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Abstract: Aiming at improving the operating efficiency of air freight station, the problem of 

optimizing the sequence of inbound/outbound tasks meanwhile scheduling the actions of elevating 

transfer vehicles (ETVs) is discussed in this paper. First of all, the scheduling model in airport container 

storage area, which considers not only the influence of picking sequence, optimal ETVs routing 

without collision, but also the assignment of input and output ports, is established. Then artificial bee 

colony (ABC) is proposed to solve the above scheduling issue. For further balancing the abilities of 

exploration and exploitation, improved multi-dimensional search (IMABC) algorithm is proposed 

where more dimensions will be covered, and the best dimension of the current optimal solution is used 

to guide the evolutionary direction in the following exploitation processes. Numerical experiments 

show that the proposed method can generate optimal solution for the complex scheduling problem, 

and the proposed IMABC outperforms original ABC and other improved algorithms. 

Keywords: air freight station; dual elevating transfer vehicles; cargo flow schedule; artificial bee 
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1. Introduction  

The economy of China is expanding rapidly with the increasing demand for air freight services. 

Since 2008, China’s air cargo and postal transport volume maintains sustained growth, from 4.076 

million tons in 2008 to 8.632 million tons in 2020 [1], meanwhile the products needed to be transported 

become more diversified, a large amount of high value-added goods including fresh goods, seasonal 

or precious commodities appear. In other words, the situations of multi batch, small batch, fast 

transportation are more prominent, and higher real-time requirement is presented compared with other 

logistics industries. 

In order to improve the efficiency of air freight transport system, an efficient automated multi-

dimensional warehouse with ETVs needs to be established, and as the basis of the system, a proper 

scheduling strategy considering the assignment of cargo locations as well as the sequence of 

inbound/outbound tasks should be designed. 

From limited references in the past few years, the relevant research mainly focus on deciding the 

cargoes’ transportation sequence. Guo [2] and Qiu et al. [3] studied the inbound and outbound cargoes 

scheduling problem with single ETV and solved it with particle swarm optimization (PSO) algorithm. 

Different from the above single ETV scheduling problem, Lei [4] discussed the task scheduling 

problem with dual ETVs considering collision avoidance and introduced expert system to improve the 

operation efficiency. Ding [5] proposed task chain generation algorithm with improved shared fitness 

strategy and applied it to assign two ETVs to different cargo areas. 

The works mentioned above developed different scheduling models with considering picking 

sequence and ETV routing, but they neglected to discuss the problem of assignment of input and output 

ports (I/O ports) if the air freight station has several entrances and exits. On the other hand, previous 

scheduling problems have been solved with different intelligent algorithms, but a more efficient 

algorithm needs to be designed for improving the efficiency and accuracy as the problems become 

more complex. In our research, ABC algorithm which possesses strong global optimization ability and 

few parameters [6–9] is first introduced to solve the scheduling problem in air freight transport system. 

Actually, as one of the most recently defined bio-inspired algorithms, ABC is motivated by the 

swarm intelligence behaviors of gregarious colony, and it has been proved to be useful in solving 

various engineering problems, such as civil engineering design [10], aerospace industry [11], software 

testing [12], logistics warehouse management [13], manufacturing production [14], communication 

problem [15] and so on. However, it often suffers from the problems of poor exploitation and slow 

convergence, so developing new search mechanisms is crucial for complex optimization problems. 

Recently, other metaheuristic algorithms were introduced and combined with traditional ABC to 

improve its performance. Ghanem et al. [16] incorporated monarch butterfly optimization into ABC. 

The firework explosion search mechanism was introduced to explore the potential food sources of 

ABC in [17]. Gaidhane et al. [18] mixed ABC with grey wolf optimizer to balance the exploration and 

exploitation capabilities. Liang et al. [19] introduced differential operator in employed bee phase and 

revised the selection probability to be a step function. Moreover, another improving idea was to replace 

the single search strategy in original ABC with two or more search strategies. Xu et al. [20] introduced 

differential evolution strategy in employed bee phase to accelerate its convergence and adopted the 
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global best position to guide the following updating processes in onlooker bee phase which could 

enhance the local search ability. Literature [21] proposed two search strategies with the help of the 

information of the best-so-far solution and the mean of two random solutions. In [22], three search 

strategies with different characteristics were employed to construct a strategy candidate pool, and the 

Parzen window method was applied to select the best candidate individuals. Two new search strategies 

were adopted based on the k-neighborhood of best solution in [23] which didn’t need to calculate the 

selection probability. Different from the above literatures, from the perspective of improving the search 

mechanism, Zhang et al. [24] proposed a new search mechanism named full-dimensional ABC 

algorithm (fdABC), it was executed with all dimensions of each solution thus the search area could be 

expanded and the probability of obtaining the optimal solution could be improved. Although the 

proposed algorithm possessed better optimization performance especially for high-dimensional 

optimization problems, the time cost increased substantially because more dimensions needed to be 

updated compared with traditional ABC. In this paper, improvement on the search mechanisms is 

introduced and applied to solve the scheduling problem in air freight station. 

The main features that distinguish this study from previous studies are presented below. a) For 

solving the tasks scheduling problem in airport container storage area with several I/O ports, the model 

considering the assignment of I/O ports, as well as the optimization of picking sequence and ETVs’ 

travelling route is first established. The proposed modeling method could be applied to all scheduling 

problems of storage systems in fast moving consumer goods industry, e-commerce industry and 

logistics industry; b) In order to balance the abilities of exploration and exploitation of ABC algorithm, 

two improvements on search mechanisms are proposed. Different from original ABC that only one 

dimension is randomly updated, improvement is realized by saving the most valuable dimension of 

current solution and guiding the direction of subsequent exploration. Related improvement could be 

adopted to solve all optimization and scheduling problems in engineering fields. 

The rest of this paper is organized as follows: Section 2 introduces the scheduling model with 

dual ETVs in the freight station of Luoyang Beijiao Airport. Then ABC and IMABC algorithms are 

proposed in Section 3, and their optimization performance is verified on benchmark functions. In 

Section 4, the improved algorithms are applied to the dual ETVs scheduling problem and their 

effectiveness is proved. Finally, the above work is summarized. 

2. Modeling of the scheduling problem 

2.1. System description 

The air freight station in Luoyang Beijiao Airport consists of three parts, which are container 

storage area, bulk cargo storage area, and unhandled cargo area respectively as shown in Figure 1. 

