, m = 0.8, s = 0.6,
c =0.5,p=05. (c) Ey, E; is an attracting saddle node and E, is an unstable node with
a=0.5m=0.8,5=0.6,c=0.5, p=1.(d) Ey is an attracting saddle node, E is a stable
node and Ej is a repelling saddle node witha = 0.5,m = 0.8, s = 0.6,¢c = 0.5, p = 1.5.
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Next, we study the stability of the positive equilibria of system (1.5). The Jacobian matrix of
system (1.5) at positive equilibria is

—xQ2x—-—a-1) —mx
J(E) = (x+c—p)zs _ (x+c—p)zs . (3 12)

(x+¢)? (x+c)?
The determinant and trace of (3.12) are, respectively,

xs(x+c—pP(=2x+a+1-m)

Det(J(E)) = 1oy

and
(x+c—p)s

Tr(J(E))=-x2x—a-1) - G107

By simple calculation, we get

xps(xy +c¢— 2?2 VA
(x} +¢)?

Det(J(Es)) = — <0,

which means that E, is a saddle. Hence, we have the following theorem about the stability of positive
equilibria E4 and Es.

Theorem 3.5. Assume that E4 exists; then, E4 is a saddle.

Define
xy(a —2x; + 1)(x; + ¢)*

(x5 +c—p)?

5=
Theorem 3.6. Assume that E5 exists; then, Es is

(1) stableif s <0ors>35>0,
(2) unstable if 0 < s < §,
(3) a focus or centerif s = 5§ > 0.

Proof. By simple calculation, we obtain

xX8(x5 + ¢ — p)? VA

Det(U(Es)) = 2= > 0.
and )
CHe-p?
TI"(J(Es)) = W(S - S).

So, if § < 0, we get that Tr(J(Es)) < 0; that is, E5 is stable. If 0 < s < §, we get that Tr(J(Es)) > 0,
which means that Es is unstable. If s > § > 0, we get that Tr(J(Es)) < 0, which implies that E5 is
stable. If s = § > 0, we get that Tr(J(E5)) = 0, which implies that the eigenvalues of J(Es) are a pair of
conjugate complex roots and Ejs is a focus or center. The proof is completed.
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Define
B 2m*(-m+1+a)(—m+1+a+2c)?

(@®>-m?—-2a+1)?

If the conditions of Theorem 2.1(1.b) hold, then s, > 0. When p = p*, by simple computation, we obtain

S

Det(J(E,)) =0

and
(@*> —m?> =2a+1)*

dm*(-m + 1 + a + 2¢)?

Tr(J(E.) = (5. = 9),

which implies that J(E,) has at least one zero eigenvalue. From the conditions of Theorem 2.1(1.b), we
have that a®> —m* —2a+1=(a-1-m)(a-1+m)>0and —m + 1 + a +2c > 0. Then, the sign of
Tr(J(E,)) is determined by s, — s.

Now, the following theorem shows that E. is a saddle node if s # s..

Theorem 3.7. Assume that the conditions of Theorem 2.1(1.b) hold. Moreover,
(1) if s > s., E. is an attracting saddle node;

(2) if s < s., E, is a repelling saddle node.

Proof. We move E. to the origin by applying the transformations x; = x — x, and y; = y — y,; then, system
(1.5) becomes

X1 = enx1 +eqyr + exxt + erxiyr + o(lxy, yil?), (3.13)
Vo= fioxi + foyi + faoxd + fuxiy + foyt + o(lx, yil), '
where
m(-m+1+a) m(-m+1+a) 3m—a-1
€l = f’ €01 = _f’ € = T, e = —m,
s(a®> —m? = 2a + 1) s(@®—m?=2a+1)>°

fo = dm*(-m + 1+ a + 2¢)*’ Jo = CAm2(—m+ 1 +a+ 20

s(a@*—m*-2a+1)? 2s(a®> —m?> =2a+ 1)
fo = - fir =

2mA(—-m + 1 +a+2c)¥’ Cm(=m+1+a+2c)*
s@*—m?>=2a+ D((a-1)>—ma+ 8 —3m+4))
2m*(-m+1+a+2c) '

Joo =

Assume that s # s, thatis Tr(J(E.)) # 0. By applying the transformation

1 m(—m+1+a)
- s(a*—m*"=2a+1)
)\l rcatrang) 2

and dt = ——="——dt (still denoting 7 as 7), system (3.13) becomes

4m2(-m+1+a+2c)*

X = exnx; + ey + e0y; + o(|x2, y21%),
2= »t fzoX% + fiixoys + foz)’% + o(|x2, y2I*),

where
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m-1+a2(-m+1+a)(-m—-1+a)’s

€0 = 82 (—m+ 1 +a+202(s— 5.7
_ s> —m? = 2a+ 1)°A, 7 As
e = s = s
1 1om3(—=m+ 1 +a+20)5(s—s5.)2 "7 dmt(=m+ 1 +a+2c)(s — 5.)?
_ (=m + 1+ a)s(a> —m?> = 2a + 1)’A, = m—1-a
6dm>(—m+ 1 +a+2c)' (s —s.) 2
_ A
fo = u

2mb(—m+1+a+2c)(s— s,)?

and the coefficients A; (i = 1,2, 3,4) are given in Appendix A. Using the conditions of Theorem 2.1(1.b),
we get that ;) > 0. From Theorem 7.1 in [26], E. is a saddle node. Considering the time variable, E, is an
attracting saddle node if s > s. (see Figure 3(a)), and a repelling saddle node if O < s < s, (see Figure 3(b)).
The proof is completed.

L L L L L L L L L L L L L L L L L L L
05 055 06 065 07 075 08 08 09 095 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

(a) (b)

Figure 3. (a) E. is an attracting saddle node witha = 3, m = 1, s =2,c=1,p = &. (b) E.
is a repelling saddle node with a = % m= é s = ‘5—‘, c= g, p= %

When the conditions of Theorem 2.1(1.b) hold and s = s, that is, Tr(J(E.)) = 0, J(E.) has two zero
eigenvalues. Using the following two lemmas, E. is a cusp of codimension 2 or 3.

Lemma 3.1 ( [27]). The system given by

i = y+Ax’+ Bxy+ Cy* +o(|x,y]),
y = Dx*+ Exy+ Fy* + o(|x,y)

is equivalent to

X =y,
y = Dx* + (E + 2A)xy + 0(|x,y|2)

by some nonsingular transformations in the neighborhood of (0, 0).
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Lemma 3.2 ( [27]). The system given by

X =y,
Vo= X+ ax + y(anx’ + a3 x) + y(apx + anx®) + o(lx, yIY)
is equivalent to
X =y,
y = X +GXy+o(xyh

by some nonsingular transformations in the neighborhood of (0,0), where G = a3, — azpas;.
Define
_(1 +a-m)((Ba+3)m*+(a-1)%a+1-4m))
2(a—1)?*(a+1-2m)+2m*(Ba —2m + 3)
A =4(a - D*(@* - 14a + 1),

y _4@-17+ VA,
e 6a + 6 '

*

Theorem 3.8. Assume that p = p* and s = s.. E. is a cusp of codimension 2 if one of the following
conditions holds:

(1) 0 < a <7—4+3, and either
(La) 0<m < % andc > cj;

(Lb) ¥4 <m < (1 - va)y, ¢>cjandc # c;;

(1.c) (1 = Vay* <m < M, and ¢ # c;;
(1d) Mi<m<1-a;

2)7-4V3<a<l.

Proof. If s = s., then J(E,) has two zero eigenvalues and system (3.13) can be written as follows:

X1 = goX1 + gowyt + gox7 + guxiy + o(lxi, yil), (3.14)
Vi = hioXi + hoyyt + haoxy + hyixiyy + hooyi + o(lxy, yi1), .
where
_ m(-m+1+a) - m(-m+1+a) _3m-a-1
810 = 3 >, 801 = 3 > 820 = > ;
m(-m+1+a) m(-m+1+a)
gu = -m, ho=—"""7-——" hpy=—"""—"F7""—,
2 2
m(-m+1+a) Am*(-m + 1 +a)

hyo = - 1=

-m+1+4+a+2c a?-m*-2a+1’
(—m+ 1+ am((a-1)7?—-ma+ 8¢ —3m+4))
@-m?>-2a+1)(-m+1+a+2c)

X _ _m(—m2+1+a) 0\ (X
Vi - _m(—m2+1+a) 1 Y ’

Mathematical Biosciences and Engineering Volume 21, Issue 1, 792-831.
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we get
X = Y+g0X*+guXY +o(X,YP),
3 == = s ) (3.15)
Y = hzoX + h]]XY + hozY + 0(|X, Yl ),
where
_ m(-m+1+a)? _ - m*(-m + 1 + a)’
820 = 4 ,» 811 = —m, hy = 3 ,
- m*m—-1—-a)2c((a-1?—m@da-3m+4)+(m+1+a)3a-1)?-m@da—-m+4)]
e Qim-1+a)a-m—1)(-m+1+a+2c) ’
7 m(-m + 1 + a)(a®> — 4ma — 8mc + 3m* —2a —4m + 1)
02 =

m-1l+a)a-m-1)(m+1+a+2c)

According to Lemma 3.1, system (3.15) is equivalent to

X =Y
Y = hyoX>+EXY +0(X,YP),
where ( 1 ) 9
- m(—-m+ 1+ a)(c — c;)As
E = hy + 28y = 2 ,
o0 = S I a)a—m—1)(—m+ 1 +a+20)
with
As =2(a— D*(a+1-2m)+2m*(Ba + 3 — 2m),
gm)=Ba+3)m* —4(a—-1"m+ (a+ )(a—-1)?
. (-m+1+a)gim)
02 = — .
As
.. m(—m+1+a) 2
If the conditions of Theorem 2.1(1.b) hold, we have that 2(m—l+a)(a—m—+1)(+—m+ as > 0and /iy > 0.
Define

As = (10a + 2)m* —4(a — 1)°’m + 2(a — 1)*(a + 1).

By simple calculation, the discriminant of As is Az, = —64(a - 1)%(a + 2)a < 0, that is, As > 0. When
0 <m < 1 —a, we have that A5 — As = 4m*(1 —a — m) > 0, i.e., As > 0. Hence, the sign of ¢} depends
on g(m). If g(m) < 0(= 0, > 0), then ¢; > 0(= 0, < 0). The discriminant of g(m) is

A =4(a-17 (- 14a+1).

If A; <0, thatis, 7 — 443 < a < 1, we have that g(m) > 0. Then, E > 0, that is, E, is a cusp of
codimension 2 for 7 — 4 V3 < a < 1 [28].

If A, > 0, thatis, 0 < a < 7 — 43, g(m) has two positive roots M, = 4P VA anq M, =

6a+6
4@l VA When 0 < a < 7 — 4 /3, we obtain the following: g(%1) = ~1(a + 1)(@® - 14a + 1) < 0,

g((1-+va)*) = —4+Ja(a—4a+ a-1)? <0, g(1-a) = 8a(a—1)> > 0, (1- Va)>-4! = =X 5 0.
((1 ) = —4Va(a—4 1)( 1)? <0,g(1-a) = 8a(a—1)* > 0,(1 )2 - ‘Hlfﬂ 0
Therefore, My < %L < (1 - Va)? <M, <1-aforO<a<7-4V3.

By calculation, we have

* *

(a+1-2m)a—-1+m3*a—m-1)>
CI_C2: .

2mA 5
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Assume that 0 < a < 7 — 4 V3 holds. According to the conditions of Theorem 2.1(1.b), E # 0 if one of
the following conditions holds:

(HO0<m< B c>cp;

Q)B4 <m<(1-+aP,c>cj,c#cy

B)(1 = Vay <m< M, c#c3;

@M <m<l1l-a,
which implies that E, is a cusp of codimension 2 [28] (see Figure 4(a)). The proof is completed.

From the proof of Theorem 3.8,if0 <a <7 -4 \/§, % <m < M, and c = ¢}, we have that E = 0.
Define

By £ —12m° + 32(a + Dm®* — (41a® + 2a + 41)m® + 2(a + 1)(17a*> — 30a + 17)m?
—15(a- D*@@+ 1)’m+2@a-1)>@a+1)>.
Hence, the following theorem shows that E, is a cusp of codimension of at least 4.

Theorem 3.9. Assume that 0 < a <7 — 43, % <m< M, p=p',s=s,andc = c, hold. Moreover,
(1)if By # 0, E. is a cusp of codimension 3;
(2) if By =0, E, is a cusp of codimension of at least 4.

Proof. If ¢ = ¢3, system (3.14) becomes

m(a+1-m) m(a+1-—m) _ (@3m+l) 2 3

X = 5 X1+ Y1 — MX1y| X — X,
Vi = bioxi + boyi + boxt + biixiy1 + byt + byox; + bioxiyt + by xiy (3.16)
+bosy; + baox| + bypxtyt + by iy + boay] + o(lxi, yil*),
where
py = Matlo-m o matl-m) A
2 ’ 2 ’ 4a*-m?-2a+1)
A dm*(a+ 1 —m) b = (a—1)*(a+1-2m)+m?>(6m—5a—-5)
T e —m-2a+ 1 02 2a> —m?—2a+1) ’
b = A R S N—
8m(a+1—m)a?—m?—2a+1)>2 (a2 —m?—-2a+1)?
by = 8m’(a + 1 — m) b = — Al
(@ -m?-2a+1)7? 16m2(a+ 1 —m)*(a®? —m? =2a+ 1)’
) _(a+1-2my ~ Az
03 2ma+1—-m)’ N+l —my@—m?=2a+ 1)
4m*As (1 4+ a—2m)*As
by = - > by = .
(@ —-m?>—-2a+ 1) dm*(a + 1 —m)*(a> —m?> —2a + 1)
Letting
Xy = X,
y, = m(a+21—m)xl + m(a+21—m)yl — mxiy; — (a—3;n+l)x% _ x:]’,’
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system (3.16) can be rewritten as

Xy =y,
. 2 2 3 2 2 3 4 3 3.17
Y2 = Co0Xy + ConY; + C30X, + C1aX2Y; + C21X5Y2 + Co3Y) + Ca0X, + C13X2Y), (3.17)
2.2 3 4 4
+ C20X5Y5 + €31X,)2 + coaYs + 0(|x2, yol),

where the coefficients of system (3.17) are given in Appendix B. Next, applying the transformations

x3 = xp and y3 = y,(1 — cpax,) and dt = l_cim dt (rewritten 7 as t), system (3.17) becomes

X3 =Yys,
y3 = dz()xg + d3o)€§ + d12X3y§ + d21x§y3 + d03yg + d4())€43L + d13)€3y§ + d22x§y§ (318)

3 4 4
+ d31x3y3 + dosy; + o(|x3, y3["),
where

2
dyy = 20, d3o = 30— 2C0C0, dirx =Ci2 — Coos dy1 = ¢1, doz = co3, dos = Co4,

_ 3 _ 2 _ _
dy = Cxn—Cy, dig = CirCr — 2002C30 + €40, di13 = CopCo3 + C13, d31 = €31 — C21Co.

Through the following two transformations:

do3 dis dos di;
X3 = X4+ 7)&2;)’4 + ?xm + 7)@2;)’42;, 3 = ya + dosxay; + 7)@21)&2; + doaxay;,
daodos
SN

system (3.18) is transformed into

X5 =Ys, 3.19
. 2 3 2 2 4 2.2 3 4 (3.19)
V5 = ex0X5 + €30X5 + €12X5y5 + €21 X5)5 + €s0Xs + enXxsys + e31x5ys + o(|xs, ys[*),
where
ex = dy, ez =d3g, ern =din, ey = dyy, ey = di, exn = dp, e3 = dz; — 3dxdy;.
—m+1+a)? . . .
Note that e; = -9 < (. Making the following transformation
Ys
X6 = —Xs, Y6 = — » T = V—eéxl,
V€
system (3.19) becomes
X6 = Y65 390
. _ .2 3 2 2 4 2.2 3 4 (3.20)
V6 = Xg + Q30X + Q12X6Yg + @21 XgY6 + QaoXe + A0XgYg + @31X5Y6 + 0(|X6, Vel ),
where
_ €30 _ _ e _ €40 _ _ €31
Q30 = ——, A2 = €12, A1 = Qg0 = —, Qp = —€22, A31 = —

€20 V—é€2 , €20 V=€ .
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From Lemma 3.2, system (3.20) is equivalent to

X7= ¥,
7 = x5+ Gxy; + o(lx7, v,
where
m (-1 —m+a)(m—1+a)(-m+ 1 +aP’m?
Clearly, — T — (m—11+a)(—m+l+a)3m2 < 0. Then, the sign of G is determined by By. In fact, from [28],

E. is a cusp of codimension 3 if By # 0 (see Figure 4(b)). E. is a cusp of codimension of at least 4 if
BO =0.

Remark 3.1. Because By is a complicated polynomial with respect to a and m, it is difficult to discuss
whether By is zero. Next, by numerical simulation, we find that the value of By can be zero or nonzero.
Let a = 0.01; then, % = 0.505, M, = 0.949947725 and

By = —12m° + 32.32m"* — 41.0241m* + 33.737434m* — 14.99700015m + 2.0195960202.

When a = 0.01, we have that 0.505 < m < 0.949947725. By calculation, we find that By < 0 if
0.505 < m < 0.849804962; By = 0 if m = 0.849804962 and B, > 0if0.849804962 < m < 0.949947725.
Therefore, By = 0 may occur and E. is a cusp of codimension of at least 4 under some suitable conditions.

051

045+

04

035

0.3F

> 0251

0.2

0151

0.1F

0.05F

I I I I I I I I I I I I I I I I I I
03 0.4 05 0.6 0.7 0.8 0.9 0 005 01 015 02 025 03 03 04 045 05
X X

(@ (b)

Figure 4. (a) E, is a cusp of codimension 2 witha =2, m=1,s=28 c=2 p=1.(b) E,
: . . . _ 3 . _ 21 . _ 31524548679 . _ 4537 _ 1369
is a cusp of codimension 3 witha = 3, m = 55, S = 575551600000 € = 3393050 P = 35088+
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4. Bifurcation

In this section, we will discuss some bifurcation phenomena that occur in system (1.5), such as
saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation.

4.1. Saddle-node bifurcation

From Theorem 2.1, when p < p*, p = p* and p* < p < p**, system (1.5) has 0, 1 and 2 positive
equilibria, respectively. Therefore, selecting the Allee threshold p = pgy = p. as the bifurcation
parameter, and by using Sotomayor’s theorem in [28], we verify that system (1.5) undergoes a saddle-
node bifurcation around the positive equilibrium E,.

Theorem 4.1. Assume that 0 < m < (1 — Va)? and ¢ > ¢}, or that (1 = \Ja)* <m < 1 - a. System (1.5)
undergoes a saddle-node bifurcation around E., if p = psn.

Proof. The Jacobian matrix of the positive equilibrium E, can be expressed as

m(—m+1+a) __m(=m+1+a)
. _ 2 2
J(E*’ PSN) - l s(a®>—m?=2a+1)* _ s(a®>—m*=2a+1)* ]
4m2(—m+1+a+2c)? 4m2(—=m+1+a+2c)?

Then, Det(J(E.; psy)) = 0 and Tr(J(E,; psn)) # 0. So, J(E,; psn) has a zero eigenvalue. Let V and
W be the eigenvectors corresponding to the zero eigenvalues of the matrix J(E,; psy) and J(E,; psy)’,
respectively. By computation, we obtain

s(@®—m?=2a+1)?
V = Vi — 1 W = Wi — | 4m2(—=m+1+a+2c)?
V2 1 ’ W2 __m(—m+1+a) :

2

Let
_(Fix,»)) _(xd =1 (x—a) —mxy
F(x,y)_(Fz(x,y))_ sy(wip_ﬁ) ]

Hence,

0
Fp(E*;pSN) = s(a®—m?—2a+1)? )’

T dmE(—m+1+a+20)?

8*F1v2 il PF 12
DXF(E.; psw)(V. V) = ( 9= V1 + 25 ViVt e Vz] _ (m -1- a)
*9 9 - 6 F2 - .

2 62F 2 62F 2 Y72
9x2 Vi+ 2 9x0y Vivy+ 32 Vi

(Ex;psn)
Thus, we have
s(@-m?=2a+1)*(-m+1+a)
WT . Fp(E,; = 0,
P(Ex: psw) 8m(—m + 1 +a+ 2c) ?
s@-m?*-2a+1)>m-1-a)

dm*(-m + 1 + a + 2¢)?

# 0.

W' - D*F(E.; ps))(V, V) =

According to Sotomayor’s theorem [26], system (1.5) undergoes a saddle-node bifurcation at E,. The
proof is completed.
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4.2. Hopf bifurcation

It follows from Theorem 3.6 that the stability of the positive equilibrium Ejs is closely related to
the value of Tr(J(Es)). When Tr(J(Es)) = 0, i.e., s = 5, J(E5) has a pair of pure imaginary roots,
which implies that system (1.5) may undergo Hopf bifurcation at E5. For simplicity, we apply the
following (see [29,30]):

X _ _ ) _a - 1
X=—, y==, t=xt, a=—, k=—,
% * 2 * %
Xy Y2 X X
__my, _ s __p - X
m= 5= , p=—, n=-—=, ¢c=—.
x* x*z y* y* y*
2 5 2 2 2

Dropping the bar, system (1.5) becomes

x = x(k—x)(x—a)—mxy,
sy =2 - ), (4.1)
y+p nx+c

y

where 0 < a < k and all parameters are positive. Apparently, E5(1, 1) is an equilibrium of system (4.1),
which yields that m = (k- 1)(1 —a) >0 (i.e.,0<a <1 <k)andn = p+ 1 —c > 0. In addition, there
exists another positive equilibrium E,4(X;, y;), with X, satisfying the following equation:

x>+ (mn —a—k)x + ka + mc — pm = 0. 4.2)
Substituting m = (k — 1)(1 —a) and n = p + 1 — c into (4.2), we obtain
2+ (k- D@ —a)p+1l—-c)—a-k)x+ka+(k—-1)(1-a)c—p)=0.
Notice that X; < 1. From Vieta’s theorem, we can get
X1-l=ka+(k-1)1A-a)c—p) <1
Introducing a time variation dt = (y + p)(nx + ¢)dt and rewriting 7 as ¢, system (4.1) becomes

(x(k —x)(x —a) — (k= D)1 —a)xy)y + p)((p+1-0c)x+0),
syz((p+ l-c)x+c—p-y).

X

, (4.3)
y

The Jacobian matrix of system (4.2) at E5(1,1) is

(2+a+k(p+1)? —(k—DA-a)p+1)

J(Es) = s(p+1-c) —s

Letting
s*=(=2+a+k)(p+1)>
the determinant and trace of J(Es) are, respectively,
Det(J(Es)) = (p + 1)*s(1 — (ka + (k — D(1 = a)(c — p)))

and
Tr(J(Es)) = s* — s.

Clearly, when Det(J(Es)) > 0, the stability of the equilibrium Ej is determined by the trace Tr(J(Es)).
Hence, we have the following theorem.
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Theorem 4.2. Suppose that
O<a<l<k, c<p+1 and 0<ka+ (k—-1)(1-a)c—-p)<I;

then, for system (4.3), Es is

(1) a stable hyperbolic focus or node if s* < 0 or s > s* > 0;
(2) an unstable hyperbolic focus or node if 0 < s < s*;
(3) a center or fine focus if s = s* > Q.

Now, if Theorem 4.2(3) holds, system (4.3) may undergo Hopf bifurcation at Es. First, we check the
transversality condition for the occurrence of Hopf bifurcation. By calculation, we get

d _
—Tr(J(Es)| =-1=#0.
ds s

Next, we calculate the first Lyapunov coefficient that can determine the stability of limit cycles
around Es. In biology, if two species coexist in the form of periodic oscillations, the system will have a
limit cycle. Making the transformations X = x—1and ¥ =y — 1, we have

X = aioX+anY +anX>+anXY +apY? +o(X, Y%,

Y b]oX + bo] Y + b20X2 + b]]XY + b02Y2 + 0(|X, Y|2), (44)

where

ap = (a+k=2)p+1?  ag=-k-DHA-a)p+1)7?

ay = —((a+k—=2)c—(p+DQ2a+2k-5)(p+1), ap = (k—D@a—-D(p+1),
ay = —((k—=D(a—-D(c-2p)+(-2a+ Dk+a)p+1), by = 0,

by = (a+k=2)(p+1-c)p+1), boy = —(a+k—-2)(p + 1),

by = 2a+k=2(p+1-0)(p+1)7> bor = —2(a+k—2)(p + 1)%

Letting D = a,0bo; — ao1b1o, obviously,
D=(p+ 1)4((1 +k—-2)(1 - (ka+ (k- 1)1 —-a)(c—-p))) >0.

Taking the following transformation

()= o)),
Y 0 1 Y,

system (4.4) can be expressed as follows

- ‘/l_)Yl + H (X1, 1)),
VDX, + Hy(X,, 1)),

Xi
Y,
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where

H(X,,Y)) = Czon +cenX Y + CozYl2 + C30Xf + C12X1Yl2 + C21X12Y1 + C03Yf + o(|X1, Y1|3),
Hy(Xy, Y1) = dooXi + diu Xy Yy + do Y7 + dsoX; + diX, Y] +don XiY) + dos Y5 + o(1 Xy, Vi),

and the coefficients of H(X}, Y;) and H,(X,, Y;) are given in Appendix C.
The first-order Lyapunov number in [26] at E5 is given by the following formula

1
L 6c30 + 2¢12 + 2dy) + 6do3 + ﬁ(zcu(czo + co2) — 2d;1(dao + din) — 4caodag + 4cordon)

~ 16
_ (p+1)Cs
- 8(-p-1+c¢)D’

where the coefficient Cy is given in Appendix D. Clearly, the sign of /; is determined by C¢. Hence, we
have the following theorem.

Theorem 4.3. Assume that the condition of Theorem 4.2(3) holds.

(1) System (4.3) undergoes a subcritical Hopf bifurcation and an unstable limit cycle around E5 when
Ce¢ < 0 (see Figure 5(a) and (b)).

(2) System (4.3) undergoes a supercritical Hopf bifurcation and a stable limit cycle around Es when
Ce > 0 (see Figure 5(c) and (d)).

(3) System (4.3) undergoes a degenerate Hopf bifurcation and at least two limit cycles around Es
when Cg = 0 (see Figure 5(e) and (f)).

Because the first-order Lyapunov number /; is too complicated, we give an example to show that
system (1.5) undergoes a degenerate Hopf bifurcation of codimension 3. Letting a = % and ¢ =1,
system (4.3) becomes

x O + p)(px + Dxtk = x)(x = 3) = (5 = $)xy),

¥ = sY0px+ 1) —y0 + D)), (4.5)

where k > % and p > % Through a series of transformations and methods described in [26], the first

and two Lyapunov numbers are obtained as follows:

C7+[(p + 1?2k = 3)(kp — 2k — p + 3)
“4p(kp—2k—p+3)22k-32(p + DY

1 =

L Cs \(p + D*2k = 3)(kp — 2k — p +3)
2T 24 p3(kp—2k— p+ 332k - 3)*(p + 1)F’

and the coefficients C; and Cg are given in Appendix E.
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05F

(a) (b)

051

0.5

©)] ()
. . _ 3 3 _ 19 . _ 3 - _ 7 . _ 28 1
Figure 5. (a) Selecting a = L k= T C=3%5P=15 5= 55 t 105> System (4.3) undergoes

a subcritical Hopf bifurcation and an unstable limit cycle around Es. (b) Amplified phase
portrait of (a). (c) Selectinga = 1,k = 2, c =2, p =1, 5= 25— ﬁ, system (4.3)
undergoes a supercritical Hopf bifurcation and a stable limit cycle around Es. (d) Amplified

. : _ 3 5 _ 19 . _ 1031438 _  [113429142649 . _ 6 , 1
phase portrait of (¢). (e) Selecting a = 35, k = 15, ¢ = 55165 o P = 15t 1o

s = % + ﬁ, system (4.3) underdoes a degenerate Hopf bifurcation and multiple two-limit

cycles (the inner one is stable and the outer one is unstable) around Es. (f) Amplified phase
portrait of (e).
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In order to investigate whether system (4.5) will undergo a degenerate Hopf bifurcation of
codimension 3, we need to discuss whether L; and L, will be O at the same time. In fact, we need to
analyze whether C; and Cg have a common zero root under certain parameter conditions. Using the
command “resultant” in Maple software, we obtain

Css = res(C7, Cs, p) = —128(10k> — 37k* + 51k — 26)(2k + 1)*(3k — 4)*(k — 1)’ (=3 + 2k)3Cy,

where the coefficient Cy is given in Appendix E. Let C73 = 0, thatis k = 1.7017166155. Applying
C7; = 0 and Cg = 0, we obtain that p = 2.6992221856. Hence, L; = L, = 0 for k = 1.7017166155 and
p = 2.6992221856. Selecting the parameters as

(ai, c1, ki, p1, s1) = (0.5, 1, 1.6, 2.5495696920, 1.2599444999),

(a2, €2, k2, P2, 52) = (0.5, 1, 1.7017166155, 2.6992221856, 2.7603395424),

we can get

Lil,c.k posy=tar.cr.kr.pros) = 05 Lol ok, ps)=tar.cr.ky.pr. sy = 0.5939540338,

Lila, .k p.sy=(az, cokaupans2) = Lola,cok. prs)=(@.co. k. prr sy = 0

and
o(Tr(J(Es), L))

= 1.6413885919 # 0,
d(s, p)

(a,c,k, p,s)=(ay,c1, k1, p1, s1)

8(Tr(J(Es). L, L))

= —0.4620942636 # 0.
d(s, p, k)

(a,c,k, p,)=(az,c2,k2, p2, 52)

Therefore, system (4.5) can undergo Hopf bifurcation of codimension 2 and 3. According to the above
analysis, we can summarize the following remark.

Remark 4.1. Assume that the condition of Theorem 4.2(3) holds.

(1) Es is a weak focus of order 1 if L, # 0.
(2) Es is a weak focus of order 2 if Ly = 0 and L, # 0.
(3) Es is a weak focus of order of at least 3 if L, = L, = 0.

4.3. Bogdanov-Takens bifurcation

From Thoerem 3.8, the unique positive equilibrium E, is a cusp of codimension 2 under some
suitable conditions. In this section, we choose some suitable parameters as bifurcation parameters to
show that system (1.5) undergoes a Bogdognov-Taken bifurcation of codimension 2.

Theorem 4.4. Assume that the conditions of Theorem 3.8 hold. Choosing p and c as two bifurcation
parameters, system (1.5) undergoes a Bogdanov-Takens bifurcation of codimension 2 around E..
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Proof. Letting p = p* and s = s, and substituting p = p* + 4; and ¢ = ¢ + A, into system (1.5), we get
the following system:

x = x(1-x)(x—-a)—mxy,
. Yy Yy (4.6)
y = 8Y " - )
y+pr+A4 x+c+ A
where (1, A;) is in a small neighborhood of (0, 0).
Making the transformations X = x — x, and ¥ =y — (x. + ¢ — p), system (4.6) becomes
X = X +agY + aX> +ay XY +o(X, YP), @.7)
Y = EOO + El()X + EmY + Bzon + EUXY + EQQYz + 0(|X, Y|2), '
where
. m@a+l-my _  m@a+l-m) _  a+l-3m
dip = 5 » dor = 5 ,  ay = ) s
. . LB ma+1—-—m+2c)a+1—-—m) (=2, + 1))
apn = -m, az=-—1, =— ,
! % O 2(cmta+2c+1+20) @+ 1 —m+2c+21)
B o= (@+1-m+2c)2a+1—-mmA,
N " a—T+ma—m—-D(=m+a+2c+1+21)2@+ 1 —m+2¢c+21,)
B ma+1-m)a+1-m+2c)? -  (a+1-m+2c)(a+1-mm
0T 2@+ l—m+2c+2) 0 0T @+ l-m+2c+20)
B dm*(a+1-m)a+1—m+2c)?
T @—1+ma—-m—1Da+1-m+2c+20)>
5o = m(a+1—m)a+1—m+2c)A,
2 T (@-mr=2a+ DA(—m+a+2c+1+20)(a+ 1 —m+2c+24,)
and
A; =161m + 8mAy(a +2¢ =2 —m+ 1) + 21,(3m* — dm(a + 2c + 1) + (a — 1)%)
+a-1+ma-1-m)(-m+1+a+20c),
Ay=(m+1+a+20)[(a —m*—2a+1)3m* —4m(a+2c+ 1)+ (a—1)%
+8mA;2m* — (a + 2¢ + Dm — (a — )] + 2,(m* = 2m(a + 2¢ + 1) + (a — 1)*)?
— 16mA (m* = 2m(a +2¢ + 1) + (@ — 1)*) = 28m* (A, +a+2c— L —m+ 1).
Taking the following transformations
X1 = X,
Y1 = le()X + ZZOIY + le()Xz + ZZHXY + 0(|X, Y|2),
system (4.7) becomes
Y = &+ CioXi +Co1Ys + E0Xt + EnXa Y + EnY + o(IX, Y1), '

where
Coo = aoiboo, Cio = ao1bio — boidio + arboy,  Co1 = by + aio,
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(b + 2ax)aor — aoan +2bo) . an + by
in = ~ s Cop=—F—
Aol

o1

» byo @2, + (=b11dro + @nbio — bo1dno)aor + bor @3
20 = = .
aol
Using the transformations X, = X, ¥, = Y (1 = ¢p»X;) and dt = (1 — €9 X, )d7, system (4.8) can be
written as

X, = Y, (4.9)
Yo = do+dioXa +doYs + doX; + dii XoYs + 0(1Xa, Vo), '
where
doy = G, dio=—2800C0 + ¢, doi = Cor,
dy = =Gyl + &1, dy = gy — 2802810 + &2
When 4, and A, are sufficiently small, we have
- +1 2
dy = _(a mym o) <0
Let
Y. -
X3=X5, Y= 2~ , T = A/—dyt;
V=dy
then, system (4.9) becomes (still denoting 7 as t)
X; =Y
> S § . ) (4.10)
Y3 = ey +e0X3+enY; — X5 +e1X3Y; +o(X3, Y39),
where
5_67005_671()@_6701@_6711
00 === 0=—=—> €0 = —, 1= —.
dao dao V—d> V—=dx
Besides, taking the transformations X; = X3 — "% and Y, = Y3, system (4.10) becomes
X, = Y
14 4 , 5 ) “4.11)
Yo = foo+ for¥a— X5+ fuXa¥s + o(1Xy, Yal?),
where
=2 s -
~ ~ 81061 + 28 .
foo:€+%, Jor Z%, Sfu = éi.

Note that ¢ # ¢;. When 4, and A, are sufficiently small,

(¢ = ¢3)As
(a+1-m+2c)a—m—-1)a—-1+m)

dy = - +01) # 0.
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Finally, letting

t
X5 = _f?lxlla YS = f?] Y4, T=——=,

11

and rewriting 7 as ¢, system (4.11) becomes

Xs = Ys,

. 4.12
Vs = 4 m¥s+ X2+ Xs¥s + o(Xs, Vs, (4.12)

where

w==firko,  m2=—fufo

We express u; and yu; in terms of A; and A,, as follows:

M1 = adp + axdy + o(|4y, Ao),
M2 = azdy + agdy + o(|Ay, o),
where
16(c — c§)4A§
@ (a@a+1-m+2c)*a+1-m*a-1+m*a-m-1)*m’
16(c — ¢;)*Al
M T Grl-mr20tat L —mia—1+mAa—m—1ym’
_ 4(C — C;)A5A1
@ (a@a+1-mPa-m-13a-1+m)ia+1—-m+2c)?
B 4(c = 3)As(Ay —2(a—m - D?(a—1+m)?a+1-m)?
* @+ 1l-mpa-m-D¥a-1+mpa+l—m+20?
and

Ay = em>(28m* + 48a) + m*(@® + 1)(40c¢ — 5Tm) — 4m*(a — 1)*’2a* + (¢ + 10)a + ¢ + 2)
+m’(a+ DQ23m* + 14a — 62mc) + (a — )*[Ba + 2¢ + 3)(a + 1) — (9a + 4¢ + m]
+m’[50(a® + 1) — 2m® — 34am].

Note that the transversality condition for the existence of Bogdanov-Takens bifurcation, i.e.,

128(c — ¢;)°A]

Oy, () _
A =12=0 ma-m-15@—-1+mya+1-m\@+1-m+2c)P

a(/ll ’ /12)

£0

holds. According to the result in [28], system (1.5) undergoes a Bogdanov-Takens bifurcation of
codimension 2 when (4, 4,) is in a small neighborhood of (0, 0). The proof is completed.

Theorem 4.5. Assume that the conditions of Theorem 3.8 hold. System (1.5) undergoes a Bogdanov-
Takens bifurcation of codimension 2 around E. when (A,, 1) is in a small neighborhood of (0,0).
Moreover, there are three bifurcation curves as depicted below.
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(I) When 0 < ¢ < ¢,
SN* = {(A1, )| A1 = A+ 0(1Aa]), 42 <O}, SN~ = {(A1, )| 41 = & + o)), 4 > O

da+1-m*a-m-1*a-1+m)m
H={(A;, )| 4 = A + ( il *2)2( )
(¢ — c5)*A;
196(a+ 1 -m)*(a—m—1)*(a—1+m)*m
25(c — ¢;)?A?

A+ o(1), A, < O);

HL = {(A1, )|, = A2 +

A4+ 0( o), A2 < O}
(II) When ¢ > c,

SN* = {(A1, )| A1 = A+ 0(1Aa]), 2 > 0}, SN~ = {(A1, )| 41 = L + 0(1da]), & < O

da+1-m*a-m-1*a-1+mim
H={(A;, )| = A + ( il *2)2( )
(¢ — c5)*A;
196(a+ 1 -m)*(a—m—1)*(a—1+m)*m
25(c—c;)2A§

A+ o(1a), A2 > 0);

HL = {(A1, )|, = A2 +

A5+ 0|, A5 > 0}

SN, H and HL respectively denote the saddle-node bifurcation curve, Hopf bifurcation curve and
homoclinic bifurcation curve of system (1.5) around E..

Proof. According to [28], the local bifurcation curve can be expressed as follows:
(1) The saddle-node bifurcation curve:

SN™ = {(A1,2) 1 (A1, ) = 0, ua(A4, A42) > 0}, SN™ ={(A1, ) : ui (A4, A2) = 0, ua(4;, ) < O}

(i1) The Hopf bifurcation curve:

H = {(41, 1) : (A1, ) < 0,121, 1) = N=pr (1, 1)}

(iii) The homoclinic bifurcation curve:

5
HL = {(/11,/12) D (A1, A2) <0, ua(Ay, Ap) = 7 \/—,Ul(/ll,/lz)}-

By the implicit function theorem, we can solve A, and A, from y; = p(Ay, A, a,m,c) and p, =
(A1, A2, a,m, c) in (4.12) as follows:

Ay = By + Bopty + o(luy, o),

(4.13)
Ay = Bapy + Baptz + oy, pol),
where

(@-m*=2a+D*a+1-m+20)*a+1-m*m
16(c — c;)“A‘S‘ ’
_(a-m-Da-1+m)a+1-ma+1-m+2c)
P2 8(c — ¢5)As ’

B = B3-
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By = ma—m—12*a-1+m*a+1-m?a+1-m+2)*A,
P 32(c - c})*A ’
(a-m-Da-1+m)a+1-m)a+1—-m+2c)

8(c — ¢3)As

Bs =

with A being defined in Theorem 4.4.

First, we prove the case (I). When 0 < ¢ < ¢, we get that 84 < 0. The saddle-node bifurcation curve
is given by I'} £ u;(4;, 43) = 0. From I'} = 0, we can obtain a function 4; = A, + 0(|4,|) which satisfies
the conditions that 4;(0) = 0 and I';(1;(4,), 4,) = 0, as follows:

ory
o4,

16(c — ¢;)*As 0
o @+l-m+20*a+1-m*a-1+m*a-m—-1¢m "~

On the curve I'} = 0, it folllows from (4.13) that A, = B4u; + o(Juz]). Then, 4, > 0 (< 0)if up, <0 (> 0).
Hence, we have

SN* = {(A1, )| A = A+ 0(]), 2 <0}, SN~ = {(A1, )| A1 = & + 0(|A2]), A2 > 0.
The Hopf bifurcation curve is given by I'; = (41, 43) + M%(/h, A>) = 0. Notice that

or,
o4,

16(c — c;)“A‘S1 £0
o (@+l-m+20*a+1-m*a-1+m*a-m—-1¥¢m "~

By the implicit function theorem, there exists a unique function

4a+1-mi@a-m-1D*a-1+m’m

Ay =+
e (c — c3)?A2

4+ 001,

which satisfies the conditions that 4,(0) = 0 and I'5(1;(4,), 42) = 0. On the curve I'; = 0, we get that
Ay = Bapa + o(|uz]) < 0 if wp > 0. Therefore, the Hopf bifurcation curve can be expressed as

4a+1-m?@a-m-1)*a—-1+m)’m

H={(1;, )| =, +
{41, )4 2 (= cypAl

A+ o0(|2), A3 < 0).

The homoclinic bifurcation curve is given by ['; = %,ul(/ll, ) + u%(/ll, A>) = 0. Note that

ar; _ 400(c — c;)4A‘5‘ 40
O lico 49 a+1-m+20)a+1-m*a—-1+m*a—-m—-1)Pm '

From I'; = 0 and the implicit function theorem, there exists a unique function

196(a+ 1 -m)(a-m—-1)*a—-1+mPm
25(c — ¢;)?A2

A=A+ A+ 0|4,

satisfying that A4,(0) = 0 and I'3(4;(1,), 42) = 0. On the curve I'; = 0, we obtain that A, = B4u +o(Jus|) <
0 if u, > 0. Hence, the homoclinic bifurcation curve can be written as

196(a + 1 —m)*(a—m—1)*a—-1+m)’m
25(c — ¢;)?A2

HL = {(A, )| 4, = A, + /15 +0(|2*), A, < O}
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The proof of the case (II) is similar to that of the case (I), so we omit it here. The proof is completed.
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Figure 6. Phase portraits of system (4.6) witha = &, m =2, ¢ = 3, p = 3000, s = 22250,
(a) A cusp of codimension 2 when (4;, 4;) = (0, 0). (b) Case of no positive equilibria
when (17, 4;) = (=0.05, 0.06). (c) Case of a saddle and an unstable focus when (1;, 4,) =
(0.061, 0.06). (d) Case of an unstable limit cycle when (4;, 4,) = (0.062, 0.06). (e) Case of
an unstable homoclinic loop when (4, 4;) = (0.0641, 0.06). (f) Case of a saddle and a stable

focus when (4;, 4,) = (0.067, 0.06).

Assume that a = %, m= % and ¢ = %; we can get p* = % and s, = %. When (1;, 4,) = (0, 0),
E. is a cusp of codimension 2; see Figure 6(a). When (4;, 4,) = (-0.05, 0.06), system (1.5) has no

positive equilibrium and all trajectories converge to E3; see Figure 6(b). When (1, 4;) = (0.061, 0.06),
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system (1.5) has two positive equilibria, where one is a hyperbolic saddle and the other is a hyperbolic
unstable focus; see Figure 6(c). When (4, 4;) = (0.062, 0.06), system (1.5) undergoes a subcritical
Hopf bifurcation and an unstable limit cycle appears around Es; see Figure 6(d). When (4, 4;) =
(0.0641, 0.06), the unstable limit cycle expands to the unstable homoclinic loop; see Figure 6(e). When
(41, A2) = (0.067, 0.06), system (1.5) has two positive equilibria, where one is a hyperbolic saddle and
the other is a hyperbolic stable focus; see Figure 6(f).

5. Numerical simulations

We discuss the influence of the Allee effect in the predator population on the dynamical behavior
of system (1.5). Letting a = 0.45, m = 0.14, ¢ = 3 and s = 1, Figure 7 shows the bifurcation diagram
in the (p,y)-plane of system (1.5). We find that there exist four Allee thresholds: p = p* = 3.14982,
p =pg =~ 317156, p = p* =345and p = 1 + ¢ £ p. = 4. According to Theorem 2.1 and the
bifurcation diagram, if the Allee effect parameter satisfies that p < p* or p > p., system (1.5) has no
positive equilibrium. If the Allee effect parameter satisfies that p = p*, system (1.5) has a unique positive
equilibrium E,. If p* < p < p**, system (1.5) has two positive equilibria E, and E5, where E, is always
a saddle and E5 is unstable if p* < p < py, and stable if py < p < p**. If the Allee effect parameter
satisfies that p™ < p < p,, system (1.5) has a unique positive equilibria Es, which is stable. Also, we
give the two-parameter bifurcation diagram of system (1.5) in the (a, p)-plane, as shown in Figure 8.

We selected p as the control parameter and plotted the phase portraits of system (1.5) at different values
(see Figure 9). If p = 0, that is, the predator population exists without the Allee effect, system (1.5) has
no positive equilibrium and the boundary equilibrium FEj is globally asymptotically stable, which means
that the predator can survive and the prey will tend to extinction (see Figure 9(a)). When p = 3.1 (p < p*),
system (1.5) has no positive equilibrium and the origin is globally asymptotically stable. That is, the predator
will become extinct with the influence of the Allee effect on the predator population, which means that
both predator and prey will tend to extinction (see Figure 9(b)). When p = 3.165 (p* < p < ppg), system
(1.5) has two positive equilibria, where E; is a saddle and Es is an unstable focus; see Figure 9(c). In this
case, the predator and prey will still become extinct. When p = 3.1725(py < p < p™), E4 is still a
saddle but E5 becomes a stable focus; also, an unstable limit cycle appears around Es; see Figure 6(d).
Hence, the unstable limit cycle acts as a separatrix between the attraction of the origin and Es. When
p =3.17642 (py < p < p**), there exists an unstable homoclinic loop in system (1.5); see Figure 9(e).
When p = 3.1767 (py < p < p**), the homoclinic loop disappears and system (1.5) has a hyperbolic
saddle E4 and a hyperbolic stable focus Es; see Figure 9(f). That is, the two stable manifolds of saddle
E, act as a separatrix between the attraction of the origin and E5s. When p = 3.45 (p*™ < p < p.), system
(1.5) has a unique positive stable equilibrium Es and a degenerate saddle E,; see Figure 9(g). Obviously,
the stable manifold of degenerate saddle E is taken as a separatrix between the attraction of the origin
and E5. When p = 4 (p > p.), system (1.5) has no positive equilibrium and a repelling saddle node E»;
see Figure 9(h). From Figure 9(h), the stable manifold of E, acts as a separatrix between the attraction of
the origin and E;.

As shown in Figure 9(a), if the predator has no Allee effect, the prey will tend to extinction, but
the predator can survive because they have alternative food. When the Allee constant p increases, the
alternative food source does not guarantee the survival of the predator. Then, both the predator and
prey will become extinct; see Figure 9(b)—(c). However, when the Allee effect on the predator is strong
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(i.e., the Allee effect constant p is large), there is a bistable phenomenon (see Figure 9(d)—(g)). The
unstable limit cycle or the stable manifold of E, acts as a separatrix between the origin and Es. That is,
the prey and predator may be able to coexist. Finally, under the condition that the Allee effect on the
predator is strong enough, Figure 9(h) shows that the predator will become extinct, whereas the prey
may become extinct or survive, depending on the initial value. On the whole, when the Allee effect
in the predator population is strong enough, the predator will become extinct, whereas the prey will
survive or become extinct, depending on the initial value. Hence, in contrast to the dynamic behavior of
the predator without the Allee effect, a strong Allee effect can lead to the extinction of the predator and
the increase of the survival rate of the prey.

0.9r
08r

0.7r

L LPG,

06F 055

H

=05 = 05p SN

041 045

03+

04t
0.2t
oal 0351
0 ‘ ‘ ‘ ‘ ‘ ‘ 03 ‘ ‘ ‘ ‘ ‘ ‘
3 3.1 32 33 34 35 36 314 315 3.16 317 318 319 3.2
p p
(a) (b)

Figure 7. (a) Bifurcation diagram in (p, y)-plane for system (1.5) with a = 0.45, m = 0.14,
c=3,s=1.8N, H and LPC represent the saddle node, Hopf point and limit point of cycles,
respectively. (b) Amplified phase portrait of (a).
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Figure 8. Bifurcation diagram in (a, p)-plane for system (1.5) withm = 2, ¢ = 1, s = 2225,

GH and BT represent degenerate Hopf bifurcation and Bogdanov-Takens bifurcation, respectively.
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Figure 9. Phase portraits of system (1.5) witha = 0.45,m =0.14,c =3 and s = 1.

Mathematical Biosciences and Engineering

() p =3.1767

(h)y p=4

Volume 21, Issue 1, 792-831.



826

6. Conclusions

In this manuscript, a modified Leslie-Gower predator-prey model with Allee effect on both prey and
predator is proposed. We showed that the boundary equilibrium E3(0, ¢ — p) is a stable node, while Ey, E;
and E; are unstable if ¢ > p. Hence, E; is globally asymptotically stable if system (1.5) has no positive
equilibrium. That is, a weak Allee effect on the predator is conducive to the survival of the predator.
However, if p > 1 + ¢, that is, the Allee effect in the predator population is strong, system (1.5) has no
positive equilibrium by Theorem 2.1. Then, the predator and prey do not coexist, which means that a
strong Allee effect on the predator is detrimental to the survival of both predator and prey. Moreover,
the other three boundary equilibria Ey, E; and E, are non-hyperbolic (see Figure 2). We proved that the
unique positive equilibrium E, is a saddle node or a cusp of codimension 3 (see Figures 3 and 4). Further,
because the expression of By is complicated, we showed that E. is a cusp of codimension of at least 4 by
concrete example (see Remark 3.1).

We showed that system (1.5) undergoes saddle-node bifurcation, Hopf bifurcation and Bogdanov-
Takens bifurcation. In more detail, system (1.5) can undergo a degenerate Hopf bifurcation for some
suitable parameter values and result in two limit cycles (the inner one is stable and the outer one is
unstable; see Figure 5). Biologically, this indicates the bistable phenomenon, where the predator and
prey will oscillate periodically or become extinct, depending on the initial values. That is, the predator
will coexist and oscillate periodically if the initial values lie within the unstable limit cycle. However,
the predator and prey will tend to extinction if the initial values lie outside of the unstable limit cycle.

In addition, we give an example to illustrate that system (1.5) has a weak focus of order of at least 3 and
can undergo a degenerate Hopf bifurcation of codimension 3. Moreover, we proved that, within system (1.5),
there is a Bogdanov-Takens bifurcation of codimension 2; we also presented its bifurcation curves.

In the absence of an Allee effect on the predator, that is, p = 0, system (1.5) reduces to system (1.3).
Arancibia-Ibarra [15] proved the existence of separatrices in the phase plane separating basins of
attraction. They showed that system (1.3) has at most two positive equilibria, where the smaller positive
equilibrium is always a saddle, whereas the larger positive equilibrium can be either an attractor or a
repeller surrounded by a limit cycle. They showed that system (1.3) undergoes Hopf bifurcation and
Bogdanov-Takens bifurcation without rigorous mathematical proof.

Incorporating the Allee effect on the predator into system (1.3), we investigated the stability and
bifurcation of system (1.5) by using the Allee effect as a threshold condition. When the Allee effect on
the predator is weak (i.e., p < c), Ej3 is globally asymptotically stable if system (1.5) has no positive
equilibrium (see Figure 9(a)). As the Allee effect constant on predator increases, E3 disappears, which
means that the origin is globally asymptotically stable (see Figure 9(b)—(c)). However, in [15], the
predator always can always survive due to alternative food. Hence, we showed that, even if the predator
has the alternative food source, as long as the Allee effect on the predator is strong enough, both prey
and predator will become extinct, which is different from [15]. When the Allee effect on the predator is
sufficiently strong, the predator will tend to extinction and the extinction and existence of the prey depend
on the initial value. Therefore, a strong Allee effect on the predator is beneficial to the survival of the
prey, but detrimental to the survival of the predator. Unlike [15], we give rigorous mathematical proof to
prove that E, is a cusp of codimension 3, and that system (1.5) undergoes degenerate Hopf bifurcation
and Bogdanov-Takens bifurcation of codimension 2. We also showed that system (1.5) has a cusp of
codimension of at least 4 and can undergo a degenerate Hopf bifurcation of codimension 3 by concrete
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examples. Therefore, compared with system (1.3), the Allee effect on the predator greatly affects the
dynamical behavior of the system, resulting in more complex dynamical behavior. This enriches the
dynamics of the modified Leslie-Gower predator-prey model with the double Allee effect.
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