Research article Special Issues

Parameter optimization of shared electric vehicle dispatching model using discrete Harris hawks optimization


  • Received: 31 March 2022 Revised: 30 April 2022 Accepted: 09 May 2022 Published: 18 May 2022
  • The vehicle routing problem (VRP) problem is a classic NP-hard problem. Usually, the traditional optimization method cannot effectively solve the VRP problem. Metaheuristic optimization algorithms have been successfully applied to solve many complex engineering optimization problems. This paper proposes a discrete Harris Hawks optimization (DHHO) algorithm to solve the shared electric vehicle scheduling (SEVS) problem considering the charging schedule. The SEVS model is a variant of the VPR problem, and the influence of the transfer function on the model is analyzed. The experimental test data are based on three randomly generated examples of different scales. The experimental results verify the effectiveness of the proposed DHHO algorithm. Furthermore, the statistical analysis results show that other transfer functions have apparent differences in the robustness and solution accuracy of the algorithm.

    Citation: Yuheng Wang, Yongquan Zhou, Qifang Luo. Parameter optimization of shared electric vehicle dispatching model using discrete Harris hawks optimization[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7284-7313. doi: 10.3934/mbe.2022344

    Related Papers:

  • The vehicle routing problem (VRP) problem is a classic NP-hard problem. Usually, the traditional optimization method cannot effectively solve the VRP problem. Metaheuristic optimization algorithms have been successfully applied to solve many complex engineering optimization problems. This paper proposes a discrete Harris Hawks optimization (DHHO) algorithm to solve the shared electric vehicle scheduling (SEVS) problem considering the charging schedule. The SEVS model is a variant of the VPR problem, and the influence of the transfer function on the model is analyzed. The experimental test data are based on three randomly generated examples of different scales. The experimental results verify the effectiveness of the proposed DHHO algorithm. Furthermore, the statistical analysis results show that other transfer functions have apparent differences in the robustness and solution accuracy of the algorithm.