As the core of the whole system, the container storage area is used for handling the containerized 

cargoes, which are unloaded from aircraft in the airside or inbounded from the bulk cargo storage area 

in the landside. It is a three-dimensional warehouse with two rows of shelves and 16 I/O ports, each 

row has eight layers and 60 columns, the total slots are 60 × 8 × 2 = 960. Two ETVs are employed 

for handling cargoes between the 14 I/O ports in airside and the two I/O ports in landside, and each 

ETV is responsible for half of the shelf and I/O ports.  

The operational process of the two ETVs is depicted as Figure 2 (some columns and I/O ports are 

omitted). ETVs start from R1 and R3 respectively, the 1# ETV picks up cargo at entrance R2, and stores 
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it at I1. And then, it retrieves outbound cargo from O2 and delivers it to the exit C1. The same actions 

are executed with 2# ETV from R3 to C2.  

 

Figure 1. The structure of air freight station. 

 

Figure 2. Operational process of dual ETVs. 

Obviously, in order to improve the efficiency of cargo transportation in the container storage area, 

the sequence of inbound/outbound tasks as well as the corresponding I/O ports need to be scheduled, 

meanwhile the actions of ETVs should be optimized to obtain the minimum running time. 

2.2. Model formulations 

For solving the scheduling problem, the objective function should be established firstly based on 

the notations defined in Table 1. 
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Table 1. Definition of notations. 

Indices Description 

�  The horizontal direction 

�  The vertical direction 

�  The number of columns between two slots in the shelf 

�  The number of layers between two slots in the shelf 

�  Task number, � = 1, 2, ..., � 

�  Number of ETV, � = 1, 2 

Parameters Description 

��  the horizontal travelling speeds of ETV, �� = 120(�/ ���) 

��  the vertical travelling speeds of ETV, �� = 20(�/ ���) 

��  the horizontal acceleration of ETV, �� = 0.5(�/��) 

��  the vertical acceleration of ETV, �� = 0.3(�/��) 

���  
the time needed to travel horizontally from static to the maximum speed and immediately decreases to 0, 

��� = 2 ×
��

��
= 8(�) 

���  
the time needed to lift vertically from static to the maximum speed and immediately decreases to 0,  

��� = 2 ×
��

��

= 2.2(�) 

��  
the total travelling distance needed to travel from static to the maximum speed or from maximum speed to 0, 

�� =
�

�
× �� × ���

� = 8(�) 

��   
the total lifting distance needed to travel from static to the maximum speed or from maximum speed to 0, 

�� =
�

�
× �� × ���

� = 0.36(�) 

�  width of the storage location, � = 3.75(�) 

ℎ  height of the storage location, ℎ = 3.75(�) 

�  the execution time for ETV to load or unload cargoes, � = 25(s) 

Variables Description 

���  the time needed to move between two positions whose interval is � in horizontal direction 

���   the time taken to move between two positions whose interval is � in vertical direction 

���
  for the i-th task, the running time needed for travelling from the current position to the nearest I/O port 

���
  The time of the i-th task for travelling from the current position to the scheduled target. 

��  working area of 1# ETV, 1 ≤ �� ≤ 30 

��  working area of 2# ETV, 31 ≤ �� ≤ 60 

����  the total time of the j-th ETV needed to finish the scheduled task 

If there are several inbound and outbound tasks in the storage area, the objective of optimized 

problem which is named as fitness function is to minimize the total execution time Hmax between two 

ETVs under the constraints in Eq (2). 

Minimize   ���� = max {����, ����}                       (1) 

s. t. 

�
|�� − ��| ≥ 4

��� = ���1 ∪ ���2, ���1 ≠ ���2
                        (2) 

���� = ∑ (���
+ ���

) + 2���
���                           (3) 



13012 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13007-13027. 

The first constraint in Eq (2) ensures that the columns between two ETVs at any time are no less 

than four, which could avoid collision with each other. As the task set is divided into two equal parts 
and assigned to two ETVs, the second constraint avoids repeated allocation. The time ���� in Eq (3) 

is defined as the summation of execution time ��� and ���
 of � tasks assigned to the specific ETV, 

it is the total time cost for picking up, releasing as well as transporting all assigned cargoes. Here the 
execution time ��� and ���

 corresponding to different tasks can be obtained from Table 2 (Only the 

values corresponding to the first five layers and six columns are listed), which are calculated from 

Eqs (4) and (5). The first row and first column of Table 2 respectively represent the number of 

difference of rows and columns between the start position and destination in the shelf. 

�
��� = 2 ∗ �

�∗�

��
, � ∗ � ≤ ��;

��� = ��� +
�∗����

��
,   � ∗ � > ��.

                    (4) 

�
��� = 2 ∗ �

�∗�

��
, ℎ ∗ � ≤ ��;

��� = ��� +
�∗����

��
, ℎ ∗ � > ��.

                        (5) 

Table 2. The execution time matrix of ETV. 

 1 2 3 4 5 6 
1 0 5.47 7.74 9.62 11.50 13.37 
2 11.62 11.62 11.62 11.62 11.62 13.37 
3 22.87 22.87 22.87 22.87 22.87 22.87 
4 34.12 34.12 34.12 34.12 34.12 34.12 

5 45.37 45.37 45.37 45.37 45.37 45.37 

For solving the above nonlinear scheduling problem, an effective optimization algorithm should 

be introduced. 

3. ABC algorithm and its improvements 

3.1. ABC algorithm 

ABC is an optimization algorithm based on the intelligent foraging behavior of honeybee swarm, 

where the bee colony consists of three groups: employed bees, onlooker bees and scout bees. The 

position of a food source represents an optimal solution of the specific problem, and its quality could 

be evaluated through the fitness value of the corresponding solution [9,25]. 

The algorithm starts iterative optimization from employed bee phase, it executes a crossover and 

mutation process with one randomly chosen companion, and the new solution ���
�  is updated based 

on ��� as shown in Eq (6). Then the fitness value of each solution fitnessm could be calculated, and 

the onlooker bee randomly chooses to exploit or not around corresponding employed bee with the 

probability Pm defined as Eq (7). If the current mth solution to be exploited cannot improve for several 

iterations, it will be abandoned, and a scout bee corresponding to a new randomly produced solution 
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will replace it.  

���
� = ��� + ����(−1,1) ∗ (��� − ���)                     (6) 

�� =
��������

∑ ��������
��
���

                               (7) 

where m, � represent the indices of specific solution in the population, �, � ∈ {1,2, … , �} � ≠ �. 

� is the dimension of the population, � ∈ {1,2, … , �}. ����(−1, 1) is a random number between 

[-1, 1]. �� is the number of food sources as well as the number of employed bees. 

3.2. The improved ABC algorithm 

In ABC algorithm, for each solution, only one dimension is randomly selected and updated 

according to Eq (6) in employed bee phase and onlooker bee phase. In this case, the updated dimension 

may be different in each iteration and the optimal dimension obtained in the previous iteration is likely 

to be omitted in the following iterations. Thus, the search toward the possible optimal solutions is 

unable to be continued, the optimization accuracy and the convergence speed will be affected. 

In [23], full dimensional search strategy (fdABC) is introduced to traverse all dimensions of the 

solution and select the optimal dimension for further exploration, therefore the search could be 

extended and the possibility of obtaining optimal solution will be improved, but the optimization time 

increases inevitably. Another improvement called random multi-dimensional artificial bee colony 

algorithm (RmdABC) is mentioned in [26], the key improvement of the strategy is to randomly select 

several different dimensions from {1,2, … , �} for one solution, and execute the updated process with 

Eq (6) in the employed bee and onlooker bee phases. Obviously, it randomly traverses any several 

dimensions of the solution in each iteration, and fewer dimensions are updated compared with fdABC, 

as the result, its time complexity could be greatly improved.  

In order to further balance the abilities of exploration and exploitation, IMABC strategy is 

proposed where more valuable dimensions of solution will be picked out and saved in the external set 

which is used to guide the subsequent exploration. The operations of IMABC are shown as Figure 3 

and outlined as follows: 

1) In the first iteration, all dimensions of the solution are searched, and new solutions are generated 

with Eq (6) in employed bee and onlooker bee phases.  

2) The fitness values of the generated solutions need to be compared with the optimal one, and if the 

new solution is superior to the old one, the solution in that dimension could be recognized as having 

the potential to be optimized, thus the optimal solution should be substituted with the generated one, 

the valuable dimension will be recorded in the external set and the flag is set to be one. 

3) In employed bee and onlooker bee phases, after updating all dimensions of the solution, the value 

of flag will be checked. If the flag sign is equal to one, it means there is at least one dimension has 

been updated. If flag sign is zero, it demonstrates that the exploration is failed, and the number of 

iteration trial should increase by 1. 

if  ���� == 1  then  ����� = 0;  

else  ����� = ����� + 1  

When the whole cycle is greater than or equal to the value of MaxCycle, if trial < Limit, the above 
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updating operations based on the stored optimal dimensions should be performed iteratively. If trial > 

Limit, the value of trial resets back to zero and a new random solution will be generated to replace the 

old one. 

Obviously, more dimensions will be explored in IMABC, it could cover more solution space and 

the ability of exploration could be improved compared with ABC algorithm. Meanwhile, with the help 

of the stored optimal dimension searched so far, the speed towards the global optimal solution could 

be accelerated and the ability of exploitation will be enhanced compared with fdABC and RmdABC. 

Therefore, the performance of the exploration and exploitation could be balanced. 

Update all dimensions of 
each solution

Evaluate the generated solutions according 
to their fitness values

Record the best dimension in 
the external file

Update solutions based 
on the stored optimal 
dimension in external 

file

No

Initialization

iter>MaxCycle

Next iteration

End

Yes

 

Figure 3. The flowchart of IMABC. 

The pseudo-code of IMABC is given below. 

Improved Multi-dimensional ABC 

01 Initialization, set the maximum cycle number, the swarm size, the number of dimensions, the value of limit 

02 for iter = 1 to MaxCycle  

   //Employed bee phase 

03    for m = 1 to Number of food sources 

04       flag = 0; 

05       if flag(m) == 0, do 

flag(m) = D, Dim(m,:) = (1:D); 

end if  

06 

07 

08 Temp = 0; //temp is used to temporarily store the number of currently mineable dimensions  

 

09 

//greed strategy on multi-dimension  

for j = 1 to flag(m)  

Continued on next page 
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10    Neighborhood search of employed bees with Eq (6); 

11    Evaluate the fitness value fitness(Solm) with Eq (7); 

12          if fitness(Solm) < fitness(Foodm), do  

13 Foodm = Solm; Dim(m,temp) = Param2Change; sign = 1; temp = temp + 1; 

14 end if 

15 end for 

16 flag(m) = temp; 

17 if sign = 1 do 

 trial = 0;  

else  

trial = trial + 1; 

end if 

18 

19 

20 

21 

22 end for 

// onlooker bee phase 

23 Calculate the probability probm if the onlooker bees choose to exploit around the specific source 

24 for m = 1 to Food Number 

25    sign = 0; 

26    if rand < probm, do 

27       Sign = 0; 

28      if flag(m) == 0, do 

 flag(m) = D, Dim(m,:) = (1:D);     

       end if 

29 

30 

31 Temp = 0; // temp is used to temporarily store the number of currently mineable dimensions 

32 for j = 1 to flag(m)  

33 Neighborhood search of onlooker bees with Eq (6); 

34 Evaluate the fitness values of the generated solutions by Eq (7); 

35 if fitness(Solm) < fitness(Foodm), do  

36 Foodm = Solm; sign = 1; temp = temp + 1; Dim(m,temp) = Param2Change; 

37 end if 

38 end for 

39 flag(m) = temp; 

40 if sign = 1, do  

trial = 0;  

else 

 trial = trial + 1; 

end if 

41 

42 

43 

44 

45 end if 

46 end for 

 //scout bee phase  

47 if trial > limit, do 

48 trial = 0; 

49 randomly generate a new solution 

50 end if 

51 end for  
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3.3. Performance evaluation 

In order to evaluate the performance of the proposed IMABC algorithm, nine CEC 2017 

benchmark functions as listed in Table 3 are employed, where f1(x), f2(x) and f6(x) are unimodal 

functions, and the others are multi-modal functions. All simulations are executed on an Intel Core 

i7-8750H CPU with 8G RAM, the population size is 200, the dimension of solution is set to 60, 80 and 

100 respectively, the number of maximum iterations is set as being 1000, and the limit used in 

scout bee phase is taken 100. Independent experiments are run 20 trials, the indices including the 

mean and standard deviation (Mean ± std dev) which reflect the quality of solution and the stability 

of algorithm, the average running time (Aver-R), the shortest running time (Best-R) and fitness 

value of the optimal solution (Best-F) are selected to evaluate the optimization performance of 

different algorithms. 

Table 3. The benchmark functions. 

Function expression Searching space 
Minimum 
value 

Modality 

f�(�) = ��
� + 10� ∑ ��

��
���   [−100, 100] 0 Unimodal 

f�(�) = ∑ |�� |���� 
���   [−100, 100] 0 Unimodal 

f�(�) = ∑ (100(��
� − ����)� + (�� − 1)�) ���

���   [−100, 100] 0 
Multi-
modal 

��(�) = −20 ���( − 0.2�
�

�
∑ ��

��
��� ) − ���(

�

�
∑ ���( 2���)

�
��� ) +

20 + �  
[−5, 5] 0 

Multi-
modal 

��(�) = ∑ [��
� − 10 ���( 2���) + 10]�

���   [−500, 500] 0 
Multi-
modal 

��(�) = ∑ (|�� + 0.5|)��
���   [−100, 100] 0 Unimodal 

��(�) = ∑ (��
� − 10 ���( 2���) + 10)�

���   [−5.12, 5.12] 0 
Multi-
modal 

�8(�) = ����( ���) + ∑ (�� − 1)�[1 + 10 ����( ��� + 1)]���
��� +

(�� − 1)�[1 + ����( 2���)]  

�� = 1 +
����

�
, ∀� = 1, … , �  

[−10, 10] 0 
Multi-
modal 

�9(�) = −20 ���( − 0.2�
�

�
∑ ��

��
��� ) − ���(

�

�
∑ ���( 2���)�

��� ) +

20 + �  
[−32.768, 32.768] 0 

Multi-
modal 

Tables 4–6 illustrate the optimization results with four different algorithms in different 

dimensions, where the best results among the four indices are highlighted in bold font. As can be seen 

from the tables, all algorithms could solve the nonlinear problems within limited time, the average 

running time Aver-R and the shortest running time Best-R increase from 60 dimensions to 100 

dimensions because more dimensions need to be updated for all algorithms.  
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For functions f3(x), f5(x), f6(x), f7(x) and f8(x), the values of all four indices in each dimension 

corresponding to IMABC are smallest, which means IMABC possesses the highest optimization 

accuracy, the fastest convergence speed as well as the best stability when solves the above functions. 

Another improved algorithm RmdABC gets smaller fitness values and Mean ± std dev values, but it 

takes longer time compared with the one of ABC. On the other hand, it improves the optimization 

efficiency of fdABC at the expense of a worse solution. In other words, RmdABC balances the 

exploration and exploitation abilities of fdABC and ABC.  

In addition, IMABC obtains the lowest values of Mean ± std dev and Best-F, but it takes longer 

running time to obtain optimal solution than ABC algorithm for f2(x), which means that the stability 

and global search ability of IMABC are the best, while its convergence performance is better than 

fdABC and RmdABC because it updates less dimensions. Besides that, as the results of optimizing 

functions f1(x), f4(x) and f9(x), fdABC obtains the best fitness value as well as best stability among 

all algorithms as it executes full-dimensional search and IMABC takes much less time to get the 

optimal solution.  

The curves of fitness values for functions f3(x) under different dimensions are depicted as 

Figures 4–6, and the same conclusions as mentioned above could be obtained. 

Table 4. The performance of IMABC, RmdABC, fdABC and ABC with 60 dimensions. 

  Aver-R(s) Mean ± std dev Best-F Best-R(s) 

 

ABC 111.849 2.320e+5 ± 4.515e+4 1.709e+5 111.4955 

fdABC 253.316 2.929e-252 ± 0 1.416e-252 251.577 

RmdABC 188.172 1.654e-2 ± 1.433e-2 1.49e-4 179.199 

IMABC 29.213 3.469e-159 ± 5.567e-159 1.6314e-160 28.702 

 

ABC 121.258 3.024e+41 ± 6.658e+41 1.593e+36 120.909 

fdABC 676.282 8.680e-255 ± 0 7.047e-258 672.294 

RmdABC 401.083 2.091e-42 ± 4.015e-42 6.660e-46 395.373 

IMABC 229.23419 0 ± 0 0 383.842 

 

ABC 116.400 5490.448 ± 4756.626 4884.468 115.536 

fdABC 284.881 2.33e-3 ± 1.35e-3 1.27e-4 279.176 

RmdABC 212.479 1.1359 ± 0.955 0.323 208.025 

IMABC 79.286 0.0018 ± 0.0020 4.004e-05 78.222 

4( )f x  

ABC 122.561 0.0294 ± 0.0017 0.0266 121.327 

fdABC 266.4800 6.271e-14 ± 3.432e-15 5.773e-14 272.640 

RmdABC 203.594 4.250e-06 ± 3.376e-06 1.808e-07 200.635 

IMABC 58.415 6.306e-14 ± 3.837e-15 5.773e-14 55.179 

��(�) 

ABC 121.356 198.642 ± 12.773 179.002 121.051 

fdABC 250.787 0 ± 0 0 245.425 

RmdABC 190.324 4.145e-06 ± 5.252e-06 2.271e-07 189.681 

IMABC 52.091 0 ± 0 0 51.353288 

��(�) 

ABC 120.309 0.232 ± 0.029 0.177 119.949 

fdABC 224.032 0 ± 0 0 218.470 

RmdABC 178.819 1.262e-08 ± 1.059e-08 4.285e-10 178.200 

IMABC 29.427 0 ± 0 0 28.468 

Continued on next page 

1( )f x

2( )f x

3( )f x
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��(�) 

ABC 123.764 4.449e-09 ± 3.849e-09 5.566e-10 122.544 

fdABC 255.694 0 ± 0 0 254.511 

RmdABC 192.567 4.210e-08 ± 3.580e-08 4.677e-10 190.664 

IMABC 84.560 0 ± 0 0 82.977 

�8(�) 

ABC 127.611 1.354e-05 ± 1.623e-05 2.079e-07 126.884 

fdABC 256.347 0 ± 0 0 254.650 

RmdABC 194.270 8.781e-11 ± 2.043e-10 6.019e-15 192.641 

IMABC 90.816 0 ± 0 0 88.339 

�9(�) 

ABC 125.083 1.694 ± 0.0995 1.518 123.144 

fdABC 221.099 6.484e-14 ± 2.901e-15 5.773e-14 220.187 

RmdABC 195.0828 1.738 ± 3.070 1.224e-05 188.5410 

IMABC 35.2991 0.058 ± 0.183 5.773e-14 34.9160 

Table 5. The performance of IMABC, RmdABC, fdABC and ABC with 80 dimensions. 

