Environmental noise can lead to complex stochastic dynamical behavior in nonlinear systems. In this paper, we studied the phenomenon of a pair of Van der Pol (VDP) oscillators with direct-indirect coupling affected by Gaussian white noise. That is to say, a noise-induced equilibrium transition oscillation was observed in three types of different parameter regions, where the deterministic system had two kinds of stable equilibrium points. Meanwhile, with the noise intensity increasing, we found that the stochastic system will constantly switch between two stable equilibrium points. To analyze the stochastic behavior, we used the stochastic sensitivity equation and confidence ellipse method. When the confidence ellipsoid crossed the boundary of the attraction basin of the equilibrium point, the system entered into the state of stochastic mixed-mode oscillations, which was consistent with the simulation results.
Citation: Xiaojun Huang, Zigen Song. Generation of stochastic mixed-mode oscillations in a pair of VDP oscillators with direct-indirect coupling[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 765-777. doi: 10.3934/mbe.2024032
Environmental noise can lead to complex stochastic dynamical behavior in nonlinear systems. In this paper, we studied the phenomenon of a pair of Van der Pol (VDP) oscillators with direct-indirect coupling affected by Gaussian white noise. That is to say, a noise-induced equilibrium transition oscillation was observed in three types of different parameter regions, where the deterministic system had two kinds of stable equilibrium points. Meanwhile, with the noise intensity increasing, we found that the stochastic system will constantly switch between two stable equilibrium points. To analyze the stochastic behavior, we used the stochastic sensitivity equation and confidence ellipse method. When the confidence ellipsoid crossed the boundary of the attraction basin of the equilibrium point, the system entered into the state of stochastic mixed-mode oscillations, which was consistent with the simulation results.
[1] | A. S. Pikovsky, J. Kurths, Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78 (1997), 775. https://doi.org/10.1103/PhysRevLett.78.775 doi: 10.1103/PhysRevLett.78.775 |
[2] | A. N. Pisarchik, A. E. Hramov, Coherence resonance in neural networks: Theory and experiments. Phys. Rep., 1000 (2023), 1–57. https://doi.org/10.1016/j.physrep.2022.11.004 doi: 10.1016/j.physrep.2022.11.004 |
[3] | Z. Q. Wang, Y. Xu, H. Yang, Lévy noise induced stochastic resonance in an FHN model, Sci. China Technol. Sci., 59 (2016), 371–375. https://doi.org/10.1007/s11431-015-6001-2 doi: 10.1007/s11431-015-6001-2 |
[4] | M. D. McDonnell, D. Abbott, What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology, PLoS Comput. Biol., 5 (2009), e1000348. https://doi.org/10.1371/journal.pcbi.1000348 |
[5] | A. Calim, T. Palabas, M. Uzuntarla, Stochastic and vibrational resonance in complex networks of neurons, Philos. T. R. Soc. A, 379 (2021), 20200236. https://doi.org/10.1098/rsta.2020.0236 doi: 10.1098/rsta.2020.0236 |
[6] | I. Bashkirtseva, L. Ryashko, E. Slepukhina, Noise-induced spiking-bursting transition in the neuron model with the blue sky catastrophe, Phys. Rev. E, 99 (2019), 062408. https://doi.org/10.1103/PhysRevE.99.062408 doi: 10.1103/PhysRevE.99.062408 |
[7] | E. Slepukhina, I. Bashkirtseva, L. Ryashko, Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation, Chaos Soliton Fract., 138 (2020), 109958. https://doi.org/10.1016/j.chaos.2020.109958 doi: 10.1016/j.chaos.2020.109958 |
[8] | E. Slepukhina, I. Bashkirtseva, L. Ryashko, P. Kügler, How noise transforms spiking into bursting in a neuron model having the Lukyanov-Shilnikov bifurcation, Commun. Nonlinear Sci., 118 (2023), 106992. https://doi.org/10.1016/j.cnsns.2022.106992 doi: 10.1016/j.cnsns.2022.106992 |
[9] | I. Bashkirtseva, L. Ryashko, Generation of mixed-mode stochastic oscillations in a hair bundle model, Phys. Rev. E, 98 (2018), 042414. https://org/doi/10.1103/PhysRevE.98.042414 doi: 10.1103/PhysRevE.98.042414 |
[10] | I. Bashkirtseva, L. Ryashko, Mixed-mode self-oscillations, stochastic excitability, and coherence resonance in flows of highly concentrated suspensions, Nonlinear Dyn., 102 (2020), 1837–1848. https://doi.org/10.1007/s11071-020-06025-3 doi: 10.1007/s11071-020-06025-3 |
[11] | I. Bashkirtseva, Stochastic sensitivity analysis of mixed-mode oscillations in kinetics of the flow reactor, Math. Method Appl. Sci., 44 (2021), 12047–12057. https://doi.org/10.1002/mma.6546 doi: 10.1002/mma.6546 |
[12] | I. Bashkirtseva, A. B. Neiman, L. Ryashko, Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin-Huxley neuron model, Phys. Rev. E, 91 (2015), 052920. https://org/doi/10.1103/PhysRevE.91.052920 doi: 10.1103/PhysRevE.91.052920 |
[13] | I. Bashkirtseva, L. Ryashko, E. Slepukhina, Order and chaos in the stochastic Hindmarsh-Rose model of the neuron bursting, Nonlinear Dyn., 82 (2015), 919–932. https://doi.org/10.1007/s11071-015-2206-y doi: 10.1007/s11071-015-2206-y |
[14] | I. Bashkirtseva, V. Nasyrova, L. Ryashko, Noise-induced bursting and chaos in the two-dimensional Rulkov model, Chaos Soliton Fract., 110 (2018), 76–81. https://doi.org/10.1016/j.chaos.2018.03.011 doi: 10.1016/j.chaos.2018.03.011 |
[15] | I. Bashkirtseva, L. Ryashko, How noise can generate calcium spike-type oscillations in deterministic equilibrium modes, Phys. Rev. E., 105 (2022), 054404. https://org/doi/10.1103/PhysRevE.105.054404 doi: 10.1103/PhysRevE.105.054404 |
[16] | L. B. Ryashko, E. S. Slepukhina, Analysis of noise-induced transitions between spiking and bursting regimes in Hindmarsh-Rose neuron model, in CEUR Workshop Proceedings, 1662 (2016), 306–314. |
[17] | M. I. Freidlin, A. D. Wentzell, M. I. Freidlin, A. D. Wentzell, Random perturbations, in Random Perturbations of Dynamical Systems, New York, (2012), 15–43. https://doi.org/10.1007/978-1-4612-0611-8_2 |
[18] | I. Bashkirtseva, L. Ryashko, Stochastic sensitivity analysis of noise-induced excitement in a prey-predator plankton system, Front. Life Sci., 5 (2011), 141–148. https://doi.org/10.1080/21553769.2012.702666 doi: 10.1080/21553769.2012.702666 |
[19] | L. Ryashko, Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis, Chaos, 28 (2018), 033602. https://doi.org/10.1063/1.4989982 doi: 10.1063/1.4989982 |
[20] | E. Slepukhina, I. Bashkirtseva, P Kugler, L. Ryashko, Noise-driven bursting birhythmicity in the Hindmarsh-Rose neuron model, Chaos, 33 (2023), 033106. https://doi.org/10.1063/5.0134561 doi: 10.1063/5.0134561 |
[21] | A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, John Wiley & Sons, New York, 1979. |
[22] | S. Wirkus, R. Rand, The dynamics of two coupled van der Pol oscillators with delay coupling, Nonlinear Dyn., 30 (2002), 205–221. https://doi.org/10.1023/A:1020536525009 doi: 10.1023/A:1020536525009 |
[23] | V. P. Koshcheev, Noise-induced transition between stationary states of a van der Pol oscillator, Tech. Phys. Lett., 40 (2014), 126–128. https://doi.org/10.1134/S1063785014020114 doi: 10.1134/S1063785014020114 |
[24] | E. Camacho, R. Rand, H. Howland, Dynamics of two van der Pol oscillators coupled via a bath, Int. J. Solids Struct., 41 (2004), 2133–2143. https://doi.org/10.1016/j.ijsolstr.2003.11.035 doi: 10.1016/j.ijsolstr.2003.11.035 |
[25] | K. Konishi, Experimental evidence for amplitude death induced by dynamic coupling: van der Pol oscillators, in 2004 IEEE International Symposium on Circuits and Systems (ISCAS), (2004), IV–792. https://doi.org/10.1109/ISCAS.2004.1329123 |
[26] | V. Resmi, G. Ambika, R. E. Amritkar, General mechanism for amplitude death in coupled systems, Phys. Rev. E, 84 (2011), 046212. https://org/doi/10.1103/PhysRevE.84.046212 doi: 10.1103/PhysRevE.84.046212 |
[27] | I. Bashkirtseva, L. Ryashko, Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique, Phys. Rev. E, 83 (2011), 061109. https://org/doi/10.1103/PhysRevE.83.061109 doi: 10.1103/PhysRevE.83.061109 |