    加载中


    [1] R. Mounce, J. D. Nelson, On the potential for one-way electric vehicle car-sharing in future mobility systems, Trans. Res. Part A: Policy Pract., 120 (2019), 17–30. https://doi.org/10.1016/j.tra.2018.12.003 doi: 10.1016/j.tra.2018.12.003
    [2] F. Ferrero, G. Perboli, M. Rosano, A. Vesco, Car-sharing services: an annotated review, Sustainable Cities Soc., 37 (2018), 501–518. https://doi.org/10.1016/j.scs.2017.09.020 doi: 10.1016/j.scs.2017.09.020
    [3] M. Nourinejad, M. J. Roorda, Carsharing operations policies: a comparison between one-way and two-way systems, Transportation, 42 (2015), 497–518. https://doi.org/10.1007/s11116-015-9604-3 doi: 10.1007/s11116-015-9604-3
    [4] J. Firnkorn, M. Müller, What will be the environmental effects of new free-floating car-sharing systems? The case of car2 go in Ulm, Ecol. Econ., 70 (2011), 1519–1528. https://doi.org/10.1016/j.ecolecon.2011.03.014 doi: 10.1016/j.ecolecon.2011.03.014
    [5] J. H. Holland, Genetic algorithms, Sci. Am., 1992. https://doi.org/10.1038/scientificamerican0792-66 doi: 10.1038/scientificamerican0792-66
    [6] R. Storn, Differential evolution research–trends and open questions, in Advances in Differential Evolution, 143 (2008), 1–31. https://doi.org/10.1007/978-3-540-68830-3_1
    [7] I. Rechenberg, Evolutionary strategy, Comput. Intell.: Imitating Life, 1994.
    [8] G. B. Fogel, Evolutionary programming, in Handbook of Natural Computing, Springer, Berlin, 2011.
    [9] A. V. Sebald, L. J. Fogel, Evolutionary programming, Evol. Program., (1994), 1–386. https://doi.org/10.1142/9789814534116 doi: 10.1142/9789814534116
    [10] O. K. Erol, I. Eksin, A new optimization method: Big Bang–Big Crunch, Adv. Eng. Software., 37 (2006), 106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005 doi: 10.1016/j.advengsoft.2005.04.005
    [11] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
    [12] A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged system search, Acta Mech., 213 (2010):267–289. https://doi.org/10.1007/s00707-009-0270-4 doi: 10.1007/s00707-009-0270-4
    [13] M. H. Tayarani-N, M. R. Akbarzadeh-T, Magnetic Optimization Algorithms a new synthesis, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), (2008), 2659–2664. https://doi.org/10.1109/CEC.2008.4631155
    [14] R. A. Formato, Central force optimization: a new metaheuristic with applications in applied electromagnetics, Prog. Electromagn. Res., 77 (2007), 425–491. https://doi.org/10.2528/PIER07082403 doi: 10.2528/PIER07082403
    [15] B. Alatas, ACROA: artificial chemical reaction optimization algorithm for global optimization, Expert Syst. Appl., 38 (2011), 13170–13180. https://doi.org/10.1016/j.eswa.2011.04.126 doi: 10.1016/j.eswa.2011.04.126
    [16] A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci., 222 (2013), 175–184. https://doi.org/10.1016/j.ins.2012.08.023 doi: 10.1016/j.ins.2012.08.023
    [17] H. Du, X. Wu, J. Zhuang, Small-world optimization algorithm for function optimization, in Advances in Natural Computation, (2006), 264–273. https://doi.org/10.1007/11881223_33
    [18] H. Shah-Hosseini, Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimization, Int. J. Comput. Sci. Eng., 6 (2011), 132–140. https://doi.org/10.1504/IJCSE.2011.041221 doi: 10.1504/IJCSE.2011.041221
    [19] Y. T. Hsiao, C. L. Chuang, J. A. Jiang, C. C. Chien, A novel optimization algorithm: space gravitational optimization, in 2005 IEEE International Conference on Systems, Man and Cybernetics, 3 (2005), 2323–2328. https://doi.org/10.1109/ICSMC.2005.1571495
    [20] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: a novel physics-based algorithm, Future Gener. Comput. Syst., 101 (2019), 646–667. https://doi.org/10.1016/j.future.2019.07.015 doi: 10.1016/j.future.2019.07.015
    [21] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
    [22] I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021), 115079. https://doi.org/10.1016/j.eswa.2021.115079 doi: 10.1016/j.eswa.2021.115079
    [23] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [24] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459–471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
    [25] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst., Man, Cybern., Part B, 26 (1996), 29–41. https://doi.org/10.1109/3477.484436 doi: 10.1109/3477.484436
    [26] X. S. Yang, Firefly algorithms for multimodal optimization, in Stochastic Algorithms: Foundations and Applications, Springer, (2009), 169–178. https://doi.org/10.1007/978-3-642-04944-6_14
