Research article Special Issues

The effect of migration on transmission of Wolbachia in Nilaparvata lugens


  • Received: 17 September 2023 Revised: 19 October 2023 Accepted: 24 October 2023 Published: 06 November 2023
  • Brown planthopper Nilaparvata lugens, which can transmit rice ragged stunt virus, is a serious and damaging pest to rice plants. Rice plants can protect themselves from the associated diseases of N.lugens by either suppressing or replacing N.lugens by releasing N.lugens infected by a special strain of Wolbachia wStri. The long-distance migration habit of N.lugens is one of the important precursors leading up to the large-scale occurrence of N.lugens. To study the effect of migration on the transmission of Wolbachia in N.lugens, a Wolbachia spreading dynamics model with migration of N.lugens between two patches is put forward. The existence and local stability conditions of equilibrium points of the system and its subsystems are obtained. Moreover, the effects of migration on the dynamic properties and the control of N.lugens are analyzed; the results show that the system can exhibit a bistable phenomenon, and the migration can change the stability of equilibrium infected with wStri from stable to unstable. The quantitative control methods for the migration of the insect N.lugens are proposed, which provide a theoretical guidance for future field experiments. Lastly, we use the Markov chain Monte Carlo (MCMC) method to estimate the parameters of the wild N.lugens migration model based on limited observational data; the numerical simulation results show that migration can increase the quantity of N.lugens, which is consistent with the relevant experimental results.

    Citation: Zhigang Liu, Tiejun Zhou. The effect of migration on transmission of Wolbachia in Nilaparvata lugens[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 20213-20244. doi: 10.3934/mbe.2023895

    Related Papers:

  • Brown planthopper Nilaparvata lugens, which can transmit rice ragged stunt virus, is a serious and damaging pest to rice plants. Rice plants can protect themselves from the associated diseases of N.lugens by either suppressing or replacing N.lugens by releasing N.lugens infected by a special strain of Wolbachia wStri. The long-distance migration habit of N.lugens is one of the important precursors leading up to the large-scale occurrence of N.lugens. To study the effect of migration on the transmission of Wolbachia in N.lugens, a Wolbachia spreading dynamics model with migration of N.lugens between two patches is put forward. The existence and local stability conditions of equilibrium points of the system and its subsystems are obtained. Moreover, the effects of migration on the dynamic properties and the control of N.lugens are analyzed; the results show that the system can exhibit a bistable phenomenon, and the migration can change the stability of equilibrium infected with wStri from stable to unstable. The quantitative control methods for the migration of the insect N.lugens are proposed, which provide a theoretical guidance for future field experiments. Lastly, we use the Markov chain Monte Carlo (MCMC) method to estimate the parameters of the wild N.lugens migration model based on limited observational data; the numerical simulation results show that migration can increase the quantity of N.lugens, which is consistent with the relevant experimental results.



    加载中


    [1] P. Q. Cabauatan, R. C. Cabunagan, I.-R. Choi, Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stål, International Rice Research Institute: Los Baños, Philippines, 2009.
    [2] J. Gong, Y. Li, T. Li, Y. Liang, L. Hu, D. Zhang, et al., Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection, Curr. Biol., 30 (2020), 4837–4845.e5. https://doi.org/10.1016/j.cub.2020.09.033 doi: 10.1016/j.cub.2020.09.033
    [3] K.-J. Zhang, W.-C. Zhu, X. Rong, Y. L. Ding, J. Liu, D. S. Chen, et al., The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes, BMC Genom., 14 (2013), 417. https://doi.org/10.1186/1471-2164-14-417 doi: 10.1186/1471-2164-14-417
    [4] H. Noda, Y. Koizumi, Q. Zhang, K. Ding, Infection density of Wolbachia and incompatibility level intwo planthopper species, Laodelphax striatellus and Sogatella furcifera, Insect Biochem. Mol. Biol., 31 (2001), 727–737. https://doi.org/10.1016/S0965-1748(00)00180-6 doi: 10.1016/S0965-1748(00)00180-6
    [5] Z. Liu, T. Zhou, Wolbachia spreading dynamics in Nilaparvata lugens with two strains, Nonlinear Anal. RWA, 62 (2021), 103361. https://doi.org/10.1016/j.nonrwa.2021.103361 doi: 10.1016/j.nonrwa.2021.103361
    [6] Z. Liu, T. Chen, T. Zhou, Analysis of impulse release of Wolbachia to control Nilaparvata lugens, Commun. Nonlinear SCI., 116 (2023), 106842. https://doi.org/10.1016/j.cnsns.2022.106842 doi: 10.1016/j.cnsns.2022.106842
    [7] J. H. Yen, A. R. Barr, New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L., Nature, 232 (1971), 657–658. https://doi.org/10.1038/232657a0 doi: 10.1038/232657a0
    [8] D. P. LePage, J. A. Metcalf, S. R. Bordenstein, J. On, J. I. Perlmutter, J. D. SHropshire, et al., Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility, Nature, 543 (2017), 243–247. https://doi.org/10.1038/nature21391 doi: 10.1038/nature21391
    [9] Z. Xi, C. Khoo, S. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326–328. https://doi.org/10.1126/science.1117607 doi: 10.1126/science.1117607
    [10] M. Turelli, A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature, 353 (1991), 440–442. https://doi.org/10.1038/353440a0 doi: 10.1038/353440a0
    [11] Y. Bao, B. Zhai, X. Cheng, Numerical simulation of the migration parameters of the Brown Planthopper, Nilaparvata lugens (stål), Acta. Ecologica. Sinica., 25 (2005), 1107–1114.
    [12] X. Cheng, R. Chen, X. Xi, L. Yang, Z. Zhu, J. Wu, et al., Study on the migrations of brown planthopper Nilaparvata lugens, Acta Entomol. Sinica, 22 (1979), 1–21.
    [13] X. Cheng, X. Zhang, J. Cheng, Radar observation of brown planthopper migration in eastern China in autumn, J. Nanjing Agric. Univ., 17 (1994), 24–32.
    [14] Y. Wang, G. Hu, M. Xie, Air flow analysis of migratory paths of the white back planthopper and rice brown planthopper in China, J. Plant Protec., 9 (1982), 73–82.
    [15] G. Hu, Q. Tang, Distribution and harm of brown planthopper in China, Chinese J. Appl. Entomol., 34 (1997), 50–51, 61.
    [16] J. Kennedy, Turning point in the study of insect migration, Nature, 189 (1961), 785–791. https://doi.org/10.1038/189785a0 doi: 10.1038/189785a0
    [17] T. Southwood, Migration of terrestrial arthropods in relation to habitat, Biol. Rev., 37 (1962), 171–214. https://doi.org/10.1111/j.1469-185X.1962.tb01609.x doi: 10.1111/j.1469-185X.1962.tb01609.x
    [18] K. E. Khor, T. H. Chua, A rigorous population model for the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), Res. Popul. Ecol., 28 (1986), 103–116. https://doi.org/10.1007/BF02515540 doi: 10.1007/BF02515540
    [19] J. Vattikuti, V. Sailaja, Y. Prasad, P. M. Chiutkar, G. R. Rao, A. P. Padmakumari, et al., Temperature driven development of the rice brown planthopper, Nilaparvata lugens, J. Agrometeor., 21 (2019), 131–140. https://doi.org/10.54386/jam.v21i2.221 doi: 10.54386/jam.v21i2.221
    [20] N. Thuy, N. Doanh, T. Oanh, Effects of fast dispersal and stage structured on predator-prey dynamics: A case study of brown plant hopper ecological system, J. Agrometeor., 17 (2019), 29–56.
    [21] A. Nguyen, D. Do, H. Nguyen, T. Nguyen, Stability analysis and Hopf bifurcation of a brown planthopper-rice model under the effect of monsoon, Ecol. Model., 468 (2022), 109942. https://doi.org/10.1016/j.ecolmodel.2022.109942 doi: 10.1016/j.ecolmodel.2022.109942
    [22] M. Huang, M. Tang, J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77–96. https://doi.org/10.1007/s11425-014-4934-8 doi: 10.1007/s11425-014-4934-8
    [23] M. Huang, J. Yu, L. Hu, B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249–1266. https://doi.org/10.1007/s11425-016-5149-y doi: 10.1007/s11425-016-5149-y
    [24] Y. Liu, Z. Guo, M. E. Smaily, L. Wang, A wolbachia infection model with free boundary, J. Biol. Dynam., 14 (2020), 515–542. https://doi.org/10.1080/17513758.2020.1784474 doi: 10.1080/17513758.2020.1784474
    [25] Y. Liu, F. Jiao, L. Hu, Modeling mosquito population control by a coupled system, J. Math. Anal. Appl., 506 (2022), 125671. https://doi.org/10.1016/j.jmaa.2021.125671 doi: 10.1016/j.jmaa.2021.125671
    [26] T. Hou, Causes of meteorological environment influencing on migration of rice planthopper, J. Nat. Disaster, 12 (2003), 142–148.
    [27] R. Mchich, P. Auger, J. C. Poggiale, Effect of predator density dependent dispersal of prey on stability of a predator–prey system, Math. Biosci., 206 (2007), 343–356. https://doi.org/10.1016/j.mbs.2005.11.005 doi: 10.1016/j.mbs.2005.11.005
    [28] H. Smith, P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.
    [29] H. Xu, J. Xue, B. Lu, X. Zhang, J. Zhuo, S. He, et al., Two insulin receptors determine alternative wing morphs in planthoppers, Nature, 519 (2015), 7544. https://doi.org/10.1038/nature14286 doi: 10.1038/nature14286
    [30] Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative theory of differential equations, (Translations of Mathematical Monographs, 101), Providence, RI : American Mathematical Soc., 2006.
    [31] L. Perko, Differential Equations and Dynamical Systems, Springer, Berlin, 2001. https://doi.org/10.1007/978-1-4613-0003-8
    [32] X. Zheng, M. Zhao, S. He, X. Li, F. Yang, G. Wu, Effects of five different rice varieties on the life history and population dynamics of the brown planthopper, Nilaparvata lugens in central China, Chin. J. Appl. Entomol., 57 (2020), 142–152.
    [33] S. He, N. Xiao, X. Zheng, M. Zhao, The life history parameters and population dynamics of brown planthopper Nilaparvata lugens feeding on different rice varieties in central China, J. Plant Protection, 48 (2021), 357–366. 10.13802/j.cnki.zwbhxb.2021.2020072 doi: 10.13802/j.cnki.zwbhxb.2021.2020072
    [34] S. Ding, Z. Zeng, F. Yan, J. Wei, The development and life table parameters of Nilaparvata lugens (stål) feeding on nine rice varieties, Acta Phytophylacica Sinica, 39 (2012), 334–340.
    [35] V. Nguyen, H. Huynh, T. Vo, A. Drogoul, On weather affecting to brown plant hopper invasion using an agent-based model, In: Proceedings of the International Conference on Management of Emergent Digital EcoSystems, MEDES, (2011), 150–157. https://doi.org/10.1145/2077489.2077517
    [36] C. Phan, H. Huynh, A. Drogoul, An agent-based approach to the simulation of brown plant hopper(BPH) invasions in the mekong delta, IEEE Rivf International Conference on Computing and Communication Technologies, (2010). https://doi.org/10.1109/RIVF.2010.5633134
    [37] B. Lavie, U. Ritte, The relation between dispersal behavior and reproductive fitness inthe flour beetle tribolium castaneum, Genome, 20 (1978), 589–595. https://doi.org/10.1139/g78-068 doi: 10.1139/g78-068
    [38] L. Shen, X. Cheng, The effect of migration on reproduction of Nilaparvata lugens (stål), J. Nanjing Agric. Univ., 21 (1998), 32–35.
    [39] N. Metropolis, M. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
    [40] W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. https://doi.org/10.1093/biomet/57.1.97 doi: 10.1093/biomet/57.1.97
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1090) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog