Several indoor positioning systems that utilize visible light communication (VLC) have recently been developed. Due to the simple implementation and high precision, most of these systems are dependent on received signal strength (RSS). The position of the receiver can be estimated according to the positioning principle of the RSS. To improve positioning precision, an indoor three-dimensional (3D) visible light positioning (VLP) system with the Jaya algorithm is proposed. In contrast to other positioning algorithms, the Jaya algorithm has a simple structure with only one phase and achieves high accuracy without controlling the parameter settings. The simulation results show that an average error of 1.06 cm is achieved using the Jaya algorithm in 3D indoor positioning. The average errors of 3D positioning using the Harris Hawks optimization algorithm (HHO), ant colony algorithm with an area-based optimization model (ACO-ABOM), and modified artificial fish swam algorithm (MAFSA) are 2.21 cm, 1.86 cm and 1.56 cm, respectively. Furthermore, simulation experiments are performed in motion scenes, where a high-precision positioning error of 0.84 cm is achieved. The proposed algorithm is an efficient method for indoor localization and outperforms other indoor positioning algorithms.
Citation: Cuicui Cai, Maosheng Fu, Xianmeng Meng, Chaochuan Jia, Mingjing Pei. Indoor high-precision visible light positioning system using Jaya algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10358-10375. doi: 10.3934/mbe.2023454
Several indoor positioning systems that utilize visible light communication (VLC) have recently been developed. Due to the simple implementation and high precision, most of these systems are dependent on received signal strength (RSS). The position of the receiver can be estimated according to the positioning principle of the RSS. To improve positioning precision, an indoor three-dimensional (3D) visible light positioning (VLP) system with the Jaya algorithm is proposed. In contrast to other positioning algorithms, the Jaya algorithm has a simple structure with only one phase and achieves high accuracy without controlling the parameter settings. The simulation results show that an average error of 1.06 cm is achieved using the Jaya algorithm in 3D indoor positioning. The average errors of 3D positioning using the Harris Hawks optimization algorithm (HHO), ant colony algorithm with an area-based optimization model (ACO-ABOM), and modified artificial fish swam algorithm (MAFSA) are 2.21 cm, 1.86 cm and 1.56 cm, respectively. Furthermore, simulation experiments are performed in motion scenes, where a high-precision positioning error of 0.84 cm is achieved. The proposed algorithm is an efficient method for indoor localization and outperforms other indoor positioning algorithms.
[1] | M. Yasir, S. W. Ho, B. N. Vellambi, Indoor positioning system using visible light and accelerometer, J. Lightwave Technol., 32 (2014), 3306–3316. https://doi.org/10.1109/JLT.2014.2344772 doi: 10.1109/JLT.2014.2344772 |
[2] | W. Zhang, M. I. S. Chowdhury, M. Kavehrad, Asynchronous indoor positioning system based on visible light communications, Opt. Eng., 53 (2014). https://doi.org/10.1117/1.OE.53.4.045105 doi: 10.1117/1.OE.53.4.045105 |
[3] | H. Steendam, T. Q. Wang, J. Armstrong, Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver, J. Lightwave Technol., 35 (2017), 309–319. https://doi.org/10.1109/JLT.2016.2645603 doi: 10.1109/JLT.2016.2645603 |
[4] | K. Maaloul, B. Lejdel, E. Clementini, N. M. Abdelhamid, Bluetooth beacons based indoor positioning in a shopping malls using machine learning, Bull. Electr.Eng. Inf., 12 (2023), 911–921. https://doi.org/10.11591/eei.v12i2.4200 doi: 10.11591/eei.v12i2.4200 |
[5] | C. Rizos, A. G. Dempster, B. H. Li, J. Salter, Indoor Positioning Techniques Based on Wireless LAN, (2007). |
[6] | A. Poulose, D. S. Han, UWB indoor localization using deep learning LSTM networks, Appl. Sci., 10 (2020), 6290. https://doi.org/10.3390/app10186290 doi: 10.3390/app10186290 |
[7] | E. Gonendik, S. Gezici, Fundamental limits on RSS based range estimation in visible light positioning systems, IEEE Commun. Lett., 19 (2015), 2138–2141. https://doi.org/10.1109/LCOMM.2015.2493532 doi: 10.1109/LCOMM.2015.2493532 |
