Research article

Identification of membrane protein types via deep residual hypergraph neural network


  • Received: 03 August 2023 Revised: 01 October 2023 Accepted: 13 October 2023 Published: 06 November 2023
  • A membrane protein's functions are significantly associated with its type, so it is crucial to identify the types of membrane proteins. Conventional computational methods for identifying the species of membrane proteins tend to ignore two issues: High-order correlation among membrane proteins and the scenarios of multi-modal representations of membrane proteins, which leads to information loss. To tackle those two issues, we proposed a deep residual hypergraph neural network (DRHGNN), which enhances the hypergraph neural network (HGNN) with initial residual and identity mapping in this paper. We carried out extensive experiments on four benchmark datasets of membrane proteins. In the meantime, we compared the DRHGNN with recently developed advanced methods. Experimental results showed the better performance of DRHGNN on the membrane protein classification task on four datasets. Experiments also showed that DRHGNN can handle the over-smoothing issue with the increase of the number of model layers compared with HGNN. The code is available at https://github.com/yunfighting/Identification-of-Membrane-Protein-Types-via-deep-residual-hypergraph-neural-network.

    Citation: Jiyun Shen, Yiyi Xia, Yiming Lu, Weizhong Lu, Meiling Qian, Hongjie Wu, Qiming Fu, Jing Chen. Identification of membrane protein types via deep residual hypergraph neural network[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 20188-20212. doi: 10.3934/mbe.2023894

    Related Papers:

  • A membrane protein's functions are significantly associated with its type, so it is crucial to identify the types of membrane proteins. Conventional computational methods for identifying the species of membrane proteins tend to ignore two issues: High-order correlation among membrane proteins and the scenarios of multi-modal representations of membrane proteins, which leads to information loss. To tackle those two issues, we proposed a deep residual hypergraph neural network (DRHGNN), which enhances the hypergraph neural network (HGNN) with initial residual and identity mapping in this paper. We carried out extensive experiments on four benchmark datasets of membrane proteins. In the meantime, we compared the DRHGNN with recently developed advanced methods. Experimental results showed the better performance of DRHGNN on the membrane protein classification task on four datasets. Experiments also showed that DRHGNN can handle the over-smoothing issue with the increase of the number of model layers compared with HGNN. The code is available at https://github.com/yunfighting/Identification-of-Membrane-Protein-Types-via-deep-residual-hypergraph-neural-network.



    加载中


    [1] X. Zhang, L. Chen, Prediction of membrane protein types by fusing protein-protein interaction and protein sequence information, Biochim. Biophys Acta Proteins Proteom., 1868 (2020), 140524. https://doi.org/10.1016/j.bbapap.2020.140524 doi: 10.1016/j.bbapap.2020.140524
    [2] H. Wang, Y. Ding, J. Tang, F. Guo, Identification of membrane protein types via multivariate information fusion with Hilbert-Schmidt independence criterion, Neurocomputing, 383 (2020), 257–269. https://doi.org/10.1016/j.neucom.2019.11.103 doi: 10.1016/j.neucom.2019.11.103
    [3] K. Chou, D. W. Elrod, Prediction of membrane protein types and subcellular locations, Proteins, 34 (1999), 137–153.
    [4] K. Chou, Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins, 43 (2001), 246–255. https://doi.org/10.1002/prot.1035 doi: 10.1002/prot.1035
    [5] M. Wang, J. Yang, G. Liu, Z. Xu, K. Chou, Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition, Protein Eng. Des. Sel., 17 (2004), 509–516. https://doi.org/10.1093/protein/gzh061 doi: 10.1093/protein/gzh061
    [6] H. Liu, M. Wang, K. Chou, Low-frequency Fourier spectrum for predicting membrane protein types, Biochem. Biophys. Res. Commun., 336 (2005), 737–739. https://doi.org/10.1016/j.bbrc.2005.08.160 doi: 10.1016/j.bbrc.2005.08.160
    [7] K. Chou, H. Shen, MemType-2L: A web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM, Biochem. Biophys. Res. Commun., 360 (2007), 339–345. https://doi.org/10.1016/j.bbrc.2007.06.027 doi: 10.1016/j.bbrc.2007.06.027
    [8] M. A. Rezaei, P. Abdolmaleki, Z. Karami, E. B. Asadabadi, M. A. Sherafat, H. Abrishami-Moghaddam, et al., Prediction of membrane protein types by means of wavelet analysis and cascaded neural networks, J. Theor. Biol., 254 (2008), 817–820. https://doi.org/10.1016/j.jtbi.2008.07.012 doi: 10.1016/j.jtbi.2008.07.012
    [9] L. Wang, Z. Yuan, X. Chen, Z. Zhou, The prediction of membrane protein types with NPE, IEICE Electron. Express, 7 (2010), 397–402. https://doi.org/10.1587/elex.7.397 doi: 10.1587/elex.7.397
    [10] M. Hayat, A. Khan, Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition, J. Theor. Biol., 271 (2011), 10–17. https://doi.org/10.1016/j.jtbi.2010.11.017 doi: 10.1016/j.jtbi.2010.11.017
    [11] M. Hayat, A. Khan, M. Yeasin, Prediction of membrane proteins using split amino acid and ensemble classification, Amino Acids, 42 (2012), 2447–2460. https://doi.org/10.1007/s00726-011-1053-5 doi: 10.1007/s00726-011-1053-5
    [12] M. Hayat, A. Khan, MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM, J. Theor. Biol., 292 (2012), 93–102. https://doi.org/10.1016/j.jtbi.2011.09.026 doi: 10.1016/j.jtbi.2011.09.026
    [13] Y. Chen, K. Li, Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou's pseudo amino acid composition, J. Theor. Biol., 318 (2013), 1–12. https://doi.org/10.1016/j.jtbi.2012.10.033 doi: 10.1016/j.jtbi.2012.10.033
    [14] G. Han, Z. Yu, V. Anh, A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC, J. Theor. Biol., 344 (2014), 31–39. https://doi.org/10.1016/j.jtbi.2013.11.017 doi: 10.1016/j.jtbi.2013.11.017
    [15] S. Wan, M. Mak, S. Kung, Mem-mEN: Predicting multi-functional types of membrane proteins by interpretable elastic nets, IEEE/ACM Trans. Comput. Biol. Bioinf., 13 (2016), 706–718. https://doi.org/10.1109/TCBB.2015.2474407 doi: 10.1109/TCBB.2015.2474407
    [16] W. Lu, J. Shen, Y. Zhang, H. Wu, Y. Qian, X. Chen, et al., Identifying membrane protein types based on lifelong learning with dynamically scalable networks, Front. Genet., 12 (2022), 2787. https://doi.org/10.3389/fgene.2021.834488 doi: 10.3389/fgene.2021.834488
    [17] Y. Wang, Y. Zhai, Y. Ding, Q. Zou, SBSM-Pro: Support bio-sequence machine for proteins, preprint, arXiv: 2308.10275.
    [18] J. B. Pereira-Leal, E. D. Levy, S. A. Teichmann, The origins and evolution of functional modules: lessons from protein complexes, Philos. Trans. R. Soc. B Biol. Sci., 361 (2006), 507–517. https://doi.org/10.1098/rstb.2005.1807 doi: 10.1098/rstb.2005.1807
    [19] E. D. Levy, J. B. Pereira-Leal, C. Chothia, S. A. Teichmann, 3D complex: A structural classification of protein complexes, PLoS Comput. Biol., 2 (2006), 155. https://doi.org/10.1371/journal.pcbi.0020155 doi: 10.1371/journal.pcbi.0020155
    [20] J. Huang, X. Huang, J. Yang, Residual enhanced multi-hypergraph neural network, in 2021 IEEE International Conference on Image Processing (ICIP), (2021), 3657–3661. https://doi.org/10.1109/ICIP42928.2021.9506153
    [21] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90
    [22] M. Chen, Z. Wei, Z. Huang, B. Ding, Y. Li, Simple and deep graph convolutional networks, in Proceedings of the 37th International Conference on Machine Learning, (2020), 1725–1735.
    [23] B. Boeckmann, A. Bairoch, R. Apweiler, M. Blatter, A. Estreicher, E. Gasteiger, et al., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res., 31 (2003), 365–370. https://doi.org/10.1093/nar/gkg095 doi: 10.1093/nar/gkg095
    [24] W. Li, A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, 22 (2006), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158 doi: 10.1093/bioinformatics/btl158
    [25] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25 (1997), 3389–3402. https://doi.org/10.1093/nar/25.17.3389 doi: 10.1093/nar/25.17.3389
    [26] J. C. Jeong, X. Lin, X. Chen, On position-specific scoring matrix for protein function prediction, IEEE/ACM Trans. Comput. Biol. Bioinf., 8 (2011), 308–315. https://doi.org/10.1109/TCBB.2010.93 doi: 10.1109/TCBB.2010.93
    [27] N. Ahmed, T. Natarajan, K. R. Rao, Discrete cosine transform, IEEE Trans. Comput., 23 (1974), 90–93. https://doi.org/10.1109/T-C.1974.223784
    [28] L. Nanni, S. Brahnam, A. Lumini, Wavelet images and Chou's pseudo amino acid composition for protein classification, Amino Acids, 43 (2012), 657–665. https://doi.org/10.1007/s00726-011-1114-9 doi: 10.1007/s00726-011-1114-9
    [29] B. Schölkopf, J. Platt, T. Hofmann, Learning with hypergraphs: Clustering, classification, and embedding, in Advances in Neural Information Processing Systems 19, MIT Press, (2007), 1601–1608.
    [30] Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with hypergraph analysis, IEEE Trans. Image Process., 21 (2012), 4290–4303. https://doi.org/10.1109/TIP.2012.2199502 doi: 10.1109/TIP.2012.2199502
    [31] Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in The Thirty-Third AAAI Conference on Artificial Intelligence, 33 (2019), 3558–3565. https://doi.org/10.1609/aaai.v33i01.33013558
    [32] J. Gasteiger, A. Bojchevski, S. Günnemann, Predict then propagate: Graph neural networks meet personalized pageRank, in Seventh International Conference on Learning Representations, (2019).
    [33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, et al., PyTorch: An imperative style, high-performance deep learning library, in Proceedings of the 33rd International Conference on Neural Information Processing Systems, (2019), 8026–8037.
    [34] W. Lu, M. Qian, Y. Zhang, H. Wu, Y. Ding, J. Shen, et al., Identification of membrane protein types based using hypergraph neural network, Curr. Bioinf., 18 (2023), 346–358. http://doi.org/10.2174/1574893618666230224143726 doi: 10.2174/1574893618666230224143726
    [35] W. Wang, L. Zhang, J. Sun, Q. Zhao, J. Shuai, Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field, Briefings Bioinf., 23 (2022), 463. https://doi.org/10.1093/bib/bbac463 doi: 10.1093/bib/bbac463
    [36] H. Hu, Z. Feng, H. Lin, J. Cheng, J. Lyu, Y. Zhang, et al., Gene function and cell surface protein association analysis based on single-cell multiomics data, Comput. Biol. Med., 157 (2023), 106733. https://doi.org/10.1016/j.compbiomed.2023.106733 doi: 10.1016/j.compbiomed.2023.106733
    [37] L. Zhang, P. Yang, H. Feng, Q. Zhao, H. Liu, Using network distance analysis to predict lncRNA–miRNA interactions, Interdiscip. Sci., 13 (2021), 535-545. https://doi.org/10.1007/s12539-021-00458-z doi: 10.1007/s12539-021-00458-z
    [38] F. Sun, J. Sun, Q. Zhao, A deep learning method for predicting metabolite–disease associations via graph neural network, Briefings Bioinf., 23 (2022), 266. https://doi.org/10.1093/bib/bbac266 doi: 10.1093/bib/bbac266
    [39] T. Wang, J. Sun, Q. Zhao, Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism, Comput. Biol. Med., 153 (2023), 106464. https://doi.org/10.1016/j.compbiomed.2022.106464 doi: 10.1016/j.compbiomed.2022.106464
    [40] H. Gao, J. Sun, Y. Wang, Y. Lu, L. Liu, Q. Zhao, et al., Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization, Briefings Bioinf., 24 (2023), 259. https://doi.org/10.1093/bib/bbad259 doi: 10.1093/bib/bbad259
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(684) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog