In order to improve the segmentation effect of brain tumor images and address the issue of feature information loss during convolutional neural network (CNN) training, we present an MRI brain tumor segmentation method that leverages an enhanced U-Net architecture. First, the ResNet50 network was used as the backbone network of the improved U-Net, the deeper CNN can improve the feature extraction effect. Next, the Residual Module was enhanced by incorporating the Convolutional Block Attention Module (CBAM). To increase characterization capabilities, focus on important features and suppress unnecessary features. Finally, the cross-entropy loss function and the Dice similarity coefficient are mixed to compose the loss function of the network. To solve the class unbalance problem of the data and enhance the tumor area segmentation outcome. The method's segmentation performance was evaluated using the test set. In this test set, the enhanced U-Net achieved an average Intersection over Union (IoU) of 86.64% and a Dice evaluation score of 87.47%. These values were 3.13% and 2.06% higher, respectively, compared to the original U-Net and R-Unet models. Consequently, the proposed enhanced U-Net in this study significantly improves the brain tumor segmentation efficacy, offering valuable technical support for MRI diagnosis and treatment.
Citation: Jiajun Zhu, Rui Zhang, Haifei Zhang. An MRI brain tumor segmentation method based on improved U-Net[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 778-791. doi: 10.3934/mbe.2024033
[1] | Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172 |
[2] | Hamid Boulares, Manar A. Alqudah, Thabet Abdeljawad . Existence of solutions for a semipositone fractional boundary value pantograph problem. AIMS Mathematics, 2022, 7(10): 19510-19519. doi: 10.3934/math.20221070 |
[3] | Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour . On the boundedness of the solution set for the ψ-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis. AIMS Mathematics, 2023, 8(9): 20125-20142. doi: 10.3934/math.20231025 |
[4] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[5] | Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the (k,ψ)-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622 |
[6] | Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151 |
[7] | Abdelkader Moumen, Ramsha Shafqat, Zakia Hammouch, Azmat Ullah Khan Niazi, Mdi Begum Jeelani . Stability results for fractional integral pantograph differential equations involving two Caputo operators. AIMS Mathematics, 2023, 8(3): 6009-6025. doi: 10.3934/math.2023303 |
[8] | Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for Ψ-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010 |
[9] | Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262 |
[10] | Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477 |
In order to improve the segmentation effect of brain tumor images and address the issue of feature information loss during convolutional neural network (CNN) training, we present an MRI brain tumor segmentation method that leverages an enhanced U-Net architecture. First, the ResNet50 network was used as the backbone network of the improved U-Net, the deeper CNN can improve the feature extraction effect. Next, the Residual Module was enhanced by incorporating the Convolutional Block Attention Module (CBAM). To increase characterization capabilities, focus on important features and suppress unnecessary features. Finally, the cross-entropy loss function and the Dice similarity coefficient are mixed to compose the loss function of the network. To solve the class unbalance problem of the data and enhance the tumor area segmentation outcome. The method's segmentation performance was evaluated using the test set. In this test set, the enhanced U-Net achieved an average Intersection over Union (IoU) of 86.64% and a Dice evaluation score of 87.47%. These values were 3.13% and 2.06% higher, respectively, compared to the original U-Net and R-Unet models. Consequently, the proposed enhanced U-Net in this study significantly improves the brain tumor segmentation efficacy, offering valuable technical support for MRI diagnosis and treatment.
Recently, fractional calculus methods became of great interest, because it is a powerful tool for calculating the derivation of multiples systems. These methods study real world phenomena in many areas of natural sciences including biomedical, radiography, biology, chemistry, and physics [1,2,3,4,5,6,7]. Abundant publications focus on the Caputo fractional derivative (CFD) and the Caputo-Hadamard derivative. Additionally, other generalization of the previous derivatives, such as Ψ-Caputo, study the existence of solutions to some FDEs (see [8,9,10,11,12,13,14]).
In general, an m-point fractional boundary problem involves a fractional differential equation with fractional boundary conditions that are specified at m different points on the boundary of a domain. The fractional derivative is defined using the Riemann-Liouville fractional derivative or the Caputo fractional derivative. Solving these types of problems can be challenging due to the non-local nature of fractional derivatives. However, there are various numerical and analytical methods available for solving such problems, including the spectral method, the finite difference method, the finite element method, and the homotopy analysis method. The applications of m-point fractional boundary problems can be found in various fields, including physics, engineering, finance, and biology. These problems are useful in modeling and analyzing phenomena that exhibit non-local behavior or involve memory effects (see [15,16,17,18]).
Pantograph equations are a set of differential equations that describe the motion of a pantograph, which is a mechanism used for copying and scaling drawings or diagrams. The equations are based on the assumption that the pantograph arms are rigid and do not deform during operation, we can simply say that see [19]. One important application of the pantograph equations is in the field of drafting and technical drawing. Before the advent of computer-aided design (CAD) software, pantographs were commonly used to produce scaled copies of drawings and diagrams. By adjusting the lengths of the arms and the position of the stylus, a pantograph can produce copies that are larger or smaller than the original [20], electrodynamics [21] and electrical pantograph of locomotive [22].
Many authors studied a huge number of positive solutions for nonlinear fractional BVP using fixed point theorems (FPTs) such as SFPT, Leggett-Williams and Guo-Krasnosel'skii (see [23,24]). Some studies addressed the sign-changing of solution of BVPs [25,26,27,28,29].
In this work, we use Schauder's fixed point theorem (SFPT) to solve the semipostone multipoint Ψ-Caputo fractional pantograph problem
Dν;ψrϰ(ς)+F(ς,ϰ(ς),ϰ(r+λς))=0, ς in (r,ℑ) | (1.1) |
ϰ(r)=ϑ1, ϰ(ℑ)=m−2∑i=1ζiϰ(ηi)+ϑ2, ϑi∈R, i∈{1,2}, | (1.2) |
where λ∈(0,ℑ−rℑ),Dν;ψr is Ψ-Caputo fractional derivative (Ψ-CFD) of order ν, 1<ν≤2, ζi∈R+(1≤i≤m−2) such that 0<Σm−2i=1ζi<1, ηi∈(r,ℑ), and F:[r,ℑ]×R×R→R.
The most important aspect of this research is to prove the existence of a positive solution of the above m-point FBVP. Note that in [30], the author considered a two-point BVP using Liouville-Caputo derivative.
The article is organized as follows. In the next section, we provide some basic definitions and arguments pertinent to fractional calculus (FC). Section 3 is devoted to proving the the main result and an illustrative example is given in Section 4.
In the sequel, Ψ denotes an increasing map Ψ:[r1,r2]→R via Ψ′(ς)≠0, ∀ ς, and [α] indicates the integer part of the real number α.
Definition 2.1. [4,5] Suppose the continuous function ϰ:(0,∞)→R. We define (RLFD) the Riemann-Liouville fractional derivative of order α>0,n=[α]+1 by
RLDα0+ϰ(ς)=1Γ(n−α)(ddς)n∫ς0(ς−τ)n−α−1ϰ(τ)dτ, |
where n−1<α<n.
Definition 2.2. [4,5] The Ψ-Riemann-Liouville fractional integral (Ψ-RLFI) of order α>0 of a continuous function ϰ:[r,ℑ]→R is defined by
Iα;Ψrϰ(ς)=∫ςr(Ψ(ς)−Ψ(τ))α−1Γ(α)Ψ′(τ)ϰ(τ)dτ. |
Definition 2.3. [4,5] The CFD of order α>0 of a function ϰ:[0,+∞)→R is defined by
Dαϰ(ς)=1Γ(n−α)∫ς0(ς−τ)n−α−1ϰ(n)(τ)dτ, α∈(n−1,n),n∈N. |
Definition 2.4. [4,5] We define the Ψ-CFD of order α>0 of a continuous function ϰ:[r,ℑ]→R by
Dα;Ψrϰ(ς)=∫ςr(Ψ(ς)−Ψ(τ))n−α−1Γ(n−α)Ψ′(τ)∂nΨϰ(τ)dτ, ς>r, α∈(n−1,n), |
where ∂nΨ=(1Ψ′(ς)ddς)n,n∈N.
Lemma 2.1. [4,5] Suppose q,ℓ>0, and ϰinC([r,ℑ],R). Then ∀ς∈[r,ℑ] and by assuming Fr(ς)=Ψ(ς)−Ψ(r), we have
1) Iq;ΨrIℓ;Ψrϰ(ς)=Iq+ℓ;Ψrϰ(ς),
2) Dq;ΨrIq;Ψrϰ(ς)=ϰ(ς),
3) Iq;Ψr(Fr(ς))ℓ−1=Γ(ℓ)Γ(ℓ+q)(Fr(ς))ℓ+q−1,
4) Dq;Ψr(Fr(ς))ℓ−1=Γ(ℓ)Γ(ℓ−q)(Fr(ς))ℓ−q−1,
5) Dq;Ψr(Fr(ς))k=0, k=0,…,n−1, n∈N, qin(n−1,n].
Lemma 2.2. [4,5] Let n−1<α1≤n,α2>0, r>0, ϰ∈L(r,ℑ), Dα1;Ψrϰ∈L(r,ℑ). Then the differential equation
Dα1;Ψrϰ=0 |
has the unique solution
ϰ(ς)=W0+W1(Ψ(ς)−Ψ(r))+W2(Ψ(ς)−Ψ(r))2+⋯+Wn−1(Ψ(ς)−Ψ(r))n−1, |
and
Iα1;ΨrDα1;Ψrϰ(ς)=ϰ(ς)+W0+W1(Ψ(ς)−Ψ(r))+W2(Ψ(ς)−Ψ(r))2+⋯+Wn−1(Ψ(ς)−Ψ(r))n−1, |
with Wℓ∈R, ℓ∈{0,1,…,n−1}.
Furthermore,
Dα1;ΨrIα1;Ψrϰ(ς)=ϰ(ς), |
and
Iα1;ΨrIα2;Ψrϰ(ς)=Iα2;ΨrIα1;Ψrϰ(ς)=Iα1+α2;Ψrϰ(ς). |
Here we will deal with the FDE solution of (1.1) and (1.2), by considering the solution of
−Dν;ψrϰ(ς)=h(ς), | (2.1) |
bounded by the condition (1.2). We set
Δ:=Ψ(ℑ)−Ψ(r)−Σm−2i=1ζi(Ψ(ηi)−Ψ(r)). |
Lemma 2.3. Let ν∈(1,2] and ς∈[r,ℑ]. Then, the FBVP (2.1) and (1.2) have a solution ϰ of the form
ϰ(ς)=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+∫ℑrϖ(ς,τ)h(τ)Ψ′(τ)dτ, |
where
ϖ(ς,τ)=1Γ(ν){[(Ψ(ℑ)−Ψ(r))ν−1−Σm−2j=iζj(Ψ(ηj)−Ψ(τ))ν−1]Ψ(ς)−Ψ(r)Δ−(Ψ(ς)−Ψ(τ))ν−1,τ≤ς,ηi−1<τ≤ηi,[(Ψ(ℑ)−Ψ(τ))ν−1−Σm−2j=iζj(Ψ(ηj)−Ψ(τ))ν−1]Ψ(ℑ)−Ψ(r)Δ,ς≤τ,ηi−1<τ≤ηi, | (2.2) |
i=1,2,...,m−2.
Proof. According to the Lemma 2.2 the solution of Dν;ψrϰ(ς)=−h(ς) is given by
ϰ(ς)=−1Γ(ν)∫ςr(Ψ(ς)−Ψ(τ))ν−1h(τ)Ψ′(τ)dτ+c0+c1(Ψ(ς)−Ψ(r)), | (2.3) |
where c0,c1∈R. Since ϰ(r)=ϑ1 and ϰ(ℑ)=∑m−2i=1ζiϰ(ηi)+ϑ2, we get c0=ϑ1 and
c1=1Δ(−1Γ(ν)m−2∑i=1ζi∫ηjr(Ψ(ηi)−Ψ(τ))ν−1h(τ)Ψ′(τ)dτ+1Γ(ν)∫ℑr(Ψ(ℑ)−Ψ(τ))ν−1h(τ)Ψ′(τ)dτ+ϑ1[m−2∑i=1ζi−1]+ϑ2). |
By substituting c0,c1 into Eq (2.3) we find,
ϰ(ς)=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+(Ψ(ς)−Ψ(r))Δϑ2−1Γ(ν)(∫ςr(Ψ(ς)−Ψ(τ))ν−1h(τ)Ψ′(τ)dτ+(Ψ(ς)−Ψ(r))Δm−2∑i=1ζi∫ηjr(Ψ(ηi)−Ψ(τ))ν−1h(τ)Ψ′(τ)dτ−Ψ(ς)−Ψ(r)Δ∫ℑr(Ψ(ℑ)−Ψ(τ))ν−1h(τ)Ψ′(τ)dτ)=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+(Ψ(ς)−Ψ(r))Δϑ2+∫ℑrϖ(ς,τ)h(τ)Ψ′(τ)dτ, |
where ϖ(ς,τ) is given by (2.2). Hence the required result.
Lemma 2.4. If 0<∑m−2i=1ζi<1, then
i) Δ>0,
ii) (Ψ(ℑ)−Ψ(τ))ν−1−∑m−2j=iζj(Ψ(ηj)−Ψ(τ))ν−1>0.
Proof. i) Since ηi<ℑ, we have
ζi(Ψ(ηi)−Ψ(r))<ζi(Ψ(ℑ)−Ψ(r)), |
−m−2∑i=1ζi(Ψ(ηi)−Ψ(r))>−m−2∑i=1ζi(Ψ(ℑ)−Ψ(r)), |
Ψ(ℑ)−Ψ(r)−m−2∑i=1ζi(Ψ(ηi)−Ψ(r))>Ψ(ℑ)−Ψ(r)−m−2∑i=1ζi(Ψ(ℑ)−Ψ(r))=(Ψ(ℑ)−Ψ(r))[1−m−2∑i=1ζi]. |
If 1−Σm−2i=1ζi>0, then (Ψ(ℑ)−Ψ(r))−Σm−2i=1ζi(Ψ(ηi)−Ψ(r))>0. So we have Δ>0.
ii) Since 0<ν−1≤1, we have (Ψ(ηi)−Ψ(τ))ν−1<(Ψ(ℑ)−Ψ(τ))ν−1. Then we obtain
m−2∑j=iζj(Ψ(ηj)−Ψ(τ))ν−1<m−2∑j=iζj(Ψ(ℑ)−Ψ(τ))ν−1≤(Ψ(ℑ)−Ψ(τ))ν−1m−2∑i=1ζi<(Ψ(ℑ)−Ψ(τ))ν−1, |
and so
(Ψ(ℑ)−Ψ(τ))ν−1−m−2∑j=iζj(Ψ(ηj)−Ψ(τ))ν−1>0. |
Remark 2.1. Note that ∫ℑrϖ(ς,τ)Ψ′(τ)dτ is bounded ∀ς∈[r,ℑ]. Indeed
∫ℑr|ϖ(ς,τ)|Ψ′(τ)dτ≤1Γ(ν)∫ςr(Ψ(ς)−Ψ(τ))ν−1Ψ′(τ)dτ+Ψ(ς)−Ψ(r)Γ(ν)Δm−2∑i=1ζi∫ηir(Ψ(ηj)−Ψ(τ))ν−1Ψ′(τ)dτ+Ψ(ς)−Ψ(r)ΔΓ(ν)∫ℑr(Ψ(ℑ)−Ψ(τ))ν−1Ψ′(τ)dτ=(Ψ(ς)−Ψ(r))νΓ(ν+1)+Ψ(ς)−Ψ(r)ΔΓ(ν+1)m−2∑i=1ζi(Ψ(ηi)−Ψ(r))ν+Ψ(ς)−Ψ(r)ΔΓ(ν+1)(Ψ(ℑ)−Ψ(r))ν≤(Ψ(ℑ)−Ψ(r))νΓ(ν+1)+Ψ(ℑ)−Ψ(r)ΔΓ(ν+1)m−2∑i=1ζi(Ψ(ηi)−Ψ(r))ν+(Ψ(ℑ)−Ψ(r))ν+1ΔΓ(ν+1)=M. | (2.4) |
Remark 2.2. Suppose Υ(ς)∈L1[r,ℑ], and w(ς) verify
{Dν;ψrw(ς)+Υ(ς)=0,w(r)=0, w(ℑ)=Σm−2i=1ζiw(ηi), | (2.5) |
then w(ς)=∫ℑrϖ(ς,τ)Υ(τ)Ψ′(τ)dτ.
Next we recall the Schauder fixed point theorem.
Theorem 2.1. [23] [SFPT] Consider the Banach space Ω. Assume ℵ bounded, convex, closed subset in Ω. If ϝ:ℵ→ℵ is compact, then it has a fixed point in ℵ.
We start this section by listing two conditions which will be used in the sequel.
● (Σ1) There exists a nonnegative function Υ∈L1[r,ℑ] such that ∫ℑrΥ(ς)dς>0 and F(ς,ϰ,v)≥−Υ(ς) for all (ς,ϰ,v)∈[r,ℑ]×R×R.
● (Σ2) G(ς,ϰ,v)≠0, for (ς,ϰ,v)∈[r,ℑ]×R×R.
Let ℵ=C([r,ℑ],R) the Banach space of CFs (continuous functions) with the following norm
‖ϰ‖=sup{|ϰ(ς)|:ς∈[r,ℑ]}. |
First of all, it seems that the FDE below is valid
Dν;ψrϰ(ς)+G(ς,ϰ∗(ς),ϰ∗(r+λς))=0, ς∈[r,ℑ]. | (3.1) |
Here the existence of solution satisfying the condition (1.2), such that G:[r,ℑ]×R×R→R
G(ς,z1,z2)={F(ς,z1,z2)+Υ(ς), z1,z2≥0,F(ς,0,0)+Υ(ς), z1≤0 or z2≤0, | (3.2) |
and ϰ∗(ς)=max{(ϰ−w)(ς),0}, hence the problem (2.5) has w as unique solution. The mapping Q:ℵ→ℵ accompanied with the (3.1) and (1.2) defined as
(Qϰ)(ς)=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+∫ℑrϖ(ς,τ)G(ς,ϰ∗(τ),ϰ∗(r+λτ))Ψ′(τ)dτ, | (3.3) |
where the relation (2.2) define ϖ(ς,τ). The existence of solution of the problems (3.1) and (1.2) give the existence of a fixed point for Q.
Theorem 3.1. Suppose the conditions (Σ1) and (Σ2) hold. If there exists ρ>0 such that
[1+Σm−2i=1ζi−1Δ(Ψ(ℑ)−Ψ(r))]ϑ1+Ψ(ℑ)−Ψ(r)Δϑ2+LM≤ρ, |
where L≥max{|G(ς,ϰ,v)|:ς∈[r,ℑ], |ϰ|,|v|≤ρ} and M is defined in (2.4), then, the problems (3.1) and (3.2) have a solution ϰ(ς).
Proof. Since P:={ϰ∈ℵ:‖ϰ‖≤ρ} is a convex, closed and bounded subset of B described in the Eq (3.3), the SFPT is applicable to P. Define Q:P→ℵ by (3.3). Clearly Q is continuous mapping. We claim that range of Q is subset of P. Suppose ϰ∈P and let ϰ∗(ς)≤ϰ(ς)≤ρ, ∀ς∈[r,ℑ]. So
|Qϰ(ς)|=|[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+∫ℑrϖ(ς,τ)G(τ,ϰ∗(τ),ϰ∗(r+λτ))Ψ′(τ)dτ|≤[1+Σm−2i=1ζi−1Δ(Ψ(ℑ)−Ψ(r))]ϑ1+Ψ(ℑ)−Ψ(r)Δϑ2+LM≤ρ, |
for all ς∈[r,ℑ]. This indicates that ‖Qϰ‖≤ρ, which proves our claim. Thus, by using the Arzela-Ascoli theorem, Q:ℵ→ℵ is compact. As a result of SFPT, Q has a fixed point ϰ in P. Hence, the problems (3.1) and (1.2) has ϰ as solution.
Lemma 3.1. ϰ∗(ς) is a solution of the FBVP (1.1), (1.2) and ϰ(ς)>w(ς) for every ς∈[r,ℑ] iff the positive solution of FBVP (3.1) and (1.2) is ϰ=ϰ∗+w.
Proof. Let ϰ(ς) be a solution of FBVP (3.1) and (1.2). Then
ϰ(ς)=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+(Ψ(ς)−Ψ(r))Δϑ2+1Γ(ν)∫ℑrϖ(ς,τ)G(τ,ϰ∗(τ),ϰ∗(r+λτ))Ψ′(τ)dτ=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+1Γ(ν)∫ℑrϖ(ς,τ)(F(τ,ϰ∗(τ),ϰ∗(r+λτ))+p(τ))Ψ′(τ)dτ=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+1Γ(ν)∫ℑrϖ(ς,τ)F(τ,(ϰ−w)(τ),(ϰ−w)(r+λτ))Ψ′(τ)dτ+1Γ(ν)∫ℑrϖ(ς,τ)p(τ)Ψ′(τ)dτ=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+1Γ(ν)∫ℑrϖ(ς,τ)G(τ,(ϰ−w)(τ),(ϰ−w)(r+λτ))Ψ′(τ)dτ+w(ς). |
So,
ϰ(ς)−w(ς)=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+1Γ(ν)∫ℑrϖ(ς,τ)F(τ,(ϰ−w)(τ),(ϰ−w)(r+λτ))Ψ′(τ)dτ. |
Then we get the existence of the solution with the condition
ϰ∗(ς)=[1+Σm−2i=1ζi−1Δ(Ψ(ς)−Ψ(r))]ϑ1+Ψ(ς)−Ψ(r)Δϑ2+1Γ(ν)∫ℑrϖ(ς,τ)F(τ,ϰ∗(τ),ϰ∗(r+λτ))Ψ′(τ)dτ. |
For the converse, if ϰ∗ is a solution of the FBVP (1.1) and (1.2), we get
Dν;ψr(ϰ∗(ς)+w(ς))=Dν;ψrϰ∗(ς)+Dν;ψrw(ς)=−F(ς,ϰ∗(ς),ϰ∗(r+λς))−p(ς)=−[F(ς,ϰ∗(ς),ϰ∗(r+λς))+p(ς)]=−G(ς,ϰ∗(ς),ϰ∗(r+λς)), |
which leads to
Dν;ψrϰ(ς)=−G(ς,ϰ∗(ς),ϰ∗(r+λς)). |
We easily see that
ϰ∗(r)=ϰ(r)−w(r)=ϰ(r)−0=ϑ1, |
i.e., ϰ(r)=ϑ1 and
ϰ∗(ℑ)=m−2∑i=1ζiϰ∗(ηi)+ϑ2, |
ϰ(ℑ)−w(ℑ)=m−2∑i=1ζiϰ(ηi)−m−2∑i=1ζjw(ηi)+ϑ2=m−2∑i=1ζi(ϰ(ηi)−w(ηi))+ϑ2. |
So,
ϰ(ℑ)=m−2∑i=1ζiϰ(ηi)+ϑ2. |
Thus ϰ(ς) is solution of the problem FBVP (3.1) and (3.2).
We propose the given FBVP as follows
D75ϰ(ς)+F(ς,ϰ(ς),ϰ(1+0.5ς))=0, ς∈(1,e), | (4.1) |
ϰ(1)=1, ϰ(e)=17ϰ(52)+15ϰ(74)+19ϰ(115)−1. | (4.2) |
Let Ψ(ς)=logς, where F(ς,ϰ(ς),ϰ(1+12ς))=ς1+ςarctan(ϰ(ς)+ϰ(1+12ς)).
Taking Υ(ς)=ς we get ∫e1ςdς=e2−12>0, then the hypotheses (Σ1) and (Σ2) hold. Evaluate Δ≅0.366, M≅3.25 we also get |G(ς,ϰ,v)|<π+e=L such that |ϰ|≤ρ, ρ=17, we could just confirm that
[1+Σm−2i=1ζi−1Δ(Ψ(ℑ)−Ψ(r))]ϑ1+Ψ(ℑ)−Ψ(r)Δϑ2+LM≅16.35≤17. | (4.3) |
By applying the Theorem 3.1 there exit a solution ϰ(ς) of the problem (4.1) and (4.2).
In this paper, we have provided the proof of BVP solutions to a nonlinear Ψ-Caputo fractional pantograph problem or for a semi-positone multi-point of (1.1) and(1.2). What's new here is that even using the generalized Ψ-Caputo fractional derivative, we were able to explicitly prove that there is one solution to this problem, and that in our findings, we utilize the SFPT. The results obtained in our work are significantly generalized and the exclusive result concern the semi-positone multi-point Ψ-Caputo fractional differential pantograph problem (1.1) and (1.2).
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups (RGP.1/350/43).
The authors declare no conflict of interest.
[1] |
L. Weizman, Y. C. Eldar, D. B. Bashat, Reference‐based MRI, Med. Phys., 43 (2016), 5357–5369. https://doi.org/10.1118/1.4962032 doi: 10.1118/1.4962032
![]() |
[2] | S. Angelina, L. P. Suresh, S. H. K. Veni, Image segmentation based on genetic algorithm for region growth and region merging, in 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), IEEE, (2012), 970–974. https://doi.org/10.1109/ICCEET.2012.6203833 |
[3] | Y. Y. Boykov, M. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in ND images, in Proceedings Eighth IEEE International Conference on Computer Vision (ICCV), IEEE, (2001), 105–112. https://doi.org/10.1109/ICCV.2001.937505 |
[4] |
G. C. Lin, W. J. Wang, C. C. Kang, C. M. Wang, Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing, Magn. Reson. Imaging, 30 (2012), 230–246. https://doi.org/10.1016/j.mri.2011.09.008 doi: 10.1016/j.mri.2011.09.008
![]() |
[5] | B. Radhakrishnan, L. P. Suresh, Tumor region extraction using edge detection method in brain MRI images, in 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), IEEE, (2017), 1–5. https://doi.org/10.1109/ICCPCT.2017.8074326 |
[6] |
N. Nabizadeh, M. Kubat, Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features, Comput. Electr. Eng., 45 (2015), 286–301. https://doi.org/10.1016/j.compeleceng.2015.02.007 doi: 10.1016/j.compeleceng.2015.02.007
![]() |
[7] | W. Deng, X. Wei, D. He, J. Liu, MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve, in 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE, (2010), 393–396. https://doi.org/10.1109/BMEI.2010.5639536 |
[8] |
C. Corte, V. Vapnik, Support vector networks, Mach. Learn., 20 (1995), 273–297. https://doi.org/10.1023/A:1022627411411 doi: 10.1023/A:1022627411411
![]() |
[9] |
L. Breiman, Random forests, Mach. Learn., 45 (2001), 5–32. https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324
![]() |
[10] | S. Krinidis, V. Chatzis, A robust fuzzy local information C-means clustering algorithm, in IEEE Transactions on Image Processing, IEEE, (2010), 1328–1337. https://doi.org/10.1109/TIP.2010.2040763 |
[11] |
A. Ortiz, J. M. Gorriz, J. Ramirez, D. Salas-Gonzalez, Improving MR brain image segmentation using self-organising maps and entropy-gradient clustering, Inf. Sci., 55 (2014), 508–508. https://doi.org/10.1145/383952.384019 doi: 10.1145/383952.384019
![]() |
[12] |
K. Usman, K. Rajpoot, Brain tumor classification from multi-modality MRI using wavelets and machine learning, Pattern Anal. Appl., 20 (2017), 871–881. https://doi.org/10.1007/s10044-017-0597-8 doi: 10.1007/s10044-017-0597-8
![]() |
[13] |
Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1142/S1793351X16500045 doi: 10.1142/S1793351X16500045
![]() |
[14] | O. R. Neberrger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 |
[15] | B. S. Vittlkop, S. R. Dhotre, Automatic segmentation of MRI images for brain tumor using unet, in 2019 1st International Conference on Advances in Information Technology (ICAIT), IEEE, (2019), 507–511. https://doi.org/10.1109/ICAIT47043.2019.8987265 |
[16] | Z. K. Luo, T. Wang, F. F. Ye, U-Net segmentation model of brain tumor MR image based on attention mechanism and multi-view fusion, J. Image Graphics, 26 (2021), 2208–2218. |
[17] |
R. Sundarasekar, A. Appathurai, Automatic brain tumor detection and classification based on IoT and machine learning techniques, Fluctuation Noise Lett., 21 (2022), 2250030. https://doi.org/10.1142/S0219477522500304 doi: 10.1142/S0219477522500304
![]() |
[18] |
H. Chen, Z. Qin, Y. Ding, L. Tian, Z. Qin, Brain tumor segmentation with deep convolutional symmetric neural network, Neurocomputing, 392 (2020), 305–313. https://doi.org/10.1016/j.neucom.2019.01.111 doi: 10.1016/j.neucom.2019.01.111
![]() |
[19] |
Z. Q. Zhu, X. Y. He, G. Q. Qi, Y. Y. Li, B. S. Cong, Y. Liu, Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI, Inf. Fusion, 91 (2023), 376–387. https://doi.org/10.1016/J.INFFUS.2022.10.022 doi: 10.1016/J.INFFUS.2022.10.022
![]() |
[20] |
X. Y. He, G. Q. Qi, Z. Q. Zhu, Y. Y. Li, B. S. Cong, L. T. Bai, Medical image segmentation method based on multi-feature interaction and fusion over cloud computing, Simul. Modell. Pract. Theory, 126 (2023), 102769. https://doi.org/10.1016/J.SIMPAT.2023.102769 doi: 10.1016/J.SIMPAT.2023.102769
![]() |
[21] | Y. Y. Li, Z. Y. Wang, L. Yin, Z. Q. Zhu, G. Q. Qi, Y. Liu, X-Net: a dual encoding–decoding method in medical image segmentation, Visual Comput., 39 (2021), 2223–2233. https://doi.org/10.1007/s00371-021-02328-7 |
[22] |
Y. Xu, X. Y. He, G. F. Xu, G. Q. Qi, K. Yu, L. Yin, et al., A medical image segmentation method based on multi-dimensional statistical features, Front. Neurosci., 16 (2022), 1009581. https://doi.org/10.3389/FNINS.2022.1009581 doi: 10.3389/FNINS.2022.1009581
![]() |
[23] | K. W. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90 |
[24] | S. Woo, J. Park, Y. Lee, I. S. Kwon, CBAM: convolutional block attention module, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 3–19. |
[25] |
H. B. Yuan, J. J. Zhu, Q. F. Wang, M. Cheng, Z. J. Cai, An improved DeepLab v3+ deep learning network applied to the segmentation of grape leaf black rot spots, Front. Plant Sci., 15 (2022), 281–281. https://doi.org/10.3389/fpls.2022.795410 doi: 10.3389/fpls.2022.795410
![]() |
[26] |
K. Tomczak, P. Czerwinska, M. Wiznerowicz, The cancer genome atlas: an immeasurable source of knowledge, Contemp. Onkol., 19 (2015), 68–77. https://doi.org/10.5114/wo.2014.47136 doi: 10.5114/wo.2014.47136
![]() |