  Aver-R(s) Mean ± std dev Best-F Best-R(s) 

 

ABC 186.356 7.443e+7 ± 9.252e+6 6.612e+7 185.785 

fdABC 349.896 9.500e-252 ± 0 1.073e-251 341.500 

RmdABC 254.843 1.830 ± 2.791 0.187 242.967 

IMABC 37.905 2.141e-150 ± 2.160e-150 1.580e-151 37.526 

 

ABC 161.169 7.666e+82 ± 2.424e+83 9.065e+73 157.306 

fdABC 1092.133 5.377e-250 ± 0 9.849e-253 1083.415 

RmdABC 641.927 1.236e-18 ± 3.277e-18 4.733e-22 629.479 

IMABC 385.096 0 ± 0 0 383.842 

 

ABC 153.868 65508.192 ± 5912.818 53885.588 152.849 

fdABC 408.311 0.00517 ± 0.00572 0.000291 393.921 

RmdABC 297.845 2.626 ± 1.258 1.1049 287.474 

IMABC 111.143 0.00295 ± 0.00379 2.251e-05 100.158 

4( )f x  

ABC 155.879 0.152 ± 0.00873 0.140 155.490 

fdABC 381.999 8.757e-14 ± 5.605e-15 7.905e-14 368.461 

RmdABC 279.508 2.649e-05 ± 1.28648e-05 9.587e-06 275.084 

IMABC 79.558 8.900e-14 ± 3.669e-15 8.615e-14 77.818 

��(�)  

ABC 155.747 759.215 ± 50.780 687.486 153.785 

fdABC 351.982 0 ± 0 0 346.306 

RmdABC 275.060 0.0184 ± 0.0096 0.0056 270.149 

IMABC 74.003 0 ± 0 0 72.661 

��(�)  

ABC 151.843 8.142 ± 0.982 6.349 151.444 

fdABC 300.048 0 ± 0 0 297.340 

RmdABC 537.590 6.049e-07 ± 6.005e-07 2.1807e-08 373.611 

IMABC 56.487 0 ± 0 0 53.586 

��(�)  

ABC 162.425 6.674e-08 ± 8.736e-08 1.244e-09 161.965 

fdABC 344.317 0 ± 0 0 341.703 

RmdABC 266.554 3.471e-07 ± 5.419e-07 1.397e-08 260.925 

IMABC 112.593 0 ± 0 0 111.564 

Continued on next page 

 

1( )f x

2( )f x
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�8(�)  

ABC 165.271 2.556e-05 ± 2.445e-05 9.431e-08 164.439 

fdABC 344.205 0 ± 0 0 343.570 

RmdABC 260.079 2.892e-10 ± 3.535e-10 1.326e-14 258.259 

IMABC 121.254 0 ± 0 0 119.521 

�9(�)  

ABC 162.977 3.614 ± 0.087 3.503 161.545 

fdABC 306.928 8.971e-14 ± 3.745e-15 8.615e-14 301.461 

RmdABC 273.895 2.0297e-04 ± 1.3504e-04 9.416e-05 261.859 

IMABC 56.5127 0.086 ± 0.272 7.905e-14 54.828 

Table 6. The performance of IMABC, RmdABC, fdABC and ABC with 100 dimensions. 

  Aver-R(s) Mean ± std dev Best-F Best-R(s) 

 

ABC 223.196 3.787e+8 ± 3.315e+7 3.416e+8 222.774 

fdABC 425.692 2.044e-251 ± 0 1.091e-251 420.020 

RmdABC 303.243 12.037 ± 13.399 0.405 300.169 

IMABC 47.675 2.788e-144 ± 1.955e-144 6.548e-145 47.180 

 

ABC 199.808 2.279e+120 ± 4.714e+120 7.215e+111 197.343 

fdABC 1664.371 1.671e-245 ± 0 6.863e-248 1619.398 

RmdABC 920.823 3.470e-06 ± 9.807e-06 4.151e-09 911.149 

IMABC 583.836 0 ± 0 0 579.155 

 

ABC 189.997 5.919e+3 ± 4.890e+3 4.346e+5 186.093 

fdABC 538.976 0.00884 ± 0.00966 0.001 504.637 

RmdABC 351.792 6.042937 ± 4.06785 1.430 337.071 

IMABC 149.570532 0.00414 ± 0.00539 7.879e-05 128.478 

4( )f x  

ABC 192.425 0.585 ± 0.057 0.476 191.377 

fdABC 733.001 1.1493e-13 ± 3.910e-15 1.110e-13 721.068 

RmdABC 376.785 0.006227 ± 0.00221 0.003694 372.387 

IMABC 100.566 1.167e-13 ± 6.311e-15 1.110e-13 98.099 

��(�) 

ABC 193.990 152.642 ± 8.074 193.287 193.2873 

fdABC 458.470157 0 ± 0 0 452.713643 

RmdABC 574.398 7.97e-4 ± 8.87e-4 8.599e-05 573.802 

IMABC 93.270 0 ± 0 0 92.877 

��(�) 

ABC 189.754 78.395 ± 9.899 63.6545 187.726 

fdABC 637.867 0 ± 0 0 622.008 

RmdABC 289.625 1.379e-07 ± 1.368e-07 1.838e-08 287.601 

IMABC 49.458 0 ± 0 0 48.919 

��(�) 

ABC 202.594 2.755e-08 ± 2.477e-08 6.526e-11 202.314 

fdABC 441.625 0 ± 0 0 433.375 

RmdABC 338.374 1.000e-06 ± 1.085e-06 8.739e-10 328.849 

IMABC 152.650 0 ± 0 0 148.707 

Continued on next page 

1( )f x

2( )f x

3( )f x
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��(�) 

ABC 205.3121 4.432e-05 ± 3.308e-05 2.5522e-06 204.430 

fdABC 444.093 0 ± 0 0 440.009 

RmdABC 332.326 2.141e-08 ± 4.487e-08 2.021e-11 330.175 

IMABC 152.809 0 ± 0 0 150.659 

�9(�) 

ABC 203.890 5.293 ± 0.181 4.981 203.639 

fdABC 406.710 1.1564e-13 ± 6.050e-15 1.039e-13 402.956 

RmdABC 342.476 4.945e-04 ± 3.758e-04 2.069e-4 338.625 

IMABC 77.486 0.012 ± 0.036 1.039e-13 72.511 

 

Figure 4. The fitness values of f3(x) corresponding to different algorithms with 60 dimensions. 

