Citation: Yijun Lou, Li Liu, Daozhou Gao. Modeling co-infection of Ixodes tick-borne pathogens[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1301-1316. doi: 10.3934/mbe.2017067
[1] | [ M. E. Adelson,R. V. S. Rao,R. C. Tilton, Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in Northern New Jersey, J. Cli. Micro., 42 (2004): 2799-2801. |
[2] | [ F. R. Adler,J. M. Pearce-Duvet,M. D. Dearing, How host population dynamics translate into time-lagged prevalence: An investigation of Sin Nombre virus in deer mice, Bull. Math. Biol., 70 (2008): 236-252. |
[3] | [ C. Alvey,Z. Feng,J. Glasser, A model for the coupled disease dynamics of HIV and HSV-2 with mixing among and between genders, Math. Biosci., 265 (2015): 82-100. |
[4] | [ E. A. Belongia, Epidemiology and impact of coinfections acquired from Ixodes ticks, Vector-Borne and Zoonotic Dis., 2 (2002): 265-273. |
[5] | [ O. Diekmann,J. A. P. Heesterbeek,M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 5 (2009): 1-13. |
[6] | [ M. A. Diuk-Wasser,E. Vannier,P. J. Krause, Coinfection by Ixodes tick-borne pathogens: Ecological, epidemiological, and clinical consequences, Trends Para., 32 (2016): 30-42. |
[7] | [ P. van den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48. |
[8] | [ G. Fan,Y. Lou,H. R. Thieme,J. Wu, Stability and persistence in ODE models for populations with many stages, Math. Biosci. Eng., 12 (2015): 661-686. |
[9] | [ G. Fan,H. R. Thieme,H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol., 71 (2015): 1017-1048. |
[10] | [ D. Gao,Y. Lou,S. Ruan, A periodic Ross-Macdonald model in a patchy environment, Dis. Cont. Dyn. Syst.-B, 19 (2014): 3133-3145. |
[11] | [ D. Gao,T. C. Porco,S. Ruan, Coinfection dynamics of two diseases in a single host population, J. Math. Anal. Appl., 442 (2016): 171-188. |
[12] | [ E. J. Goldstein,C. Thompson,A. Spielman,P. J. Krause, Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis, Clin. Inf. Dis., 33 (2001): 676-685. |
[13] | [ L. Halos,T. Jamal,R. Maillard, Evidence of Bartonella sp. in questing adult and nymphal Ixodes ricinus ticks from France and co-infection with Borrelia burgdorferi sensu lato and Babesia sp., Veterinary Res., 361 (2005): 79-87. |
[14] | [ J. M. Heffernan,Y. Lou,J. Wu, Range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi by migratory birds, Dis. Cont. Dyn. Syst.-B, 19 (2014): 3147-3167. |
[15] | [ M. H. Hersh, R. S. Ostfeld and D. J. McHenry et al., Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts, PloS one, 9 (2014), e99348. |
[16] | [ M. W. Hirsch,H. L. Smith,X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dyn. Differ. Equ., 13 (2001): 107-131. |
[17] | [ Y. Lou, J. Wu and X. Wu, Impact of biodiversity and seasonality on Lyme-pathogen transmission, Theo. Biol. Med. Modell., 11 (2014), 50. |
[18] | [ Y. Lou,X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol., 73 (2011): 2384-2407. |
[19] | [ P. D. Mitchell,K. D. Reed,J. M. Hofkes, Immunoserologic evidence of coinfection with Borrelia burgdorferi, Babesia microti, and human granulocytic Ehrlichia species in residents of Wisconsin and Minnesota, J. Cli. Biol., 34 (1996): 724-727. |
[20] | [ S. Moutailler, C. V. Moro and E. Vaumourin et al., Co-infection of ticks: The rule rather than the exception, PLoS Negl. Trop. Dis., 10 (2016), e0004539. |
[21] | [ J. M. Mutua,F. B. Wang,N. K. Vaidya, Modeling malaria and typhoid fever co-infection dynamics, Math. Biosci., 264 (2015): 128-144. |
[22] | [ N. H. Ogden, L. St-Onge and I. K. Barker et al., Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis in Canada now and with climate change, Int. J. Heal. Geog., 7 (2008), 24. |
[23] | [ A. R. Plourde,E. M. Bloch, A literature review of Zika virus, Emerg. Inf. Dise., 22 (2016): 1185-1192. |
[24] | [ H. C. Slater, M. Gambhir, P. E. Parham and E. Michael, Modelling co-infection with malaria and lymphatic filariasis, PLoS Comput. Biol., 9 (2013), e1003096, 14pp. |
[25] | [ H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Providence, RI: Math. Surveys Monogr., 41, AMS, 1995. |
[26] | [ F. E. Steiner,R. R. Pinger,C. N. Vann, Infection and co-infection rates of Anaplasma phagocytophilum variants, Babesia spp., Borrelia burgdorferi, and the rickettsial endosymbiont in Ixodes scapularis (Acari: Ixodidae) from sites in Indiana, Maine, Pennsylvania, and Wisconsin, J. Med. Entom., 45 (2008): 289-297. |
[27] | [ G. Stinco,S. Bergamo, Impact of co-infections in Lyme disease, Open Dermatology J., 10 (2016): 55-61. |
[28] | [ S. J. Swanson,D. Neitzel,K. D. Reed,E. A. Belongia, Coinfections acquired from Ixodes ticks, Cli. Micro. Rev., 19 (2006): 708-727. |
[29] | [ B. Tang, Y. Xiao and J. Wu, Implication of vaccination against dengue for Zika outbreak, Sci. Rep., 6 (2016), 35623. |
[30] | [ H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992): 755-763. |
[31] | [ W. Wang,X.-Q. Zhao, Spatial invasion threshold of Lyme disease, SIAM J. Appl. Math., 75 (2015): 1142-1170. |
[32] | [ X. Wu,V. R. Duvvuri,Y. Lou, Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada, J. Theo. Biol., 319 (2013): 50-61. |
[33] | [ X. -Q. Zhao, Dynamical Systems in Population Biology, New York: Springer, 2003. |
[34] | [ X.-Q. Zhao,Z. Jing, Global asymptotic behavior in some cooperative systems of functional-differential equations, Canad. Appl. Math. Quart., 4 (1996): 421-444. |