    [27] X. S. Yang, A. H. Gandomi, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 29 (2012), 464–483. https://doi.org/10.1108/02644401211235834 doi: 10.1108/02644401211235834
    [28] E. Valian, E. Valian, A cuckoo search algorithm by Lévy flights for solving reliability redundancy allocation problems, Eng. Optim., 45 (2013), 1273–1286. https://doi.org/10.1080/0305215X.2012.729055 doi: 10.1080/0305215X.2012.729055
    [29] S. A. Uymaz, G. Tezel, E. Yel, Artificial algae algorithm (AAA) for nonlinear global optimization, Appl. Soft Comput., 31 (2015), 153–171. https://doi.org/10.1016/j.asoc.2015.03.003 doi: 10.1016/j.asoc.2015.03.003
    [30] M. S. Kiran, TSA: Tree-seed algorithm for continuous optimization, Expert Syst. Appl., 42 (2015), 6686–6690. https://doi.org/10.1016/j.eswa.2015.04.055 doi: 10.1016/j.eswa.2015.04.055
    [31] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [32] J. James, V. O. Li, A social spider algorithm for global optimization, Appl. Soft Comput., 30 (2015), 614–627. https://doi.org/10.1016/j.asoc.2015.02.014 doi: 10.1016/j.asoc.2015.02.014
    [33] S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
    [34] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [35] A. Kaveh, N. Farhoudi, A new optimization method: dolphin echolocation, Adv. Eng. Software, 59 (2013), 53–70. https://doi.org/10.1016/j.advengsoft.2013.03.004 doi: 10.1016/j.advengsoft.2013.03.004
    [36] S. C. Chu, P. W. Tsai, J. S. Pan, Cat swarm optimization, in PRICAI 2006: Trends in Artificial Intelligence, Springer, (2006), 854–858. https://doi.org/10.1007/978-3-540-36668-3_94
    [37] M. Yazdani, F. Jolai, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm, J. Comput. Des. Eng., 3 (2016), 24–36. https://doi.org/10.1016/j.jcde.2015.06.003 doi: 10.1016/j.jcde.2015.06.003
    [38] X. Bo, W. J. Gao, Fruit fly optimization algorithm, in Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, 2014.
    [39] M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338. https://doi.org/10.1016/j.eswa.2020.113338 doi: 10.1016/j.eswa.2020.113338
    [40] M. S. Braik, Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems, Expert Syst. Appl., 174 (2021), 114685. https://doi.org/10.1016/j.eswa.2021.114685 doi: 10.1016/j.eswa.2021.114685
    [41] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [42] Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864
    [43] J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18 (2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y doi: 10.1007/s42235-021-0050-y
    [44] G. B. Dantzig, J. H. Ramser, The truck dispatching problem, Manage. Sci., 6 (1959), 80–91. https://doi.org/10.1287/mnsc.6.1.80 doi: 10.1287/mnsc.6.1.80
    [45] J. Du, X. Li, L. Yu, R. Dan, J. Zhou, Multi-depot vehicle routing problem for hazardous materials transportation: a fuzzy bilevel programming, Inf. Sci., 399 (2017), 201–218. https://doi.org/10.1016/j.ins.2017.02.011 doi: 10.1016/j.ins.2017.02.011
    [46] A. García-Nájera, J. A. Bullinaria, M. A. Gutiérrez-Andrade, An evolutionary approach for multi-objective vehicle routing problems with backhauls, Comput. Ind. Eng., 81 (2015), 90–108. https://doi.org/10.1016/j.cie.2014.12.029 doi: 10.1016/j.cie.2014.12.029
    [47] E. Cao, M. Lai, H. Yang, Open vehicle routing problem with demand uncertainty and its robust strategies, Expert Syst. Appl., 41 (2014), 3569–3575. https://doi.org/10.1016/j.eswa.2013.11.004 doi: 10.1016/j.eswa.2013.11.004
    [48] E. Jabir, V. V. Panicker, R. Sridharan, Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem, Trans. Res. Part D: Transp. Environ., 57 (2017), 422–457. https://doi.org/10.1016/j.trd.2017.09.003 doi: 10.1016/j.trd.2017.09.003
    [49] M. Okulewicz, J. Mańdziuk, The impact of particular components of the PSO based algorithm solving the Dynamic Vehicle Routing Problem, Appl. Soft Comput., 58 (2017), 586–604. https://doi.org/10.1016/j.asoc.2017.04.070 doi: 10.1016/j.asoc.2017.04.070
    [50] S. Iqbal, M. Kaykobad, M. S. Rahman, Solving the multi-objective Vehicle Routing Problem with Soft Time Windows with the help of bees, Swarm Evol. Comput., 24 (2015), 50–64. https://doi.org/10.1016/j.swevo.2015.06.001 doi: 10.1016/j.swevo.2015.06.001
    [51] E. Teymourian, V. Kayvanfar, G. M. Komaki, M. Zandieh, Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem, Inf. Sci., 334–335 (2016), 354–378. https://doi.org/10.1016/j.ins.2015.11.036 doi: 10.1016/j.ins.2015.11.036
