Ovarian cancer is a tumor with different clinicopathological and molecular features, and the vast majority of patients have local or extensive spread at the time of diagnosis. Early diagnosis and prognostic prediction of patients can contribute to the understanding of the underlying pathogenesis of ovarian cancer and the improvement of therapeutic outcomes. The occurrence of ovarian cancer is influenced by multiple complex mechanisms, including the genome, transcriptome and proteome. Different types of omics analysis help predict the survival rate of ovarian cancer patients. Multi-omics data of ovarian cancer exhibit high-dimensional heterogeneity, and existing methods for integrating multi-omics data have not taken into account the variability and inter-correlation between different omics data. In this paper, we propose a deep learning model, MDCADON, which utilizes multi-omics data and cross-modal view correlation discovery network. We introduce random forest into LASSO regression for feature selection on mRNA expression, DNA methylation, miRNA expression and copy number variation (CNV), aiming to select important features highly correlated with ovarian cancer prognosis. A multi-modal deep neural network is used to comprehensively learn feature representations of each omics data and clinical data, and cross-modal view correlation discovery network is employed to construct the multi-omics discovery tensor, exploring the inter-relationships between different omics data. The experimental results demonstrate that MDCADON is superior to the existing methods in predicting ovarian cancer prognosis, which enables survival analysis for patients and facilitates the determination of follow-up treatment plans. Finally, we perform Gene Ontology (GO) term analysis and biological pathway analysis on the genes identified by MDCADON, revealing the underlying mechanisms of ovarian cancer and providing certain support for guiding ovarian cancer treatments.
Citation: Huiqing Wang, Xiao Han, Jianxue Ren, Hao Cheng, Haolin Li, Ying Li, Xue Li. A prognostic prediction model for ovarian cancer using a cross-modal view correlation discovery network[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 736-764. doi: 10.3934/mbe.2024031
Ovarian cancer is a tumor with different clinicopathological and molecular features, and the vast majority of patients have local or extensive spread at the time of diagnosis. Early diagnosis and prognostic prediction of patients can contribute to the understanding of the underlying pathogenesis of ovarian cancer and the improvement of therapeutic outcomes. The occurrence of ovarian cancer is influenced by multiple complex mechanisms, including the genome, transcriptome and proteome. Different types of omics analysis help predict the survival rate of ovarian cancer patients. Multi-omics data of ovarian cancer exhibit high-dimensional heterogeneity, and existing methods for integrating multi-omics data have not taken into account the variability and inter-correlation between different omics data. In this paper, we propose a deep learning model, MDCADON, which utilizes multi-omics data and cross-modal view correlation discovery network. We introduce random forest into LASSO regression for feature selection on mRNA expression, DNA methylation, miRNA expression and copy number variation (CNV), aiming to select important features highly correlated with ovarian cancer prognosis. A multi-modal deep neural network is used to comprehensively learn feature representations of each omics data and clinical data, and cross-modal view correlation discovery network is employed to construct the multi-omics discovery tensor, exploring the inter-relationships between different omics data. The experimental results demonstrate that MDCADON is superior to the existing methods in predicting ovarian cancer prognosis, which enables survival analysis for patients and facilitates the determination of follow-up treatment plans. Finally, we perform Gene Ontology (GO) term analysis and biological pathway analysis on the genes identified by MDCADON, revealing the underlying mechanisms of ovarian cancer and providing certain support for guiding ovarian cancer treatments.
[1] | M. Kossai, A. Leary, J. Y. Scoazec, C. Genestie, Ovarian cancer: A heterogeneous disease, Pathobiology, 85 (2018), 41–49. https://doi.org/10.1159/000479006 doi: 10.1159/000479006 |
[2] | Y. Xiao, M. Bi, H. Guo, M. Li, Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis, EBioMedicine, 79 (2022), 104001. https://doi.org/10.1016/j.ebiom.2022.104001 doi: 10.1016/j.ebiom.2022.104001 |
[3] | P. E. Colombo, M. Fabbro, C. Theillet, F. Bibeau, P. Rouanet, I. Ray-Coquard, Sensitivity and resistance to treatment in the primary management of epithelial ovarian cancer, Crit. Rev. Oncol. Hematol., 89 (2014), 207–216. https://doi.org/10.1016/j.critrevonc.2013.08.017 doi: 10.1016/j.critrevonc.2013.08.017 |
[4] | R. Hu, X. Wang, X. Zhan, Multi-parameter systematic strategies for predictive, preventive and personalised medicine in cancer, EPMA J., 4 (2013), 1–12. https://doi.org/10.1186/1878-5085-4-2 doi: 10.1186/1878-5085-4-2 |
[5] | T. Cheng, X. Zhan, Pattern recognition for predictive, preventive, and personalized medicine in cancer, EPMA J., 8 (2017), 51–60. https://doi.org/10.1007/s13167-017-0083-9 doi: 10.1007/s13167-017-0083-9 |
[6] | X. Zhan, Y. Long, M. Lu, Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application, J. Proteomics, 188 (2018), 30–40. https://doi.org/10.1016/j.jprot.2017.08.020 doi: 10.1016/j.jprot.2017.08.020 |
[7] | C. Denkert, J. Budczies, T. Kind, W. Weichert, P. Tablack, J. Sehouli, et al., Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors, Cancer Res., 66 (2006), 10795–10804. https://doi.org/10.1158/0008-5472.CAN-06-0755 doi: 10.1158/0008-5472.CAN-06-0755 |
[8] | R. Sabatier, P. Finetti, N. Cervera, D. Birnbaum, F. Bertucci, Gene expression profiling and prediction of clinical outcome in ovarian cancer, Crit. Rev. Oncol. Hematol., 72 (2009), 98–109. https://doi.org/10.1016/j.critrevonc.2009.01.007 doi: 10.1016/j.critrevonc.2009.01.007 |
[9] | A. Ghose, S. V. N. Gullapalli, N. Chohan, A. Bolina, M. Moschetta, E. Rassy, et al., Applications of proteomics in ovarian cancer: Dawn of a new era, Proteomes, 10 (2022), 16. https://doi.org/10.3390/proteomes10020016 doi: 10.3390/proteomes10020016 |
[10] | B. Arjmand, S. K. Hamidpour, A. Tayanloo-Beik, P. Goodarzi, H. R. Aghayan, H. Adibi, et al., Machine learning: A new prospect in multi-omics data analysis of cancer, Front. Genet., 13 (2022), 824451. https://doi.org/10.3389/fgene.2022.824451 doi: 10.3389/fgene.2022.824451 |
[11] | H. Feng, Z. Y. Gu, Q. Li, Q. H. Liu, X. Y. Yang, J. J. Zhang, Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis, J. Ovarian Res., 12 (2019), 1–9. https://doi.org/10.1186/s13048-019-0508-2 doi: 10.1186/s13048-019-0508-2 |
[12] | K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, D. I. Fotiadis, Machine learning applications in cancer prognosis and prediction, Comput. Struct. Biotechnol. J., 13 (2015), 8–17. https://doi.org/10.1016/j.csbj.2014.11.005 doi: 10.1016/j.csbj.2014.11.005 |
[13] | L. Wang, Y. Li, J. Zhou, D. Zhu, J. Ye, Multi-task survival analysis, in 2017 IEEE International Conference on Data Mining (ICDM), (2017), 485–494. https://doi.org/10.1109/ICDM.2017.58 |
[14] | C. Stirzaker, E. Zotenko, J. Z. Song, W. Qu, S. S. Nair, W. J. Locke, et al., Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value, Nat. Commun., 6 (2015), 5899. https://doi.org/10.1038/ncomms6899 doi: 10.1038/ncomms6899 |
[15] | S. Volinia, C. M. Croce, Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer, Proc. Natl. Acad. Sci., 110 (2013), 7413–7417. https://doi.org/10.1073/pnas.1304977110 doi: 10.1073/pnas.1304977110 |
