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Abstract: In order to improve the segmentation effect of brain tumor images and address the issue of 
feature information loss during convolutional neural network (CNN) training, we present an MRI brain 
tumor segmentation method that leverages an enhanced U-Net architecture. First, the ResNet50 
network was used as the backbone network of the improved U-Net, the deeper CNN can improve the 
feature extraction effect. Next, the Residual Module was enhanced by incorporating the Convolutional 
Block Attention Module (CBAM). To increase characterization capabilities, focus on important 
features and suppress unnecessary features. Finally, the cross-entropy loss function and the Dice 
similarity coefficient are mixed to compose the loss function of the network. To solve the class 
unbalance problem of the data and enhance the tumor area segmentation outcome. The method's 
segmentation performance was evaluated using the test set. In this test set, the enhanced U-Net 
achieved an average Intersection over Union (IoU) of 86.64% and a Dice evaluation score of 87.47%. 
These values were 3.13% and 2.06% higher, respectively, compared to the original U-Net and R-Unet 
models. Consequently, the proposed enhanced U-Net in this study significantly improves the brain tumor 
segmentation efficacy, offering valuable technical support for MRI diagnosis and treatment. 
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1. Introduction 

Brain tumors, being a highly threatening condition to human life and well-being, have garnered 
significant attention from the public. In the contemporary society, alongside technological 
advancements, medical imaging diagnostic techniques have emerged as effective methods for the 
treatment of brain tumors. By observing the lesion images in medical imaging, experts can diagnose 
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the type and severity of the patient’s disease and then proceed with the appropriate treatment. Magnetic 
Resonance Imaging (MRI) is a commonly employed medical imaging technology in patient treatment. 
Additionally, it is a widely utilized technique for brain tumor segmentation, effectively presenting the 
brain tissue structure and pathological areas [1]. Although MRI provides great assistance to doctors, 
its imaging process can be influenced by surrounding factors, leading to problems like artifacts and 
field inhomogeneity. On this basis, the difficulty of manual diagnosis is increased, resulting in time-
consuming and potential misdiagnosis. Utilizing machine vision technology to achieve the segmentation 
of pathological areas is beneficial for the rapid and accurate assessment of disease severity, enabling 
targeted treatment, and it holds significant importance for the treatment of brain tumors. 

In the early stages, common segmentation algorithms included region-growing-based 
segmentation methods [2–4] and edge-based segmentation methods [5–7], which were widely applied 
in brain tumor research. These algorithms segmented the target regions based on differences in image 
grayscale values, texture feature variations and color differences. However, a single threshold 
segmentation method cannot meet the accuracy requirements of medical images, and the resulting errors 
can significantly affect the assessment of the patient's condition. To enhance the effectiveness of medical 
image segmentation, machine learning techniques such as Support Vector Machine (SVM) [8] and 
Random Forest (RF) [9] have gradually been employed. Machine learning algorithms utilize classifiers 
to determine the class of each pixel in brain tumor images. Stelios Krinidis et al. proposed a variation 
of the fuzzy c-means (FCM) algorithm, which fused grayscale information and combined the 
information of local spatial. This method can enhance the clustering effect of the target. This improved 
FCM algorithm effectively solves the sensitivity of clustering algorithms to outliers and noise in noisy 
images [10]. Ortiz et al. proposed an automated segmentation method of MRI, which belonged to a 
type of unsupervised learning. This method combined Self-Organizing Maps (SOM) and Genetic 
Algorithm (GA) to achieve detailed segmentation of MRI brain images. Additionally, a novel SOM 
clustering mechanism is presented, utilizing spatial information to define clustering boundaries and 
implementing completely unsupervised and automated segmentation methods [11]. Khalid et al. 
introduced an approach for segmenting and classifying MRI scans by leveraging multi-modality MRI 
data. They used the extracted wavelet coefficients as feature vectors and applied SOM and SVM 
classifiers to categorize the images into normal and pathological classes [12]. In the treatment of brain 
tumor patients, traditional machine learning has been widely used as an effective tool for assisting 
segmentation, greatly enhancing physicians' ability to treat brain tumors. However, brain diseases 
exhibit variability, and manually selecting features often cannot represent image characteristics 
well. In some cases, these features not only fail to improve recognition accuracy but may also lead 
to misidentifications. 

The treatment of brain tumors has witnessed remarkable advancements, thanks to the continuous 
progress in computer technology and hardware devices. Deep learning, in particular, has played a 
pivotal role in these breakthroughs [13]. Ronne-Berger proposed a symmetrical segmentation network 
called U-Net, which utilizes the same multiple for upsampling and downsampling to extract features 
from images. This has become a commonly used network model in medical imaging, effectively 
obtaining desirable tumor segmentation regions [14]. Vittikop et al. introduced an improved U-Net 
segmentation method by incorporating skip connections into the U-Net architecture. This fusion of deep 
and shallow features enhances the semantic and spatial information of the images, compensating for the 
lack of shallow information during the feature extraction process and achieving good results [15]. Kaikai 
Luo presented a brain tumor MR image U-Net segmentation method that integrates attention 
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mechanisms and multi-view fusion. By incorporating attention mechanisms into the cascaded 
architecture of the decoding module. This method outperformed other approaches, with improvements 
of 0.9%, 1.3% and 0.6% in evaluation metrics [16]. Despite U-Net being an effective method for brain 
tumor segmentation [17,18], there is great potential for improvement in terms of segmentation 
performance. To improve the segmentation performance and accuracy of brain tumors, segmentation 
networks with fused attention mechanism modules [19] and hybrid segmentation networks [20–22] 
have been proposed. Although improved segmentation algorithms based on the U-Net network can 
effectively enhance the segmentation effect of brain tumors, they suffer from issues such as increased 
network computational complexity and parameter count. 

In this article, we propose a segmentation method that combines attention mechanism and U-Net 
network, aiming to ensure segmentation performance. This integration aims to improve the accuracy 
of segmentation. The integration, which used ResNet50 as the backbone network of U-Net, and the 
deep residual convolution network can extract the required feature information at a deeper level. 
Furthermore, the residual part of U-Net was integrated with the revolutionary block attachment module 
(CBAM). CBAM can improve the expressive power of features; it can exhibit good embedding ability 
with any network; its own network structure is simple, and the increase in parameter volume is 
relatively small; and it enhances the network’s ability to capture features. Furthermore, the Dice loss 
function in the prediction phase of U-Net network. It can be seen from these experimental results that 
further enhanced the segmentation performance of the tumor's core region. In this study, the loss 
function consisted of two fundamental functions, included cross-entropy and Dice. This method can 
adjust these weights of different functions, that problem of the class imbalance can be addressed, 
leading to an improved segmentation effect. It provides technical reference for the clinical diagnosis 
and treatment of medical images. 

2. Methods 

2.1. The ResNet50 backbone network 

 

Figure 1. The backbone network architecture used in this experiment was ResNet50. 
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In 2015, He et al. [23] introduced the ResNet series of networks, with ResNet50 being a deep 
residual network widely utilized in various algorithms. The network structure of ResNet50 consists of 
two fundamental modules: the Conv Block and Identity Block. The Conv Block is used to change the 
dimensions of the network throughout, while the Identity Block deepens the network. Figure 1, as we 
can see in this paper, which is the network structure. The first part involves convolution, regularization, 
activation functions and max pooling on the input image. The second, third, fourth and fifth parts are 
composed of Conv Blocks and Identity Blocks. In each part, the Identity Block is executed 2, 3, 5 and 2 
times, respectively. The sixth part performs the global average pooling on the output, which was a 
feature display that converted the feature maps into a feature vector. Then, used a classifier to calculate 
the probability distribution of classes. 

2.2. The convolutional block attention module 

CBAM, a lightweight attention module, comprises two sub-modules: The Channel Attention 
Module (CAM) and the Spatial Attention Module (SAM) [24]. This structure, depicted in Figure 2, 
focuses on channel and spatial attention, respectively. As we can see, the channel attention mechanism 
was employed to extract information from the feature map. This mechanism utilizes global AvgPool 
and MaxPool to derive rich high-level features. Subsequently, an MLP is used to adjust the channel 
number ©. Map the C × H × W feature map to a C × 1 × 1 feature map. The formula for Multi-Layer 
Perceptron (MLP) is shown as (1), where W1 is the weight matrix from the input layer to the hidden 
layer, b1 is the bias vector of the hidden layer, W2 is the weight matrix from the hidden layer to the 
output layer, R is the Relu of activation function of the hidden layer and X represents the intput. Then 
they served as the input for the next part. The dimension of the feature map outputted by CAM is C × 
1 × 1, and the calculation formula for the output is shown in Eq (2), s is the sigmoid of activation 
function. F' serves as the input of SAM, and the calculation formula for the input is shown in Eq (3). Where 
⊗denotes element-wise multiplication, map the C × 1 × 1 feature map to a C × H × W feature map. 

)1b1(R2)(M  XWWXLP                             (1) 

)))(x())(((s)( FMaMLPFAvgMLPFM C                         (2) 

FFMF C  )('                                     (3) 

Similar to CAM, SAM also uses global AvgPool and MaxPool to extract information. Map the C 
× H × W feature map to a 1 × H × W feature map. The resulting feature maps are concatenated based 
on their channels (channel splicing). A 7 × 7 convolutional operation is then used to reduce the 
dimensionality, map the 2 × H × W feature map to a 1 × H × W feature map. Followed by the 
application of the sigmoid function to obtain the final feature map, map the 1 × H × W feature map to 
a C × H × W feature map. The calculation formula for the output is shown in Eq (4). 

)]))'(ax);'(Avg([(s)'('' 77 FMFfFMF S
                       (4) 

In this paper, ResNet50 was used to build the backbone network of U-Net, and CBAM was 
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inserted into the Bottleneck module of ResNet50, which makes the network pay more attention to 
some feature layers and spatial areas. From Figure 1, it can be observed that ResNet50 consists of 
Conv Block and Identity Block. In this method, CBAM is added to each Identity Block, and CBAM 
is inserted a total of 12 times. Figure 3 shows the schematic diagram of inserting CBAM into the 
residual module of ResNet50. The utilization of CBAM not only helps in reducing parameter count 
and computational requirements but also facilitates its seamless integration as a plug-and-play module 
within existing network architectures. By leveraging the attention mechanism, CBAM enhances the 
representation capability of the network by emphasizing crucial features and suppressing irrelevant 
ones. It can enable the model to focus on important information, thereby improved overall performance. 

 

Figure 2. The CBAM was inserted in this experiment. 

 

Figure 3. The specific application of CBAM in this network. 

2.3. Loss function 

In the improved network, the loss function is composed of cross entropy loss function and Dice 
similarity coefficient. Cross-entropy was usually used in the training of network models. It can 
optimize the model and achieve optimal performance during trainingand. Also, it can solve the gradient 
disappearance. The formula is shown in Eq (5):  
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where, M and N represent these set of pixel points and these set of labeled pixel points in the segmented 
image. K represents the real category, and kij refers to the category of the ith prediction chart and the 
jth real label. P always represents the predicted value, which refers to the predicted value in the i-th 
prediction chart and the jth real label. In this paper, MRI has the problem of uneven distribution of 
foreground and background features, and the use of cross-entropy loss function alone will bias the 
background features. Dice can solve the problem of data imbalance and is also widely used in medical 
image segmentation. The Dice loss function formula is shown in Eq (6): 
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Calculate M and N respectively, where the smooth operator is ε. It is mainly used to avoid 
situations where the denominator is 0. Dice is often used to learn network parameters to make the 
predicted value closer to the real value. The function is as follows Eq (7): 

DiceCE LossLossL oss                                  (7) 

2.4. The U-Net network proposed in this work 

 

Figure 4. The improved U-Net network required for these experiments in this paper. 

U-Net is a typical coder-decoder structure and its structure symmetry is ‘‘U’’ type. The method in 
this paper was based on the U-Net model. ResNet50 was used as that improved U-Net feature 
extraction work. Then, that CBAM was integrated into the residual. As we can see in Figure 4, it is the 
improved U-Net, which was composed of encoder part, decoder part and jump connection. The 
encoder part uses ResNet50 for feature extraction, and the part in U-Net corresponds to the part1-part6 
in ResNet50 respectively. The decoder used the up-sampling layer instead of the traditional CNN 
pooling layer to improve the resolution of the output feature map. The up-sampling layer reshapes the 
feature map to the size of the previous layer through deconvolution. The decoder receives the semantic 
information from the bottom of the U-Net network, and recombines it with the high-resolution features 
of the encoder through the jump connection. So, the U-Net which the segmentation algorithm used in 
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this article can better segment the fine structure. Finally, that convolution of 1 × 1 was used to map the 
number of channels. The role of convolutional mapping can require number of categories to obtain an 
output consistent with the input image. 

2.5. Evaluation indicators 

In this paper, we select Intersection over Union (IoU), the fraction efficiency (Dice) and 
Hausdorff distance as the performance evaluation metrics for the model [25]. IoU is a widely in the 
CNN, to adopt evaluation metric in semantic segmentation methodologies. The Eq (8) for IoU in 
semantic segmentation is as follows: 

BA

BA




IoU                                  (8) 

where A represents ground truth, B represents the network prediction result. When it comes to 
evaluating semantic segmentation, the Dice coefficient is commonly used as a measure of sample 
similarity. By comparing the segmented target region with the annotated target region, if the two 
regions have a high degree of similarity, it indicates a good segmentation result. Conversely, if the 
similarity is low, it suggests a poor segmentation result. The Eq (9) for calculating the Dice coefficient 
is as follows: 
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The formula of Hausdorff distance (HD) is as Eq (10): 
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where, A= {a1, a2, ..., ap}, B= {b1, b2, ..., bq}, ||·|| represents the norm between A and B. 

3. Test results and analysis 

3.1. Data set and test environment 

The experimental data set in this paper is from the medical imaging database published in The 
Cancer Genome Atlas (TCGA) [26]. The dataset utilized in their study consists of a collection of 3929 
pairs of brain MR images and corresponding manual FLAIR anomaly segmentation masks, with the 
image size of 256 × 256, data set images are shown in Figure 5. The background of MR image is black, 
which greatly facilitates the segmentation of network models. Before the test, 100 images are reserved 
as the test data after model fitting. During the training, 3829 images were divided into two sets. The 



785 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 778–791. 

data splitting ratio was 9:1, where 90% of the data was allocated for training and 10% for testing. The 
training set is used for the normal training of the network, and the verification set is used to verify the 
performance of the model after each training. Furthermore, image enhancement technology is added 
in the training process, and each image input to the network is randomly flipped 5 times. 

 

Figure 5. The original MRI images required for the experiment. 

In this paper, Python programming language is used as the foundational coding language. Then, 
that Windows 10 served as the platform for the experimental process. We employed the PyTorch 
framework as the training simulation environment, leveraging its powerful capabilities. The test 
computer was equipped with an AMD Ryzen 6 1700X six-core processor and a powerful 8GB GPU 
(GeForce GTX 1070Ti), constituting its primary hardware configuration. During the network training 
process, the researchers employed 150 epochs and a batch size of 6. For the learning rate of the network 
training process in this study, it was set to 0.001. Then, we resize the size of the image. The input image 
size was 256 × 256 pixels. After every 5 training iterations, the network undergoes validation and the 
progress is saved. 

3.2. Test training results 

 

Figure 6. The change in loss value during the network training process. 
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In this paper, the improved U-Net algorithm was used for tumor segmentation of MRI. A total 
of 150 trained models are saved during the training process, with each model being saved every 5 
epochs. Figure 6 shows the loss value after the completion of network training. The process of the loss 
value approaching to a steady state is also the process of model convergence. In the figure, the red 
curve illustrates the variation of the loss value during training, while the blue curve represents the loss 
value at each epoch. By observing the trend of the loss value curve, it becomes evident that as the number 
of training iterations increases, the training model progressively reaches convergence. After 20 epochs, 
we can see in the figure that both that training and validation loss curves gradually stabilized, indicating 
that the model reached a good state. 

3.3. Ablation experiments 

In this paper, the improved U-Net algorithm was used to segment MRI tumors. The U-Net 
algorithm with the backbone network of ResNet50 (R-Unet) and the U-Net algorithm with the CBAM 
(CB-Unet) were compared. During the test, the algorithm used the same network parameters and test 
environment, and the same test set was used by U-Net and its improved network for segmentation 
performance test. Figure 8 shows the image segmentation results of the three different networks. 
Column A is the MR brain tumor images, column B is the label images, column C is the original U-
Net segmentation results, column D is the R-Unet segmentation results, column E is the CB-Unet 
segmentation results and column F is the improved U-Net segmentation results. 

It can be seen from the figure that U-Net can segment brain tumors, but it cannot completely 
segment tumors, and the network performance is poor. The segmentation results of R-Unet 
demonstrate superior performance compared to U-Net. R-Unet is capable of independently separating 
the tumor area; however, its segmentation may lack precision and result in over-segmentation. 
Although the U-Net algorithm after replacing the backbone network has the problem of imperfect 
segmentation, the segmentation effects are significantly improved compared with the original U-Net 
algorithm. It can be concluded that the U-Net algorithm replacing the backbone network can further 
improve the segmentation effects for the MRI segmentation task. The segmentation results of CB-Unet 
are shown in column E. From a horizontal comparison, the overall segmentation results of CB-Unet 
are better than U-Net. Furthermore, compared with the segmentation results of R-Unet, there are some 
images where the segmentation results are not as good as R-Unet. However, the overall segmentation 
accuracy is good. In summary, improvement methods of ResNet50 and CBAM can improve the 
segmentation performance of brain tumors. 

Column F shows the segmentation performance of the improved U-Net. The improved U-Net 
combines the ResNet50 and CBAM. From the comparison of the segmentation results, we can see that 
the improved U-Net algorithm has higher segmentation accuracy for the tumor region at the same 
location. In terms of the size of the segmentation region, the improved U-Net algorithm is more 
detailed for the segmentation of tumor regions. Comparing Column F and Column B, it can be seen 
that the proposed improved U-Net can perform segmentation of brain tumor regions, but there is an 
issue of over-segmentation. In summary, the improved U-Net algorithm exhibits a better segmentation 
effect compared to the U-Net. Not only does it accurately segment the target, but it also achieves high 
accuracy in segmenting the tumor region. 
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Figure 7. Different segmentation algorithms for the same object’s segmentation results. 

Table 1. Results of ablation experiments. 

Algorithms 
Evaluation indicators 

IoU Dice HD 
U-Net 83.46% 84.34% 4.13 
R-Unet 84.23% 85.41% 3.46 
CB-Unet 85.16% 86.59% 3.06 
U-Net (improved) 86.64% 87.47% 2.72 

Table 1 shows the test statistical results of these segmentation methods. From the evaluation 
metrics of IoU, Dice and HD, it can be observed that the results of R-Unet and CB-Unet are both 
superior to U-Net. From the evaluation indicators perspective, the improved U-Net algorithm 
outperforms both CB-Net and R-Unet in terms of IoU indicators, with 1.51% and 2.41% higher scores, 
respectively. Similarly, when considering the Dice indicators, the improved U-Net algorithm 
demonstrates a 0.88% and 2.06% higher performance compared to CB-Net and R-Unet, respectively. 
Last, in terms of HD, the improved U-Net also computes the smallest value, indicating that the 
segmented regions are closer to the target areas. These experimental results indicate that the improved 
U-Net algorithm exhibits superior segmentation performance in brain tumor analysis. 

3.4. The segmentation results of improved U-Net 

By comparing the segmentation performance of the improved U-Net algorithm before and after 
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the experiment, it is concluded that the improved U-Net network in this paper has the best performance 
and can effectively segment the brain tumor area. In order to better reflect the segmentation effect of 
the improved network, Figure 8 shows the segmentation and extraction for MRI. Column A is the 
original image, column B is the segmented image, column C is the segmented fusion image and column 
D is the segmentation and extraction of tumor. It can be seen from the segmented images that the 
network proposed in this paper can segment the tumor area. Furthermore, it can also extract the tumor 
location effectively, and the segmentation accuracy can be optimal. Compared with the U-Net, CB-
Unet and R-Unet segmentation effect, the improved segmentation algorithm does not have over-
segmentation and inaccurate segmentation, and the segmentation target and the actual target coincide 
more. In conclusion, the improved U-Net segmentation network has better segmentation effect and can 
provide effective technical support for medical treatment. 

 

Figure 8. The segmentation results of the improved algorithm. 

4. Conclusions 

A novel and enhanced U-Net network model was proposed in this paper for MRI brain tumor 
segmentation. The model leveraged the ResNet50 as the improved U-Net and it can enhance the 
effectiveness of feature extraction due to its deeper architecture. The residual component of the 
backbone network is incorporated into the CBAM module, enhancing representation capability by 
emphasizing important features while suppressing irrelevant ones. To address class imbalance in the 
data and improve tumor core region segmentation, a combination of cross entropy loss function and 
Dice similarity coefficient is utilized as the network's loss function. Experimental results demonstrate 
that the improved U-Net network model outperforms its predecessor in terms of segmentation 
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performance. Specifically, the Dice evaluation index is 3.18% and 2.41% higher compared to U-Net 
and R-Unet respectively, while the MIoU evaluation index is 3.13% and 2.06% higher than U-Net and 
R-Unet, respectively. These results affirm that the proposed model effectively improves MRI 
segmentation and offers valuable technical insights for MRI diagnosis and treatment. Additionally, the 
model lays a solid theoretical foundation for the subsequent segmentation of 3D brain tumor images. 
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