    [52] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [53] C. Fan, Y. Zhou, Z. Tang, Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks, Evol. Intell., 14 (2021), 1847–1867. https://doi.org/10.1007/s12065-020-00465-x doi: 10.1007/s12065-020-00465-x
    [54] H. Zhang, H. Nguyen, X. N. Bui, B. Pradhan, P. G. Asteris, R. Costache, et al., A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm, Eng. Comput., 2021. https://doi.org/10.1007/s00366-020-01272-9 doi: 10.1007/s00366-020-01272-9
    [55] S. Mouassa, T. Bouktir, F. Jurado, Scheduling of smart home appliances for optimal energy management in smart grid using Harris-hawks optimization algorithm, Optim. Eng., 22 (2021), 1625–1652. https://doi.org/10.1007/s11081-020-09572-1 doi: 10.1007/s11081-020-09572-1
    [56] P. Kumar, S. N. Singh, S. Dawra, Software component reusability prediction using extra tree classifier and enhanced Harris hawks optimization algorithm, Int. J. Syst. Assur. Eng. Manage., 13 (2022), 892–903. https://doi.org/10.1007/s13198-021-01359-6 doi: 10.1007/s13198-021-01359-6
    [57] M. K. Naik, R. Panda, A. Wunnava, B. Jena, A. Abraham, A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding, Multimedia Tools Appl., 80 (2021), 35543–35583. https://doi.org/10.1007/s11042-020-10467-7 doi: 10.1007/s11042-020-10467-7
    [58] M. A. Mossa, O. M. Kamel, H. M. Sultan, A. A. Z. Diab, Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms, Neural Comput. Appl., 33 (2021), 5555–5570. https://doi.org/10.1007/s00521-020-05333-4 doi: 10.1007/s00521-020-05333-4
    [59] E. H. Houssein, M. E. Hosney, D. Oliva, W.M. Mohamed, M. Hassaballah, A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery, Comput. Chem. Eng., 133 (2020), 106656. https://doi.org/10.1016/j.compchemeng.2019.106656 doi: 10.1016/j.compchemeng.2019.106656
    [60] I. N. Setiawan, R. Kurniawan, B. Yuniarto, R. E. Caraka, B. Pardamean, Parameter optimization of support vector regression using Harris Hawks optimization, Procedia Comput. Sci., 179 (2021), 17–24. https://doi.org/10.1016/j.procs.2020.12.003 doi: 10.1016/j.procs.2020.12.003
    [61] A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based Chaotic Harris Hawks Optimizer: algorithm and internet of vehicles application, Appl. Soft Comput., 109 (2021), 107574. https://doi.org/10.1016/j.asoc.2021.107574 doi: 10.1016/j.asoc.2021.107574
    [62] H. M. Alabool, D. Alarabiat, L. Abualigah, A. A. Heidari, Harris Hawks optimization: a comprehensive review of recent variants and applications, Neural Comput. Appl., 33 (2021), 8939–8980. https://doi.org/10.1007/s00521-021-05720-5 doi: 10.1007/s00521-021-05720-5
    [63] R. Y. Zhang, Z. M. Wang, D. C. Wang, Modeling and optimization of transportation problem for shared electric-cars with recharging scheduling, Syst. Eng.-Theory Pract., 41 (2021), 370–377.
    [64] H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with Levy flight, Appl. Soft Comput., 23 (2014), 333–345. https://doi.org/10.1016/j.asoc.2014.06.034 doi: 10.1016/j.asoc.2014.06.034
    [65] X. S. Yang, Nature-inspired Metaheuristic Algorithms, Luniver press, 2010.
    [66] N. Wang, W. J. Zhang, X. Liu, J. Zuo, Inter-Site-Vehicle artificial scheduling strategy design for electric vehicle sharing, J. Tongji Univ. (Nat. Sci.), 46 (2018), 1064–1071. https://doi.org/10.11908/j.issn.0253-374x.2018.08.009 doi: 10.11908/j.issn.0253-374x.2018.08.009
    [67] A. Beşkirli, İ. Dağ, A new binary variant with transfer functions of Harris Hawks optimization for binary wind turbine micrositing, Energy Rep., 6 (2020), 668–673. https://doi.org/10.1016/j.egyr.2020.11.154 doi: 10.1016/j.egyr.2020.11.154
    [68] M. Beşkirli, İ. Koç, H. Haklı, H. Kodaz, A new optimization algorithm for solving wind turbine placement problem: binary artificial algae algorithm, Renewable Energy, 121 (2018), 301–308. https://doi.org/10.1016/j.renene.2017.12.087 doi: 10.1016/j.renene.2017.12.087
    [69] R. M. Rizk-Allah, A. E. Hassanien, M. Elhoseny, M. Gunasekaran, A new binary salp swarm algorithm: development and application for optimization tasks, Neural Comput. Appl., 31 (2019), 1641–1663. https://doi.org/10.1007/s00521-018-3613-z doi: 10.1007/s00521-018-3613-z
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1950) PDF downloads(146) Cited by(3)

Article outline

Figures and Tables

Figures(16)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog