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Abstract: Environmental noise can lead to complex stochastic dynamical behavior in nonlinear 
systems. In this paper, we studied the phenomenon of a pair of Van der Pol (VDP) oscillators with 
direct-indirect coupling affected by Gaussian white noise. That is to say, a noise-induced equilibrium 
transition oscillation was observed in three types of different parameter regions, where the 
deterministic system had two kinds of stable equilibrium points. Meanwhile, with the noise intensity 
increasing, we found that the stochastic system will constantly switch between two stable equilibrium 
points. To analyze the stochastic behavior, we used the stochastic sensitivity equation and confidence 
ellipse method. When the confidence ellipsoid crossed the boundary of the attraction basin of the 
equilibrium point, the system entered into the state of stochastic mixed-mode oscillations, which was 
consistent with the simulation results. 

Keywords: VDP oscillation; direct-indirect coupling; stochastic dynamic; mixed-mode oscillation; 
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1. Introduction 

As we all know, any real-world dynamic system is influenced by random noise. In fact, noise can 
give rise to a wide range of complex phenomena, including coherence resonance [1–3], stochastic 
resonance [4,5], noise-induced bursting [6–8], noise-induced stochastic mixed-mode oscillations [9–11], 
noise-induce suppression of firing [12], noise-induced chaos and order [13,14], stochastic oscillation 
bistability in the zone of canard limit cycles [15] and noise-induced transitions between tonic spiking 
and bursting regimes [16]. 
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For small random perturbations, Fredidlin and Wentzell proposed a large deviation theory to 
explain the long-term effects of them [17]. Specifically, it is based on the fact that when almost 
impossible events occur, they occurred along a specific path. This path is called the optimal path which 
produces the minimum value of some action function. It describes how difficult it is for a random 
process to pass through the neighborhood of a particular path. The quasi-potential of a particular point 
is then generated by the action functional along the optimal path of its connection to the attractor. The 
stochastic sensitivity function and confidence ellipse method was proposed by using the second-order 
approximation of the potential. It has been successfully used in many systems, such as Hodgkin-Huxley 
model [12], hair bundle model [9], prey-predator-plankton system [18], Morris-Lecar system [19], 
Higgins model [20], Hindmarsh-Rose model [21], etc. 

The Van der Pol (VDP) oscillator is typical self-excited or self-sustained oscillations, which first 
originated in vacuum tube circuits. It has been studied in detail in the last century, and the main results 
can be found in the famous monograph by Nayfeh and Mook [22]. Koshcheev and Vladimir showed 
the white-noise-induced transition between the limiting cycle and state of rest of a VDP oscillator that 
has a threshold, and the threshold value is directly proportional to the product of the characteristic 
energy of self-oscillations and the friction coefficient [23]. For the coupled VDP oscillator, some 
coupling schemes are used, including weak coupling with delay [24], indirect coupling [25] and 
dynamic coupling [26]. In the direct-indirect coupling VDP oscillator coupling system, we have found 
a wealth of kinetic phenomena [26]. If we introduce noise into it, we find more dynamics in it. In this 
paper, we show the noise-induced escape on a direct-indirect coupled pair of VDP systems and 
generate mixed-mode stochastic oscillations. 

This paper is organized as follows. We first propose a mathematical model of the pair of VDP 
oscillator systems with direct-indirect coupling and give its equilibrium distribution with changing 
parameters in Section 2. In Section 3, we show the oscillations of the corresponding random system 
under different noise intensities. In Section 4, we give the reason of this phenomenon by using random 
sensitivity matrix and confidence ellipse method. Conclusions and discussions are given in Section 5. 

2. Deterministic model 

In this paper, we investigate the VDP coupled system with two types of connections, i.e., a direct 

and an indirect coupling. The direct coupling is diffusive mutually coupling, and the indirect coupling 

is carried by using external environment. The system dynamics is presented [27] as 
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where xi1, xi2 are firing activities of the i-th oscillator, a is a nonlinear damping ratio of the individual 

oscillator, d is a coupling strength of direct coupling, the state variable y denotes indirect coupling of 

the external environment, which is modeled by a one-dimensional over-damped oscillator with 
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damping parameter k and the parameter e is a coupling strength between systems and environment. 
We carry out the equilibrium analysis of system (1) and obtain the following equations: 
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By solving the above equation, we get four types of equlibrium points, including the origin O (0, 0, 0, 0, 0), 

inhomogeneous steady state (IHSS)  11 12 11 12, , , ,0A A A AA x x x x      , homogeneous steady state (HSS) 

 11 12 11 12, , , ,B B B B BB x x x x y        and no-pattern steady state (NPSS)  11 12 21 22, , , ,C C C C CC x x x x y      ,

 11 12 21 22, , , ,D D D D DD x x x x y      , where 11 2 1 / 2Ax ad ad   , 12 2 2 1 /Ax d ad a    ,

2
11 /Bx ae k e a   , 2

12 /Bx e ae k k a    and 2 /By ae k k a   . Because C   and D   are 

more complex, they are not listed here. 

In order to show the distribution position and the properties of the equilibrium points, we fix 

1, 1, 1.3a d k    in this paper, and consider the dynamics of system (1) under different values of 

parameter e  . When 1.2465e   , the system enters the equilibrium state. There are three types of 

equilibria: A pair of IHSS equilibria A , a pair of HSS equilibria B  and trivial equilibrium O. A  

are stable equilibrium points. B  and O are unstable equilibrium points. A pitchfork bifurcation occurs, 

adding four unstable equilibrium points: NPSS equilibria C  and D  . Next, when 1.6125e   , the 

equilibria B  gains stability. Finally, an anti-pitchfork bifurcation appears, the points C   and D  

disappear, and the points A  lose their stability, leaving only a pair of stable equilibria B . 

Figure 1 shows three examples of different types of stable equilibria in the deterministic system 

characterized by the nullclines. As can be seen from Figure 1(a), when 1.28e   , there are five 

equilibrium points in the system: Unstable points O and B   and stable fixed points A  . When 

1.9e  , as shown in Figure 1(b), there are two pairs of stable fixed points of the system: A  and B
, 

respectively. The unstable point is the point O, and there are two pairs of saddle points: C  and D . 

When 3e  , as shown in Figure 1(c), the system re-obtains the stable equilibrium points B , where  

A  are saddle points, and O is an unstable point. At the same time, the corresponding phase diagrams 

for different values of parameter e  with different initial values are given, as shown in Figure 2. It can 

be observed that for the fixed parameters of the system, different initial values can make the system 

fall into different equilibrium points. 
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(a)                        (b)                        (c) 

Figure 1. The intersection points of the system’s nullclines and vector field show number 
of equilibria with the fixed parameter (a) e = 1.28, (b) e = 1.9, (c) e = 3, where O is the 
trivial equilibrium, A  means the IHSS equilibrium, B  means the HSS equilibrium, 
and C  and D  are the NPSS equilibria. 

 

(a)                        (b)                        (c) 

Figure 2. Phase diagrams (a) e = 1.28 with initial values (1,0,0,0,1), (1,0,0,0,1), 
(1,0,0,0,1) and (1,0,0,0,1); (b) e = 1.9 with (2,0,0,0,2), (2,0,0,0,1), (2,0,0,0,1) and 
(2,0,0,0,2); (c) e = 3 with (1, 0,0,0,1), (1,0,0,0,1), (1,0,0,0,1) and (1,0,0,0,1) for the 
fixed parameters a = 1, d = 1, k = 1.3. 

3. Stochastic model 

Let us examine how random noise changes the system dynamics of model (1). Here we will study 
the following stochastic model: 
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where ( )t   is a standard Gaussian white noise with ( ) 0, ( ) ( ) ( )E t E t t          and    is a 

noise intensity parameter. 
In order to illustrate the effect of Gaussian white noise, we focus on the stochastic phenomena 
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for the different values of parameter e   with small and large noise intensity. For the numerical 
simulations of random trajectories, we use the Euler-Maruyama scheme with the time step 0.01 in 
accordance with practice. 

Figure 3 illustrates the random phase trajectories and the corresponding history series with 
1.28, 1.9, 3e    for the low noise intensity 0.02   . We can obviously find that the random 

trajectories vibrate in the neighborhood of the stable fixed points and form dispersion. Further, the 
small noise intensity does not change the overall property of the model. However, the system enters a 
switch of equilibrium points under large noise intensity, as shown in Figure 4, where the history series 
are to the parameters 1.28, 0.2e    , 1.9, 0.5e     and 3, 1e    , respectively. As can be 
seen from the figures, we can observe large amplitude stochastic oscillations around the equilibrium 
point and random switching between the two equilibrium points. The noise-induced transition 
phenomenon is observed. 

Figure 5 shows the relationship between noise intensity and the coordinate of the stochastic 
system. The figure depicted here has its horizontal axis representing the intensity of noise, while the 
vertical axis corresponds to 11x  . The system begins integrating at a noise intensity of zero, and 

subsequently carries out the same operation at intervals of  10log 0.01 . This process illustrates the 

range of coordinate 11x  of the system. As can be seen, when the noise intensity is very small, the 

oscillation amplitude caused by the random noise is also very small. The greater the noise intensity, 
the greater the amplitude of the oscillation. After the noise intensity of different threshold values, the 
random system will enter the noise-induced large amplitude oscillation. 

 

 
(a)                      (b)                    (c) 

Figure 3. (Up) The history series of the stochastic system and corresponding deterministic 
system and (Down) phase diagram with (a) e = 1.28, (b) e = 1.9, (c) e = 3, where the system 
parameter values are a = 1, d = 1, k = 1.3 for the noise intensity 0.02. 
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(a)                      (b)                     (c) 

Figure 4. Time history diagrams of the stochastic system (2) with (a) 1.28, 0.2e   , (b)
1.9, 0.5e   , and (c) 3, 1e   . 

 

(a)                      (b)                        (c) 

Figure 5. Bifurcation diagram of the noise intensity for (a) e = 1.28, (b) e = 1.9, and (c) e = 3. 

4. Stochastic sensitivity analysis 

In this section, we first give the attraction basins of all equilibria for 1.28, 1.9, 3e    in the 
deterministic system (1), as shown in Figure 6. As shown in the figure, areas of different colors 
represent the attraction basins of different equilibrium points. We take an interval of 0.01, with the 
value range of 11x  and 21x  being 2 to 2, and set the initial values to satisfy equation (2). Numerical 

integration is performed using the Runge-Kutta algorithm. If the system falls into the same equilibrium 
point, the corresponding point will be painted with the same color. As can be seen, the position of the 
stable fixed point, which the system finally stays in, depends on the position of the initial point of the 
deterministic system. Meanwhile, there are some boundary surfaces between different basins. If the 
trajectory of random system (2) crosses the basin of attraction, the system will inevitably fall into 
another equilibrium point. In stochastic systems, random terms will cause perturbations to phase 
trajectories. The larger the random coefficient, the larger the range of random system disturbance. If 
the perturbation of a random system breaks through the boundary of the attractive disk, the system will 
inevitably fall into another equilibrium point of the attractive disk range. The system vibrates up and 
down around another equilibrium point. 
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(a)                        (b)                      (c) 

Figure 6. The attraction basins of all equilibria for (a) 1.28e  , (b) 1.9e  , (c) 3e  . 

In order to analyze the noise-induced random oscillation, we use the confidence ellipse method 
based on the stochastic sensitivity matrix technique [27]. The technique of the stochastic sensitivity 
matrix that we employ is fundamentally developed on the basis of the Hamilton-Jacobi equation. 
Before analyzing, we give the Jacobian matrix of the deterministic system (1). 
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The random sensitivity matrix W of the stable equilibrium point  11 12 21 22, , , ,x x x x y   for the 

deterministic system (1) can be obtained by the following matrix equation: 
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The random sensitivity matrix of the different stable fixed points can be obtained by solving the 
corresponding matrix equation. Using the matrix W, one can write an asymptotic of the time-varying 
probability density function 
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The eigenvalues and eigenvectors can form the confidence ellipse of the corresponding points. 
The eigenvalue determines the semi-axis of the confidence ellipse, and the eigenvector determines the 
direction axis of the corresponding confidence ellipse. Let 1 2 3 4 5, , , ,       be eigenvalues and 

1 2 3 4 5, , , ,u u u u u  be the normalized eigenvectors of the stochastic sensitivity matrix. For coordinates 

1 2 3 4 5, , , ,z z z z z  of the confidence ellipse in the basis 1 2 3 4 5, , , ,u u u u u  with the equilibrium as the origin, 
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we have the following equation: 

 
2 22 2 2
3 51 2 4
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where   is the noise intensity and  ( )K P  is the confidence probability function. 

4.1. Random sensitivity analysis of the equailibrium points A  

Substituting the equilibrium point A  into the matrix equation, we can solve the corresponding 
random sensitivity matrix: 
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where 2 2 2
3 2( 6 )( 6 4 2 )e k k e k k        . It is easy to know that when 6e k   or 

2(6 2 ) / 4e k k k   , i.e., 1.2465e   or 2.7928e  , the random system will immediately enter the 

random oscillation state. Here, when we set 1.2465e  , points A  turn into the stable equilibrium 
points and when we set 2.7928e  , points A  lose their stability. Figure 7 shows the eigenvalue of 
the stochastic sensitivity matrix of the equilibrium point A  described by the function with parameter 
e  as the independent variable. It is obvious that the random sensitivity of the system will change with 
the system parameter e . However, when e  approaches 1.2465  or 2.7928 , the random sensitivity 
of the system increases indefinitely. 

 

Figure 7. Eigenvalue function of the stochastic sensitivity matrix for the equilibrium point A . 
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Figure 8 also shows the confidence ellipses when we set 1.28, 1.9e   and 0.1, 0.2  . As can be 

seen from the figure, when we set 0.1  , the confidence ellipses are still in the basin of attraction for 
the corresponding equilibrium, but when we set 0.2  , the confidence ellipses become larger and cross 
the dividing line into the attraction basin of another equilibrium state. As can be seen from Figure 8(a), 
the random trajectory will enter into another IHSS equilibrium. The random trajectory oscillates back 
and forth between the equilibrium A . In Figure 8(b), when we set 0.2  , the random trajectory 
will be equally possible to enter into the HSS equilibria B . The motion of the stochastic system at 
the equilibria B  will be given in the calculation results in the following subsection. Figure 9 shows 
the time history diagram and stochastic bifurcation diagram of the corresponding stochastic system.  

      

(a)                                      (b) 

Figure 8. The attraction basin of equilibrium A   (by color) and the corresponding 
confidence ellipse for 0.1    (small ellipse) and 0.2    (large ellipse) in the 
deterministic system with the fixed parameter (a) 1.28e   and (b) 1.9e  . 

    

(a)                                  (b) 

Figure 9. (a) Time history diagrams for 1.9e    and 0.2   . (b) Bifurcation diagram 
between the noise intensity and the coordinate y . 
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4.2. Random sensitivity analysis of the equailibrium points B  

Considering the random sensitivity matrix equation corresponding to the equilibrium point B , 
we get the following random senstivity matrix: 
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4 4( )( 2 ( ))e k e e k k e k k         . However, when HSS equilibria B   enters the 

stable state, 4 0   . Figure 10 shows the eigenvalue of the stochastic sensitivity matrix of the 

equilibrium points B   described by the function with parameter e   as the independent variable. 
Similar to Figure 7, the random sensitivity of the system will change as e  changes. 

 

Figure 10. Eigenvalue function of the random sensitivity matrix for the equilibrium point B . 

Figure 11 shows the confidence ellipses of the large and small noise intensity when the point B  
are stable fixed points. The confidence ellipse then degenerates into a line segment. As can be seen 
from the figure, when we set 1.9e    and 0.3   , the confidence ellipse is still in the basin of 
attraction of the corresponding equilibrium, but when 0.5  , the confidence ellipse becomes larger 
and crosses the boundary entering into the attraction basin of the another equilibrium. The random 
trajectory of system (2) jumps back and forth between B  and B . However, due to the property of 
the confidence ellipse, the system cannot jump into the equilibrium point A . When we set 3e   
and 0.5  , the random will not cause the transition between two equilibria. Further, when 1  , 
the phenomenon of transition of the equilibrium point can be observed. The corresponding time history 
is shown in Figure 4 (c). 
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(a)                                  (b) 

 

(c)                                (d) 

Figure 11. The confidence ellipse described by the attraction basin of the equilibrium point 
B  for the deterministic system with (a)  1.9e  , 0.3   (b)  1.9e  , 0.5  , (c) 3e  , 

0.5  , and (d) 3e  , 1  . 

5. Conclusions and discussions 

The phenomenon of a pair of VDP oscillator affected by Gaussian white noise was studied. In 
this paper, we showed that the random noise can produce mixed-mode oscillations in the parameter 
region for the deterministic model having only the stable equilibrium point as the attractor. The 
phenomenon of spontaneous mixed-mode oscillation induced by noise was studied using the semi-
analytic method based on the random sensitivity function and confidence ellipse. 

The results showed that the mechanism of this phenomenon can be explained by the specificity 
of the attraction basin and the random sensitivity of the equilibrium point. When a random noise term 
was introduced into the system, the system vibrated around the equilibrium point. The greater the 
random noise intensity, the larger the confidence ellipse of system vibration. When the confidence 
ellipse crossed the boundary of the attraction basin at that point, the system would no longer vibrate 
around this equilibrium point. It jumped into a different equilibrium point. It is worth noting that when 
the system parameters allowed the system to have two equilibrium points of A   and B  , the 
deterministic system at A  would vibrate around the equilibrium point of B  and would not return 
to A  after the random strength became more larger. This article can give us a better understanding 
of the behavior of nonlinear dynamical systems. This study opened up new avenues for further research. 
For example, it would be very interesting to study how different types of noise (e.g., Gaussian noise, 
Poisson noise, etc.) affect the behavior of VDP oscillators and other similar systems. 
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