[16] | Y. Wu, H. Chen, G. Jiang, Z. Mo, D. Ye, M. Wang, et al., Genome-wide association study (GWAS) of germline copy number variations (CNVs) reveal genetic risks of prostate cancer in Chinese population, J. Cancer, 9 (2018), 923–928. https://doi.org/10.7150/jca.22802 doi: 10.7150/jca.22802 |
[17] | P. Gong, L. Cheng, Z. Zhang, A. Meng, E. Li, J. Chen, et al., Multi-omics integration method based on attention deep learning network for biomedical data classification, Comput. Methods Programs Biomed., 231 (2023), 107377. https://doi.org/10.1016/j.cmpb.2023.107377 doi: 10.1016/j.cmpb.2023.107377 |
[18] | Y. Ma, J. Guan, MOCSC: A multi-omics data based framework for cancer subtype classification, in 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2022), 2853–2859. https://doi.org/10.1109/BIBM55620.2022.9995564 |
[19] | S. Moon, H. Lee, MOMA: A multi-task attention learning algorithm for multi-omics data interpretation and classification, Bioinformatics, 38 (2022), 2287–2296. https://doi.org/10.1093/bioinformatics/btac080 doi: 10.1093/bioinformatics/btac080 |
[20] | H. Yang, R. Chen, D. Li, Z. Wang, Subtype-GAN: A deep learning approach for integrative cancer subtyping of multi-omics data, Bioinformatics, 37 (2021), 2231–2237. https://doi.org/10.1093/bioinformatics/btab109 doi: 10.1093/bioinformatics/btab109 |
[21] | Y. Hu, L. Zhao, Z. Li, X. Dong, T. Xu, Y. Zhao, Classifying the multi-omics data of gastric cancer using a deep feature selection method, Expert Syst. Appl., 200 (2022), 116813. https://doi.org/10.1016/j.eswa.2022.116813 doi: 10.1016/j.eswa.2022.116813 |
[22] | B. W. Yuan, Z. L. Zhang, X. G. Luo, Y. Yu, X. H. Zou, X. D. Zou, OIS-RF: A novel overlap and imbalance sensitive random forest, Eng. Appl. Artif. Intell., 104 (2021), 104355. https://doi.org/10.1016/j.engappai.2021.104355 doi: 10.1016/j.engappai.2021.104355 |
[23] | M. Mohammed, H. Mwambi, I. B. Mboya, M. K. Elbashir, B. Omolo, A stacking ensemble deep learning approach to cancer type classification based on TCGA data, Sci. Rep., 11 (2021), 15626. https://doi.org/10.1038/s41598-021-95128-x doi: 10.1038/s41598-021-95128-x |
[24] | G. Xie, C. Dong, Y. Kong, J. F. Zhong, M. Li, K. Wang, Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features, Genes, 10 (2019), 240. https://doi.org/10.3390/genes10030240 doi: 10.3390/genes10030240 |
[25] | R. Jain, W. Xu, HDSI: High dimensional selection with interactions algorithm on feature selection and testing, PLoS One, 16 (2021), e0246159. https://doi.org/10.1371/journal.pone.0246159 doi: 10.1371/journal.pone.0246159 |
[26] | Z. Y. Algamal, M. H. Lee, Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification, Expert Syst. Appl., 42 (2015), 9326–9332. https://doi.org/10.1016/j.eswa.2015.08.016 doi: 10.1016/j.eswa.2015.08.016 |
[27] | M. T. Uddin, M. A. Uddiny, A guided random forest based feature selection approach for activity recognition, in 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), (2015), 1–6. https://doi.org/10.1109/ICEEICT.2015.7307376 |
[28] | The cancer genome atlas research network, Integrated genomic analyses of ovarian carcinoma, Nature, 474 (2011), 609–615. https://doi.org/10.1038/nature10166 doi: 10.1038/nature10166 |
[29] | L. Geistlinger, S. Oh, M. Ramos, L. Schiffer, R. S. LaRue, C. M. Henzler, et al., Multiomic analysis of subtype evolution and heterogeneity in high-grade serous ovarian carcinoma, Cancer Res., 80 (2020), 4335–4345. https://doi.org/10.1158/0008-5472.CAN-20-0521 doi: 10.1158/0008-5472.CAN-20-0521 |
[30] | H. Chai, X. Zhou, Z. Y. Zhang, J. H. Rao, H. Y. Zhao, Y. D. Yang, Integrating multi-omics data through deep learning for accurate cancer prognosis prediction, Comput. Biol. Med., 134 (2021), 104481. https://doi.org/10.1016/j.compbiomed.2021.104481 doi: 10.1016/j.compbiomed.2021.104481 |
[31] | M. Picard, M. P. Scott-Boyer, A. Bodein, O. Perin, A. Droit, Integration strategies of multi-omics data for machine learning analysis, Comput. Struct. Biotechnol. J., 19 (2021), 3735–3746. https://doi.org/10.1016/j.csbj.2021.06.030 doi: 10.1016/j.csbj.2021.06.030 |
[32] | N. Adossa, S. Khan, K. T. Rytkonen, L. L. Elo, Computational strategies for single-cell multi-omics integration, Comput. Struct. Biotechnol. J., 19 (2021), 2588–2596. https://doi.org/10.1016/j.csbj.2021.04.060 doi: 10.1016/j.csbj.2021.04.060 |
[33] | L. Tong, J. Mitchel, K. Chatlin, M. D. Wang, Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis, BMC Med. Inf. Decis. Making, 20 (2020), 1–12. https://doi.org/10.1186/s12911-020-01225-8 doi: 10.1186/s12911-020-01225-8 |
[34] | H. Sharifi-Noghabi, O. Zolotareva, C. C. Collins, M. Ester, MOLI: Multi-omics late integration with deep neural networks for drug response prediction, Bioinformatics, 35 (2019), i501–i509. https://doi.org/10.1093/bioinformatics/btz318 doi: 10.1093/bioinformatics/btz318 |
[35] | L. Zhou, M. Rueda, A. Alkhateeb, Classification of breast cancer nottingham prognostic index using high-dimensional embedding and residual neural network, Cancers, 14 (2022), 934. https://doi.org/10.3390/cancers14040934 doi: 10.3390/cancers14040934 |
[36] | G. Zhang, Z. Peng, C. Yan, J. Wang, J. Luo, H. Luo, MultiGATAE: A novel cancer subtype identification method based on multi-omics and attention mechanism, Front. Genet., 13 (2022), 855629. https://doi.org/10.3389/fgene.2022.855629 doi: 10.3389/fgene.2022.855629 |
[37] | Y. Hu, K. Liu, K. Ho, D. Riviello, J. Brown, A. R. Chang, et al., A simpler machine learning model for acute kidney injury risk stratification in hospitalized patients, J. Clin. Med., 11 (2022), 5688. https://doi.org/10.3390/jcm11195688 doi: 10.3390/jcm11195688 |
[38] | D. Sun, M. Wang, A. Li, A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data, IEEE/ACM Trans. Comput. Biol. Bioinf., 16 (2018), 841–850. https://doi.org/10.1109/TCBB.2018.2806438 doi: 10.1109/TCBB.2018.2806438 |
[39] | F. Carrillo-Perez, J. C. Morales, D. Castillo-Secilla, O. Gevaert, I. Rojas, L. J. Herrera, Machine-learning-based late fusion on multi-omics and multi-scale data for non-small-cell lung cancer diagnosis, J. Pers. Med., 12 (2022), 601. https://doi.org/10.3390/jpm12040601 doi: 10.3390/jpm12040601 |
[40] | L. Wang, Z. Ding, Z. Tao, Y. Liu, Y. Fu, Generative multi-view human action recognition, in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 6221–6230. https://doi.org/10.1109/ICCV.2019.00631 |
[41] | L. A. V. Silva, K. Rohr, Pan-cancer prognosis prediction using multimodal deep learning, in Proceeding of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), (2020), 568–571. http://doi.org/10.1109/ISBI45749.2020.9098665 |
[42] | Z. Fan, Z. Jiang, H. Liang, C. Han, Pancancer survival prediction using a deep learning architecture with multimodal representation and integration, Bioinf. Adv., 3 (2023), vbad006. https://doi.org/10.1093/bioadv/vbad006 doi: 10.1093/bioadv/vbad006 |
[43] | N. Bokde, F. Martinez-Alvarez, M. W. Beck, K. Kulat, A novel imputation methodology for time series based on pattern sequence forecasting, Pattern Recognit. Lett., 116 (2018), 88–96. https://doi.org/10.1016/j.patrec.2018.09.020 doi: 10.1016/j.patrec.2018.09.020 |
[44] | M. Al Fatih Abil Fida, T. Ahmad, M. Ntahobari, Variance threshold as early screening to Boruta feature selection for intrusion detection system, in 2021 13th International Conference on Information & Communication Technology and System (ICTS), (2021), 46–50. https://doi.org/10.1109/ICTS52701.2021.9608852 |
[45] | L. A. V. Silva, K. Rohr, Pan-cancer prognosis prediction using multimodal deep learning, in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), (2020), 568–571. https://doi.org/10.1109/ISBI45749.2020.9098665 |
[46] | L. Zhou, L. Wang, Q. Wang, Y. Shi, Machine Learning in Medical Imaging, Springer Cham, 2015. https://doi.org/10.1007/978-3-319-24888-2 |
[47] | X. Zhang, Y. Yang, T. Li, Y. Zhang, H. Wang, H. Fujita, CMC: A consensus multi-view clustering model for predicting Alzheimer's disease progression, Comput. Methods Programs Biomed., 199 (2021), 105895. https://doi.org/10.1016/j.cmpb.2020.105895 doi: 10.1016/j.cmpb.2020.105895 |
[48] | O. Kramer, K-nearest neighbors, in Dimensionality Reduction with Unsupervised Nearest Neighbors, Springer, Berlin, Heidelberg, (2013), 13–23. https://doi.org/10.1007/978-3-642-38652-7_2 |
[49] | Z. Huang, X. Zhan, S. Xiang, T. S. Johnson, B. Helm, C. Y. Yu, et al., SALMON: Survival analysis learning with multi-omics neural networks on breast cancer, Front. Genet., 10 (2019), 166. https://doi.org/10.3389/fgene.2019.00166 doi: 10.3389/fgene.2019.00166 |
[50] | S. J. Rigatti, Random forest, J. Insur. Med., 47 (2017), 31–39. https://doi.org/10.17849/insm-47-01-31-39.1 doi: 10.17849/insm-47-01-31-39.1 |
[51] | B. Ma, F. Meng, G. Yan, H. Yan, B. Chai, F. Song, Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data, Comput. Biol. Med., 121 (2020), 103761. https://doi.org/10.1016/j.compbiomed.2020.103761 doi: 10.1016/j.compbiomed.2020.103761 |
[52] | D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), 533–536. https://doi.org/10.1038/323533a0 doi: 10.1038/323533a0 |
[53] | T. Wang, W. Shao, Z. Huang, H. Tang, J. Zhang, Z. Ding, et al., MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification, Nat. Commun., 12 (2021), 3445. https://doi.org/10.1038/s41467-021-23774-w doi: 10.1038/s41467-021-23774-w |
[54] | D. B. Seal, V. Das, S. Goswami, R. K. De, Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration, Genomics, 112 (2020), 2833–2841. https://doi.org/10.1016/j.ygeno.2020.03.021 doi: 10.1016/j.ygeno.2020.03.021 |
[55] | Z. Ali Syeda, S. S. S. Langden, C. Munkhzul, M. Lee, S. J Song. Regulatory mechanism of microRNA expression in cancer, Int. J. Mol. Sci., 21 (2020), 1723. https://doi.org/10.3390/ijms21051723 doi: 10.3390/ijms21051723 |
[56] | S. Ghafouri-Fard, H. Shoorei, M. Taheri, miRNA profile in ovarian cancer, Exp. Mol. Pathol., 113 (2020), 104381. https://doi.org/10.1016/j.yexmp.2020.104381 doi: 10.1016/j.yexmp.2020.104381 |
[57] | L. Y. Guo, A. H. Wu, Y. X. Wang, L. P. Zhang, H. Chai, X. F. Liang, Deep learning-based ovarian cancer subtypes identification using multi-omics data, Biodata Min., 13 (2020), 1–12. https://doi.org/10.1186/s13040-020-00222-x doi: 10.1186/s13040-020-00222-x |
[58] | S. Huang, N. Cai, P. P. Pacheco, S. Narrandes, Y. Wang, W. Xu, Applications of support vector machine (SVM) learning in cancer genomics, Cancer Genomics Proteomics, 15 (2018), 41–51. https://doi.org/10.21873/cgp.20063 doi: 10.21873/cgp.20063 |
[59] | H. Abdi, L. J. Williams, Principal component analysis, WIREs Comput. Stat., 2 (2010), 433–459. https://doi.org/10.1002/wics.101 doi: 10.1002/wics.101 |
[60] | T. H. Vo, G. S. Lee, H. J. Yang, I. J. Oh, S. H. Kim, S. R. Kang, Survival prediction of lung cancer using small-size clinical data with a multiple task variational autoencoder, Electronics, 10 (2021), 1396. https://doi.org/10.3390/electronics10121396 doi: 10.3390/electronics10121396 |
[61] | S. R. Choi, M. Lee, Estimating the prognosis of low-grade glioma with gene attention using multi-omics and multi-modal schemes, Biology, 11 (2022), 1462. https://doi.org/10.3390/biology11101462 doi: 10.3390/biology11101462 |
[62] | T. Bonome, D. A. Levine, J. Shih, M. Randonovich, C. A. Pise-Masison, F. Bogomolniy, et al., A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer, Cancer Res., 68 (2008), 5478–5486. https://doi.org/10.1158/0008-5472.CAN-07-6595 doi: 10.1158/0008-5472.CAN-07-6595 |
[63] | K. Yoshihara, T. Tsunoda, D. Shigemizu, H. Fujiwara, M. Hatae, H. Fujiwara, et al., High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway, Clin. Cancer Res., 18 (2012), 1374–1385. https://doi.org/10.1158/1078-0432.CCR-11-2725 doi: 10.1158/1078-0432.CCR-11-2725 |
[64] | K. Yoshihara, A. Tajima, T. Yahata, S. Kodama, H. Fujiwara, M. Suzuki, et al., Gene expression profile for predicting survival in advanced-stage serous ovarian cancer across two independent datasets, PLoS One, 5 (2010), e9615. https://doi.org/10.1371/journal.pone.0009615 doi: 10.1371/journal.pone.0009615 |
[65] | S. Kommoss, B. Winterhoff, A. L. Oberg, G. E. Konecny, C. Wang, S. M. Riska, et al., Bevacizumab may differentially improve ovarian cancer outcome in patients with proliferative and mesenchymal molecular subtypes, Clin. Cancer Res., 23 (2017), 3794–3801. https://doi.org/10.1158/1078-0432.CCR-16-2196 doi: 10.1158/1078-0432.CCR-16-2196 |
[66] | S. D. McCabe, D. Y. Lin, M. I. Love, Consistency and overfitting of multi-omics methods on experimental data, Briefings Bioinf., 21 (2020), 1277–1284. https://doi.org/10.1093/bib/bbz070 doi: 10.1093/bib/bbz070 |
[67] | J. Yeomans, S. Thwaites, W. S. P. Robertson, D. Booth, B. Ng, D. Thewlis, Simulating time-series data for improved deep neural network performance, IEEE Access, 7 (2019), 131248–131255. https://doi.org/10.1109/access.2019.2940701 doi: 10.1109/ACCESS.2019.2940701 |
[68] | S. L. Ma, N. L. S. Tang, C. W. C. Tam, V. W. C. Lui, E. S. S. Lau, Y. P. Zhang, Polymorphisms of the estrogen receptor α (ESR1) gene and the risk of Alzheimer's disease in a southern Chinese community, Int. Psychogeriatrics, 21 (2009), 977–986. https://doi.org/10.1017/s1041610209990068 doi: 10.1017/S1041610209990068 |
[69] | H. Bronger, J. Singer, C. Windmuller, U. Reuning, D. Zech, C. Delbridge, et al., CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer, Br. J. Cancer, 115 (2016), 553–563. https://doi.org/10.1038/bjc.2016.172 doi: 10.1038/bjc.2016.172 |
[70] | K. M. Gharpure, O. D. Lara, Y. Wen, S. Pradeep, C. LaFargue, C. Ivan, et al., ADH1B promotes mesothelial clearance and ovarian cancer infiltration, Oncotarget, 9 (2018), 25115. https://doi.org/10.18632/oncotarget.25344 doi: 10.18632/oncotarget.25344 |
[71] | X. Li, L. Zhao, T. Meng, Upregulated CXCL14 is associated with poor survival outcomes and promotes ovarian cancer cells proliferation, Cell Biochem. Funct., 38 (2020), 613–620. https://doi.org/10.1002/cbf.3516 doi: 10.1002/cbf.3516 |
[72] | X. Li, Y. Shi, Z. Yin, X. Xue, B. Zhou, An eight-miRNA signature as a potential biomarker for predicting survival in lung adenocarcinoma, J. Transl. Med., 12 (2014), 1–12. https://doi.org/10.1186/1479-5876-12-159 doi: 10.1186/1479-5876-12-159 |
[73] | P. K. Croft, S. Sharma, N. Godbole, G. E. Rice, C. Salomon, Ovarian-cancer-associated extracellular vesicles: Microenvironmental regulation and potential clinical applications, Cells, 10 (2021), 2272. https://doi.org/10.3390/cells10092272 doi: 10.3390/cells10092272 |
[74] | Q. J. Wu, M. Guo, Z. M. Lu, T. Li, H. Z. Qiao, Y. Ke, Detection of human papillomavirus-16 in ovarian malignancy, Br. J. Cancer, 89 (2003), 672–675. https://doi.org/10.1038/sj.bjc.6601172 doi: 10.1038/sj.bjc.6601172 |
[75] | K. L. Clark, J. W. George, E. Przygrodzka, M. R. Plewes, G. Hua, C. Wang, et al., Hippo signaling in the ovary: Emerging roles in development, fertility, and disease, Endocr. Rev., 43 (2022), 1074–1096. https://doi.org/10.1210/endrev/bnac013 doi: 10.1210/endrev/bnac013 |