 

Figure 5. The fitness values of f3(x) corresponding to different algorithms with 80 dimensions. 
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Figure 6. The fitness values of f3(x) corresponding to different algorithms with 100 dimensions. 

From the analysis above, it can be seen that the proposed IMABC algorithm is able to produce 

better solutions with higher stability compared with ABC, and costs shorter computational time than 

other improved algorithms. RmdABC which is deduced from fdABC could reduce its time cost, but the 

quality of solution becomes poor because it updates less dimensions. Therefore, the proposed IMABC 

and RmdABC algorithms can balance exploration and exploitation abilities of ABC and fdABC. 

4. Task set schedule with improved ABC algorithms 

The performance of proposed algorithms has been evaluated by solving complex mathematical 

problems above, and they will be applied to solve the scheduling problem in the container storage area 

of Luoyang Beijiao Airport in this section.  

There are 16 entrances and exits in the container storage area of the airport station, the entrance 

coordinates are R1 (1-1-5), R2 (1-1-15), R3 (2-1-20), R4 (1-1-25), R5 (1-1-30), R6 (1-1-35), R7 (1-1-40), 

R8 (1-1-50) and R9 (1-1-60), and the exit coordinates are C1 (1-1-8), C2 (1-1-18), C3 (1-1-28), C4 (1-1-38), 

C5 (2-1-48), C6 (1-1-53) and C7 (1-1-58), where R3, C5 are I/O ports at the landside, and the rest are I/O 

ports at the airside. The first value in the bracket represents the row number of the shelf, the second 

value indicates the number of layer and the third value is the number of column. Table 7 depicts the 

assigned positions and current positions of 60 tasks needed to be scheduled, where the first 30 ones 

are input tasks, and the last 30 ones are output tasks. 

For this constrained optimization problem as shown in Eqs (1) and (2), the solution is the sequence 

of inbound and outbound tasks with dual ETVs, which corresponds to the minimum total time cost as 

Eq (1). In other words, it is a discrete optimization problem, integer encoding scheme mentioned 

in [27] is introduced and random numbers between -10 and 10 are assigned to each dimension of the 

optimized solutions, after sorting them in ascending order based on their values, the corresponding 

scheduling scheme as well as the optimal solution could be obtained. Furthermore, the constraint 

conditions as Eq (2) should be checked for each obtained scheduling scheme in the iterative 
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optimization procedure. If the constraints corresponding to the generated solution are satisfied, the 

solution will be saved and used for further exploration, otherwise a new solution needs to be introduced. 

Comparative studies among four algorithms, including ABC, fdABC, RmdABC and IMABC, are 

executed for the above scheduling problem. The swarm size of all algorithms is set to 200 with 60 

dimensions, the maximum local search time is 50, the stopping criterion is set to 1000 generations. 

Initial populations are generated through uniformly random sampling from the search space. Each 

algorithm is independently tested 20 times. The experiments are performed with an Intel Core i7-8750H 

CPU and 8GB of RAM. 

Table 7. Assigned or current positions of inbound or outbound tasks. 

 
Assigned 
position of 
inbound task 

 
Assigned position 
of inbound task 

 
Current position 
of outbound task 

 
Current position 
of outbound task 

1 I(1-5-10) 16 I(1-8-44) 31 O(1-3-10) 46 O(2-8-10) 

2 I(2-3-14) 17 I(2-8-32) 32 O(1-5-55) 47 O(1-3-32) 

3 I(1-3-23) 18 I(2-3-54) 33 O(1-5-25) 48 O(1-4-50) 

4 I(1-5-26) 19 I(1-3-40) 34 O(2-4-8) 49 O(2-3-38) 

5 I(1-5-30) 20 I(1-4-60) 35 O(2-2-18) 50 O(2-1-58) 

6 I(1-2-18) 21 I(1-3-20) 36 O(2-1-16) 51 O(1-5-24) 

7 I(1-5-24) 22 I(2-2-43) 37 O(2-3-51) 52 O(1-4-30) 

8 I(1-4-40) 23 I(2-4-50) 38 O(1-5-6) 53 O(2-6-40) 

9 I(1-5-40) 24 I(1-6-10) 39 O(2-5-3) 54 O(2-4-35) 

10 I(1-5-35) 25 I(2-7-20) 40 O(1-6-12) 55 O(2-8-51) 

11 I(2-5-23) 26 I(1-6-15) 41 O(2-6-13) 56 O(2-2-30) 

12 I(1-7-43) 27 I(2-8-30) 42 O(2-7-49) 57 O(1-2-60) 

13 I(1-3-48) 28 I(2-2-45) 43 O(1-7-57) 58 O(1-3-26) 

14 I(1-8-50) 29 I(1-7-58) 44 O(1-5-25) 59 O(1-6-35) 

15 I(1-6-21) 30 I(1-4-9) 45 O(2-6-18) 60 O(2-8-45) 

Table 8 presents the optimization results (fitness value which is the scheduling time corresponding 

to the optimal solution) in the first ten trials. It can be seen that all proposed algorithms are able to 

produce high-quality solutions for scheduling problem, the performance of IMABC is better than 

RmdABC and ABC.  

Table 8. The scheduling results with different algorithms. 

 1 2 3 4 5 6 7 8 9 10 

ABC 2783.30 2784.07 2793.17 2793.17 2801.13 2801.13 2789.08 2793.07 2793.17 2783.30 

fdABC 2632.56 2632.56 2631.32 2631.08 2632.56 2632.56 2632.56 2632.56 2632.56 2632.56 

RmdABC 2669.17 2664.82 2675.17 2654.29 2667.66 2660.38 2643.60 2646.47 2653.82 2653.82 

IMABC 2634.83 2634.20 2641.65 2639.56 2625.64 2630.45 2627.47 2624.59 2634.13 2629.54 

Table 9 lists four important indices, they are the average time needed to execute the sequence 
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corresponding to optimal solution in 20 trials (Avg), the fitness value of the best solution (Min), the 

fitness value of the worst solution (Max) and the corresponding running time (CPU time). It is clear that 

the last two proposed algorithms possess better performance as the first three indices decrease by 6% at 

most compared with ABC, but the time needed to obtain the optimal solution is longer. It means 

RmdABC and IMABC can keep the balance between the optimization accuracy and convergence 

speed compared with ABC. Moreover, because fdABC covers more dimensions than other mentioned 

algorithms, the fitness values are better than RmdABC, but the running time is 1.97 and 2.35 times of 

RmdABC and IMABC. 

Table 9. The scheduling results with different algorithms. 

 Min(s) Max(s) Avg(s) CPU time (s) 

ABC 2783.299 2,801.132 2791.459 22,016.33881 

fdABC 2631.078 2632.564 2632.291 114,872.57987 

RmdABC 2643.596 2675.170 2658.920 58,699.41842 

IMABC 2624.589 2641.653 2632.203 48,795.48948 

For the two proposed algorithms, the fitness value obtained by IMABC was a 1% reduction with 

respect to RmdABC and the searching time with IMABC is 83% of RmABC, obviously the 

optimization ability of IMABC is better than RmABC.  

The conclusion also can be obtained from Figure 7 which depicts the average fitness values of 

the optimization problem, the curve slope of fitness values corresponding to the three improved 

algorithms is relatively steeper as compared with ABC, which proves their convergence. And the 

fitness values corresponding to IMABC converges at about 100 iterations, thus its ability of 

convergence could be proved. 

 

Figure 7. The average fitness values with different algorithms. 
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Figure 8. The trajectories of dual ETVs. 

Table 10. Entrance and exit allocation scheme optimized by IMABC. 

 Inbound tasks  Outbound tasks 

1 1, 24, 30 1 31, 34, 38, 39, 40, 41, 46, 60 

2 2, 26 2 35, 36, 45 

3 6, 11, 15, 21, 25 3 33, 44, 47, 51, 52, 56, 58 

4 3, 4, 7 4 49, 53, 54, 59 

5 5, 17, 27 5 42, 48, 55 

6 10 6 32, 37, 43 

7 8, 9, 12, 16, 19, 22, 28 7 50, 57 

8 13, 14, 18, 23   

9 20, 29   

Figure 8 and Table 10 show the corresponding trajectories of two ETVs and the sequence of task 

set optimized with IMABC algorithm respectively. It is clear that the dual ETVs could execute the 

scheduling tasks successfully without conflicting with each other. 

From the above results, the following conclusions could be obtained: 

1) IMABC are valid for solving the complex scheduling problem and they can improve the searching 

ability of traditional ABC algorithm. 

2) fdABC possesses the excellent exploration ability, IMABC could keep the balance between the 

optimization accuracy and convergence speed compared with ABC and fdABC under this 

scheduling background. 

3) For IMABC, with the help of the current optimal dimensions, the convergence speed could be 

improved compared with fdABC and RmdABC. 

5. Conclusions 

In this paper, in order to improve the efficiency in the container storage area of airport cargo 
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terminal, a study on scheduling of cargoes sequence and the action of ETV with ABC algorithms was 

performed. The dual ETVs scheduling model was established which considered the assignment of I/O 

ports as well as the trajectory of two ETVs with the constraint of avoiding collisions, and improved 

IMABC algorithm was proposed to solve this scheduling problem more effective. The computational 

experiments were carried out and the results proved the proposed algorithm could effectively avoid 

conflicts and generate optimal scheduling sequences.  

ABC and corresponding improved algorithms have been proved to be effective in solving the 

scheduling problem, but the time cost for obtaining the optimal solution is high because of the iterative 

calculations. Improving its efficiency with appropriate methods, such as parallelization, can make the 

algorithm more useful especially in the scheduling problems. In addition, how to choose appropriate 

control parameters for different optimization issues is a problem in ABC and improved algorithms as 

with other metaheuristic algorithms. This problem has not been investigated sufficiently in the 

literature. Therefore, designing a general principle for tuning the control parameters of ABC can be 

addressed as a searching subject in future studies. 

Acknowledgments 

This work was supported by International joint research center for logistics management and 

engineering in Zhongyuan University of Technology, as well as the High-end foreign expert program 

of Ministry of Science and Technology, grant number G2021026006L; the Training Program for Young 

Teachers in Universities of Henan Province, grant number 2020GGJS137; the NSFC-Zhejiang Joint 

Fund for the Integration of Industrialization and Informatization, grant number U1709215; the 

Zhejiang Province Key R & D projects, grant number No. 2019C03104; the Key Scientific Research 

Projects of Henan Province, grant number 22A413011; Henan Province Science and Technology R & 

D projects, grant number 202102210135, 212102310547 and 212102210080; National Nature Science 

Foundation of China, grant number U1813201, 72101033 and 71831001; Beijing Natural Science 

Foundation Project grant number KZ202210037046; Canal Plan-Youth Top-notch Talent Project of 

Beijing Tongzhou District, grant number YHQN2017014. 

Conflict of interest 

The authors declare there are no conflicts of interest. 

References 

1. D. W. Alexander, R. Merkert, Challenges to domestic air freight in Australia: evaluating air traffic 

markets with gravity modelling, J. Air Transp. Manage., 61 (2017), 41–55. 

https://doi.org/10.1016/j.jairtraman.2016.11.008 

2. C. H. Guo, Research on application of scheduling optimization of ETV based on improved genetic 

algorithm, Logist. Sci-Tech, 38 (2015), 61–69. https://doi.org/10.13714/j.cnki.1002-

3100.2015.10.019 

3. J. D. Qiu, Z. Y. Jiang, M. N. Tang, Research and application of NLAPSO algorithm to ETV 

scheduling optimization in airport cargo terminal, J. Lanzhou Jiaotong Univ., 34 (2015), 65–70. 

https://doi.org/10.3969/j.issn.1001-4373.2015.01.013 



13026 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13007-13027. 

4. B. Lei, Study on two-ETV task scheduling of airport cargo terminal based on expert system, Logist. 

Sci-Tech, 38 (2015), 13–16. https://doi.org/10.13714/j.cnki.1002-3100.2015.03.004 

5. F. Ding, X. J. Song, Application of shared fitness particle swarm in double ETV system, Comput. 

Meas. Control, 26 (2018), 228–247. https://doi.org/10.16526/j.cnki.11-4762/tp.2018.11.050 

6. H. Q. Wang, J. H. Wei, S. J. Wen, H. N. Yu, X. G. Zhang, Improved artificial bee colony algorithm 

and its application in classification, J. Rob. Mechatron., 30 (2018), 921–926. 

https://doi.org/10.20965/jrm.2018.p0921 

7. L. Z. Cui, G. H. Li, Y. L. Luo, F. Chen, Z. Ming, N. Lu, et al., An enhanced artificial bee colony 

algorithm with dual-population framework, Swarm Evol. Comput., 43 (2018), 184–206. 

https://doi.org/10.1016/j.swevo.2018.05.002 

8. L. Z. Cui, G. H. Li, Z. X. Zhu, Q. Z. Lin, Z. K. Wen, N. Lu, et al., A novel artificial bee colony 

algorithm with an adaptive population size for numerical function optimization, Inf. Sci., 414 

(2017), 53–67. https://doi.org/10.1016/j.ins.2017.05.044 

9. D. Karaboga, B. Basturk, Artificial bee colony optimization algorithm for solving constrained 

optimization problems, in Foundations of Fuzzy Logic and Soft Computing, (2007), 789–798. 

https://doi.org/10.1007/978-3-540-72950-1_77 

10. Y. C. Li, J. Wang, L. B. Liu, J. Zhao, Improved artificial bee algorithm for reliability-based 

optimization of truss structures, Open Civ. Eng. J., 11 (2017), 235–243. 

https://doi.org/10.2174/1874149501711010235 

11. K. P. Luo, A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling 

problem, Eng. Optim., 52 (2019), 1421–1440. https://doi.org/10.1080/0305215X.2019.1657113 

12. A. K. Alazzawi, H. Rais, S. Basri, Y. A. Alsariera, PhABC: A hybrid artificial bee colony strategy 

for t-way test set generation with constraints support, in 2019 IEEE Student Conference on 

Research and Development, (2019), 106–111. https://doi.org/10.1109/scored.2019.8896324 

13. F. Weidinger, Picker routing in rectangular mixed shelves warehouses, Comput. Oper. Res., 95 

(2018), 139–150. https://doi.org/10.1016/j.cor.2018.03.012 

14. J. J. Zhou, X. F. Yao, A hybrid artificial bee colony algorithm for optimal selection of QoS-based 

cloud manufacturing service composition, Int. J. Adv. Manuf. Technol., 88 (2017), 3371–3387. 

https://doi.org/10.1007/s00170-016-9034-1 

15. G. Chen, P. Sun, J. Zhang, Repair strategy of military communication network based on discrete 

artificial bee colony algorithm, IEEE Access, 8 (2020), 73051–73060. 

https://doi.org/10.1109/ACCESS.2020.2987860 

16. M. Ghanem, A. Jantan, A novel hybrid artificial bee colony with monarch butterfly optimization 

for global optimization problems, in First EAI International Conference on Computer Science 

and Engineering, (2017), 27–38. http://dx.doi.org/10.4108/eai.27-2-2017.152257 

17. X. Chen, X. Wei, G. X. Yang, W. L. Du, Fireworks explosion based artificial bee colony for 

numerical optimization, Knowledge-Based Syst., 188 (2020), 105002. 

https://doi.org/10.1016/j.knosys.2019.105002 

18. P. J. Gaidhane, M. J. Nigam, A hybrid grey wolf optimizer and artificial bee colony algorithm for 

enhancing the performance of complex systems, J. Comput. Sci., 27 (2018), 284–302. 

https://doi.org/10.1016/j.jocs.2018.06.008 

19. Z. P. Liang, K. F. Hu, Q. X. Zhu, Z. X. Zhu, An enhanced artificial bee colony algorithm with 

adaptive differential operators, Appl. Soft Comput., 58 (2017), 480–494. 

https://doi.org/10.1016/j.asoc.2017.05.005 



13027 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13007-13027. 

20. F. Y. Xu, H. L. Li, C. M. Pun, H. D. Hu, Y. J. Li, Y. R. Song, et al., A new global best guided 

artificial bee colony algorithm with application in robot path planning, Appl. Soft Comput., 88 

(2020), 106037. https://doi.org/10.1016/j.asoc.2019.106037 

21. X. Y. Song, M. Zhao, Q. F. Yan, S. G. Xing, A high-efficiency adaptive artificial bee colony 

algorithm using two strategies for continuous optimization, Swarm Evol. Comput., 50 (2019), 

100549. https://doi.org/10.1016/j.swevo.2019.06.006 

22. W. F. Gao, Z. F. Wei, Y. T. Luo, J. Cao, Artificial bee colony algorithm based on parzen window 

method, Appl. Soft Comput., 74 (2019), 679–692. https://doi.org/10.1016/j.asoc.2018.10.024 

23. H. Wang, W. J. Wang, S. Y. Xiao, Z. H. Cui, M. Y. Xu, X. Y. Zhou, Improving artificial bee colony 

algorithm using a new neighborhood selection mechanism, Inf. Sci., 527 (2020), 227–240. 

https://doi.org/10.1016/j.ins.2020.03.064 

24. S. Q. Zhang, J. F. Teng, J. H. Gu, Artificial bee algorithm based on multi-dimensional greedy 

search, Comput. Eng., 40 (2014), 189–193. https://doi.org/10.3969/j.issn.1000-3428.2014.11.037 

25. W. L. Xiang, X. L. Meng, Y. Z. Li, R. C. He, M. Q. An, An improved artificial bee colony 

algorithm based on the gravity model, Inf. Sci., 429 (2018), 49–71. 

https://doi.org/10.1016/j.ins.2017.11.007 

26. H. Q. Wang, M. H. Su, R. Zhao, X. B. Xu, H. D. Haasis, J. H. Wei, et al., Improved multi-

dimensional bee colony algorithm for airport freight station scheduling, preprint, 

arXiv:2207.11651. 

27. H. Q. Wang, J. H. Wei, M. H. Su, Z. Dong, S. S. Zhang, Task set scheduling of airport freight 

station based on parallel artificial bee colony algorithm, in Bio-inspired Computing: Theories and 

Applications, (2019), 484–492. https://doi.org/10.1007/978-981-15-3425-6_37 

28. J. C. Bansal, A. Gopal, A. K. Nagar, Stability analysis of artificial bee colony optimization 

algorithm, Swarm Evol. Comput., 41 (2018), 9–19. https://doi.org/10.1016/j.swevo.2018.01.003 

©2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