[8] | L. Huang, S. Wen, Z. Yan, H. Song, S. Su, W. Guan, Single LED positioning scheme based on angle sensors in robotics, Appl. Opt., 60 (2021), 6275–6287. https://doi.org/10.1364/AO.425744 doi: 10.1364/AO.425744 |
[9] | W. Guan, S. Wen, L. Liu, H. Zhang, High-precision indoor positioning algorithm based on visible light communication using complementary metal–oxide–semiconductor image sensor, Opt. Eng., 58 (2019). https://doi.org/10.1117/1.OE.58.2.024101 doi: 10.1117/1.OE.58.2.024101 |
[10] | W. Guan, Y. Wu, S. Wen, H. Chen, C. Yang, Y. Chen, et al., A novel three-dimensional indoor positioning algorithm design based on visible light communication, Opt. Commun., 392 (2017), 282–293. https://doi.org/10.1016/j.optcom.2017.02.015 doi: 10.1016/j.optcom.2017.02.015 |
[11] | W. Guan, S. Chen, S. Wen, Z. Tan, H. Song, W. Hou, High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning, IEEE Photonics J., 12 (2020), 1–16. https://doi.org/10.1109/JPHOT.2020.2981485 doi: 10.1109/JPHOT.2020.2981485 |
[12] | J. Chen, D. Zeng, C. Yang, W. Guan, High accuracy, 6-DoF simultaneous localization and calibration using visible light positioning, J. Lightwave Technol., 40 (2022), 7039–7047. https://doi.org/10.1109/JLT.2022.3198649 doi: 10.1109/JLT.2022.3198649 |
[13] | M. F. Keskin, S. Gezici, O. Arikan, Direct and two-step positioning in visible light systems, IEEE Trans. Commun., 66 (2018), 239–254. https://doi.org/10.1109/TCOMM.2017.2757936 doi: 10.1109/TCOMM.2017.2757936 |
[14] | H. Liu, H. Darabi, P. Banerjee, J. Liu, Survey of wireless indoor positioning techniques and systems, IEEE Trans. Syst., Man Cybern., Part C (Appl. Rev.), 37 (2007), 1067–1080. https://doi.org/10.1109/TSMCC.2007.905750 doi: 10.1109/TSMCC.2007.905750 |
[15] | E. Kazikli, S. Gezici, Hybrid TDOA/RSS based localization for visible light systems, Digit. Signal Process., 86 (2019), 19–28. https://doi.org/10.1016/j.dsp.2018.12.001 doi: 10.1016/j.dsp.2018.12.001 |
[16] | N. Chaudhary, L. N. Alves, Z. Ghassemlooy, Impact of transmitter positioning and orientation uncertainty on RSS-based visible light positioning accuracy, Sensors (Basel), 21 (2021), 3044. https://doi.org/10.3390/s21093044 doi: 10.3390/s21093044 |
[17] | J. Lui, A. M. Vegni, L. Colace, A. Neri, C. Menon, Preliminary design and characterization of a low-cost and low-power visible light positioning system, Appl. Opt., 58 (2019), 7181–7188. https://doi.org/10.1364/AO.58.007181 doi: 10.1364/AO.58.007181 |
[18] | Y. Sun, X. Wang, Y. Chen, Z. Liu, A modified whale optimization algorithm for large-scale global optimization problems, Expert Syst. Appl., 114 (2018), 563–577. https://doi.org/10.1016/j.eswa.2018.08.027 doi: 10.1016/j.eswa.2018.08.027 |
[19] | H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with Levy flight, Appl. Soft Comput., 23 (2014), 333–345. https://doi.org/10.1016/j.asoc.2014.06.034 doi: 10.1016/j.asoc.2014.06.034 |
[20] | S. M. Bozorgi, S. Yazdani, IWOA: An improved whale optimization algorithm for optimization problems, J. Comput. Des. Eng., 6 (2019), 243–259. https://doi.org/10.1016/j.jcde.2019.02.002 doi: 10.1016/j.jcde.2019.02.002 |
[21] | L. Wang, F. Li, J. Xing, A hybrid artificial bee colony algorithm and pattern search method for inversion of particle size distribution from spectral extinction data, J. Mod. Opt., 64 (2017), 2051–2065. https://doi.org/10.1080/09500340.2017.1337250 doi: 10.1080/09500340.2017.1337250 |
[22] | W. Li, K. Zhong, Application of improved particle swarm optimization algorithm in solving camera extrinsic parameters, J. Mod. Opt., 66 (2019), 1827–1835. https://doi.org/10.1080/09500340.2019.1682203 doi: 10.1080/09500340.2019.1682203 |
[23] | E. H. Houssein, M. E. Hosney, M. Elhoseny, D. Oliva, W. M. Mohamed, M. Hassaballah, Hybrid Harris Hawks optimization with cuckoo search for drug design and discovery in chemoinformatics, Sci. Rep., 10 (2020), 14439. https://doi.org/10.1038/s41598-020-71502-z doi: 10.1038/s41598-020-71502-z |
[24] | H. Chen, W. Guan, S. Li, Y. Wu, Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm, Opt. Commun., 413 (2018), 103–120. https://doi.org/10.1016/j.optcom.2017.12.045 doi: 10.1016/j.optcom.2017.12.045 |
[25] | Y. Chen, H. Zheng, H. Liu, Z. Han, Z. Ren, Indoor high precision three-dimensional positioning system based on visible light communication using improved hybrid bat algorithm, IEEE Photonics J., 12 (2020). https://doi.org/10.1109/JPHOT.2020.3017670 doi: 10.1109/JPHOT.2020.3017670 |
[26] | L. Huang, P. Wang, Z. Liu, X. Nan, L. Jiao, L. Guo, Indoor three-dimensional high-precision positioning system with bat algorithm based on visible light communication, Appl. Opt., 58 (2019), 2226–2234. https://doi.org/10.1364/AO.58.002226 doi: 10.1364/AO.58.002226 |
[27] | Y. Chen, Z. Ren, Z. Han, H. Liu, Q. Shen, Z. Wu, LED based high accuracy indoor visible light positioning algorithm, Optik, 243 (2021), 166853. https://doi.org/10.1016/j.ijleo.2021.166853 doi: 10.1016/j.ijleo.2021.166853 |
[28] | Y. Wu, X. Liu, W. Guan, B. Chen, X. Chen, C. Xie, High-speed 3D indoor localization system based on visible light communication using differential evolution algorithm, Opt. Commun., 424 (2018), 177–189. https://doi.org/10.1016/j.optcom.2018.04.062 doi: 10.1016/j.optcom.2018.04.062 |
[29] | W. Guan, Y. Wu, C. Xie, H. Chen, Y. Cai, Y. Chen, High-precision approach to localization scheme of visible light communication based on artificial neural networks and modified genetic algorithms, Opt. Eng., 56 (2017), 106103. https://doi.org/10.1117/1.OE.56.10.106103 doi: 10.1117/1.OE.56.10.106103 |
[30] | A. A. Mahmoud, Z. U. Ahmad, O. C. L. Haas, S. Rajbhandari, Precision indoor three‐dimensional visible light positioning using receiver diversity and multi‐layer perceptron neural network, IET Optoelectron., 14 (2020), 440–446. https://doi.org/10.1049/iet-opt.2020.0046 doi: 10.1049/iet-opt.2020.0046 |
[31] | R. V. Rao, A. Saroj, An elitism-based self-adaptive multi-population Jaya algorithm and its applications, Soft Comput., 23 (2018), 4383–4406. https://doi.org/10.1007/s00500-018-3095-z doi: 10.1007/s00500-018-3095-z |
[32] | M. A. Dawood, S. S. Saleh, E. S. A. El-Badawy, M. H. Aly, A comparative analysis of localization algorithms for visible light communication, Opt. Quantum Electron., 53 (2021). https://doi.org/10.1007/s11082-021-02751-z doi: 10.1007/s11082-021-02751-z |
[33] | A. Poulose, An optisystem simulation for indoor visible light communication system, in National Conference on Emerging Technologies (NCET), (2017). |
[34] | A. Poulose, Simulation of an indoor visible light communication system using optisystem, Signals, 3 (2022), 765–793. https://doi.org/10.3390/signals3040046 doi: 10.3390/signals3040046 |
[35] | T. Komine, M. Nakagawa, Fundamental analysis for visible-light communication system using LED lights, IEEE Trans. Consumer Electron., 50 (2004), 100–107. https://doi.org/10.1109/TCE.2004.1277847 doi: 10.1109/TCE.2004.1277847 |
[36] | H. Lu, B. Ba, W. J. Cui, A novel fusion visible light location algorithm based on rssi and imaging of LEDs, Proc. Comput. Sci., 107 (2017), 848–854. https://doi.org/10.1016/j.procs.2017.03.180 doi: 10.1016/j.procs.2017.03.180 |
[37] | R. Venkata Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput., (2016), 19–34. https://doi.org/10.5267/j.ijiec.2015.8.004 doi: 10.5267/j.ijiec.2015.8.004 |
[38] | X. Z. Jian, Z. Y. Weng, A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models, Optik, 203 (2020). https://doi.org/10.1016/j.ijleo.2019.164041 doi: 10.1016/j.ijleo.2019.164041 |
[39] | C. C. Jia, Y. Ting, C. J. Wang, M. L. Sun, High-Accuracy 3D indoor visible light positioning method based on the improved adaptive cuckoo search algorithm, Arabian J. Sci. Eng., 47 (2022), 2479–2498. https://doi.org/10.1007/s13369-021-06144-y doi: 10.1007/s13369-021-06144-y |
[40] | A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris Hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028 |
[41] | Y. Chen, J. Li, S. Wen, W. Guan, J. Jiang, B. Chen, Performance comparison and analysis on different optimization models for high-precision three-dimensional visible light positioning, Opt. Eng., 57 (2018). https://doi.org/10.1117/1.OE.57.12.125101 doi: 10.1117/1.OE.57.12.125101 |
[42] | M. Huang, B. Chen, J. Jiang, W. Guan, X. Cai, S. Wen, High-precision indoor three-dimensional positioning system based on visible light communication using modified artificial fish swarm algorithm, Opt. Eng., 57 (2018), 106102. https://doi.org/10.1117/1.OE.57.10.106102 doi: 10.1117/1.OE.57.10.106102 |