Aiming at improving the operating efficiency of air freight station, the problem of optimizing the sequence of inbound/outbound tasks meanwhile scheduling the actions of elevating transfer vehicles (ETVs) is discussed in this paper. First of all, the scheduling model in airport container storage area, which considers not only the influence of picking sequence, optimal ETVs routing without collision, but also the assignment of input and output ports, is established. Then artificial bee colony (ABC) is proposed to solve the above scheduling issue. For further balancing the abilities of exploration and exploitation, improved multi-dimensional search (IMABC) algorithm is proposed where more dimensions will be covered, and the best dimension of the current optimal solution is used to guide the evolutionary direction in the following exploitation processes. Numerical experiments show that the proposed method can generate optimal solution for the complex scheduling problem, and the proposed IMABC outperforms original ABC and other improved algorithms.
Citation: Haiquan Wang, Hans-Dietrich Haasis, Menghao Su, Jianhua Wei, Xiaobin Xu, Shengjun Wen, Juntao Li, Wenxuan Yue. Improved artificial bee colony algorithm for air freight station scheduling[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13007-13027. doi: 10.3934/mbe.2022607
Aiming at improving the operating efficiency of air freight station, the problem of optimizing the sequence of inbound/outbound tasks meanwhile scheduling the actions of elevating transfer vehicles (ETVs) is discussed in this paper. First of all, the scheduling model in airport container storage area, which considers not only the influence of picking sequence, optimal ETVs routing without collision, but also the assignment of input and output ports, is established. Then artificial bee colony (ABC) is proposed to solve the above scheduling issue. For further balancing the abilities of exploration and exploitation, improved multi-dimensional search (IMABC) algorithm is proposed where more dimensions will be covered, and the best dimension of the current optimal solution is used to guide the evolutionary direction in the following exploitation processes. Numerical experiments show that the proposed method can generate optimal solution for the complex scheduling problem, and the proposed IMABC outperforms original ABC and other improved algorithms.
[1] | D. W. Alexander, R. Merkert, Challenges to domestic air freight in Australia: evaluating air traffic markets with gravity modelling, J. Air Transp. Manage., 61 (2017), 41–55. https://doi.org/10.1016/j.jairtraman.2016.11.008 doi: 10.1016/j.jairtraman.2016.11.008 |
[2] | C. H. Guo, Research on application of scheduling optimization of ETV based on improved genetic algorithm, Logist. Sci-Tech, 38 (2015), 61–69. https://doi.org/10.13714/j.cnki.1002-3100.2015.10.019 doi: 10.13714/j.cnki.1002-3100.2015.10.019 |
[3] | J. D. Qiu, Z. Y. Jiang, M. N. Tang, Research and application of NLAPSO algorithm to ETV scheduling optimization in airport cargo terminal, J. Lanzhou Jiaotong Univ., 34 (2015), 65–70. https://doi.org/10.3969/j.issn.1001-4373.2015.01.013 doi: 10.3969/j.issn.1001-4373.2015.01.013 |
[4] | B. Lei, Study on two-ETV task scheduling of airport cargo terminal based on expert system, Logist. Sci-Tech, 38 (2015), 13–16. https://doi.org/10.13714/j.cnki.1002-3100.2015.03.004 doi: 10.13714/j.cnki.1002-3100.2015.03.004 |
[5] | F. Ding, X. J. Song, Application of shared fitness particle swarm in double ETV system, Comput. Meas. Control, 26 (2018), 228–247. https://doi.org/10.16526/j.cnki.11-4762/tp.2018.11.050 doi: 10.16526/j.cnki.11-4762/tp.2018.11.050 |
[6] | H. Q. Wang, J. H. Wei, S. J. Wen, H. N. Yu, X. G. Zhang, Improved artificial bee colony algorithm and its application in classification, J. Rob. Mechatron., 30 (2018), 921–926. https://doi.org/10.20965/jrm.2018.p0921 doi: 10.20965/jrm.2018.p0921 |
[7] | L. Z. Cui, G. H. Li, Y. L. Luo, F. Chen, Z. Ming, N. Lu, et al., An enhanced artificial bee colony algorithm with dual-population framework, Swarm Evol. Comput., 43 (2018), 184–206. https://doi.org/10.1016/j.swevo.2018.05.002 doi: 10.1016/j.swevo.2018.05.002 |
[8] | L. Z. Cui, G. H. Li, Z. X. Zhu, Q. Z. Lin, Z. K. Wen, N. Lu, et al., A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization, Inf. Sci., 414 (2017), 53–67. https://doi.org/10.1016/j.ins.2017.05.044 doi: 10.1016/j.ins.2017.05.044 |
[9] | D. Karaboga, B. Basturk, Artificial bee colony optimization algorithm for solving constrained optimization problems, in Foundations of Fuzzy Logic and Soft Computing, (2007), 789–798. https://doi.org/10.1007/978-3-540-72950-1_77 |
[10] | Y. C. Li, J. Wang, L. B. Liu, J. Zhao, Improved artificial bee algorithm for reliability-based optimization of truss structures, Open Civ. Eng. J., 11 (2017), 235–243. https://doi.org/10.2174/1874149501711010235 doi: 10.2174/1874149501711010235 |
[11] | K. P. Luo, A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem, Eng. Optim., 52 (2019), 1421–1440. https://doi.org/10.1080/0305215X.2019.1657113 doi: 10.1080/0305215X.2019.1657113 |
[12] | A. K. Alazzawi, H. Rais, S. Basri, Y. A. Alsariera, PhABC: A hybrid artificial bee colony strategy for t-way test set generation with constraints support, in 2019 IEEE Student Conference on Research and Development, (2019), 106–111. https://doi.org/10.1109/scored.2019.8896324 |
[13] | F. Weidinger, Picker routing in rectangular mixed shelves warehouses, Comput. Oper. Res., 95 (2018), 139–150. https://doi.org/10.1016/j.cor.2018.03.012 doi: 10.1016/j.cor.2018.03.012 |
[14] | J. J. Zhou, X. F. Yao, A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition, Int. J. Adv. Manuf. Technol., 88 (2017), 3371–3387. https://doi.org/10.1007/s00170-016-9034-1 doi: 10.1007/s00170-016-9034-1 |
[15] | G. Chen, P. Sun, J. Zhang, Repair strategy of military communication network based on discrete artificial bee colony algorithm, IEEE Access, 8 (2020), 73051–73060. https://doi.org/10.1109/ACCESS.2020.2987860 doi: 10.1109/ACCESS.2020.2987860 |
[16] | M. Ghanem, A. Jantan, A novel hybrid artificial bee colony with monarch butterfly optimization for global optimization problems, in First EAI International Conference on Computer Science and Engineering, (2017), 27–38. http://dx.doi.org/10.4108/eai.27-2-2017.152257 |
[17] | X. Chen, X. Wei, G. X. Yang, W. L. Du, Fireworks explosion based artificial bee colony for numerical optimization, Knowledge-Based Syst., 188 (2020), 105002. https://doi.org/10.1016/j.knosys.2019.105002 doi: 10.1016/j.knosys.2019.105002 |
[18] | P. J. Gaidhane, M. J. Nigam, A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems, J. Comput. Sci., 27 (2018), 284–302. https://doi.org/10.1016/j.jocs.2018.06.008 doi: 10.1016/j.jocs.2018.06.008 |
[19] | Z. P. Liang, K. F. Hu, Q. X. Zhu, Z. X. Zhu, An enhanced artificial bee colony algorithm with adaptive differential operators, Appl. Soft Comput., 58 (2017), 480–494. https://doi.org/10.1016/j.asoc.2017.05.005 doi: 10.1016/j.asoc.2017.05.005 |
[20] | F. Y. Xu, H. L. Li, C. M. Pun, H. D. Hu, Y. J. Li, Y. R. Song, et al., A new global best guided artificial bee colony algorithm with application in robot path planning, Appl. Soft Comput., 88 (2020), 106037. https://doi.org/10.1016/j.asoc.2019.106037 doi: 10.1016/j.asoc.2019.106037 |
[21] | X. Y. Song, M. Zhao, Q. F. Yan, S. G. Xing, A high-efficiency adaptive artificial bee colony algorithm using two strategies for continuous optimization, Swarm Evol. Comput., 50 (2019), 100549. https://doi.org/10.1016/j.swevo.2019.06.006 doi: 10.1016/j.swevo.2019.06.006 |
[22] | W. F. Gao, Z. F. Wei, Y. T. Luo, J. Cao, Artificial bee colony algorithm based on parzen window method, Appl. Soft Comput., 74 (2019), 679–692. https://doi.org/10.1016/j.asoc.2018.10.024 doi: 10.1016/j.asoc.2018.10.024 |
[23] | H. Wang, W. J. Wang, S. Y. Xiao, Z. H. Cui, M. Y. Xu, X. Y. Zhou, Improving artificial bee colony algorithm using a new neighborhood selection mechanism, Inf. Sci., 527 (2020), 227–240. https://doi.org/10.1016/j.ins.2020.03.064 doi: 10.1016/j.ins.2020.03.064 |
[24] | S. Q. Zhang, J. F. Teng, J. H. Gu, Artificial bee algorithm based on multi-dimensional greedy search, Comput. Eng., 40 (2014), 189–193. https://doi.org/10.3969/j.issn.1000-3428.2014.11.037 doi: 10.3969/j.issn.1000-3428.2014.11.037 |
[25] | W. L. Xiang, X. L. Meng, Y. Z. Li, R. C. He, M. Q. An, An improved artificial bee colony algorithm based on the gravity model, Inf. Sci., 429 (2018), 49–71. https://doi.org/10.1016/j.ins.2017.11.007 doi: 10.1016/j.ins.2017.11.007 |
[26] | H. Q. Wang, M. H. Su, R. Zhao, X. B. Xu, H. D. Haasis, J. H. Wei, et al., Improved multi-dimensional bee colony algorithm for airport freight station scheduling, preprint, arXiv: 2207.11651. |
[27] | H. Q. Wang, J. H. Wei, M. H. Su, Z. Dong, S. S. Zhang, Task set scheduling of airport freight station based on parallel artificial bee colony algorithm, in Bio-inspired Computing: Theories and Applications, (2019), 484–492. https://doi.org/10.1007/978-981-15-3425-6_37 |
[28] | J. C. Bansal, A. Gopal, A. K. Nagar, Stability analysis of artificial bee colony optimization algorithm, Swarm Evol. Comput., 41 (2018), 9–19. https://doi.org/10.1016/j.swevo.2018.01.003 doi: 10.1016/j.swevo.2018.01.003 |