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Abstract: Brown planthopper Nilaparvata lugens, which can transmit rice ragged stunt virus, is a seri-
ous and damaging pest to rice plants. Rice plants can protect themselves from the associated diseases of
N.lugens by either suppressing or replacing N.lugens by releasing N.lugens infected by a special strain
of Wolbachia wStri. The long-distance migration habit of N.lugens is one of the important precursors
leading up to the large-scale occurrence of N.lugens. To study the effect of migration on the trans-
mission of Wolbachia in N.lugens, a Wolbachia spreading dynamics model with migration of N.lugens
between two patches is put forward. The existence and local stability conditions of equilibrium points
of the system and its subsystems are obtained. Moreover, the effects of migration on the dynamic prop-
erties and the control of N.lugens are analyzed; the results show that the system can exhibit a bistable
phenomenon, and the migration can change the stability of equilibrium infected with wStri from stable
to unstable. The quantitative control methods for the migration of the insect N.lugens are proposed,
which provide a theoretical guidance for future field experiments. Lastly, we use the Markov chain
Monte Carlo (MCMC) method to estimate the parameters of the wild N.lugens migration model based
on limited observational data; the numerical simulation results show that migration can increase the
quantity of N.lugens, which is consistent with the relevant experimental results.
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1. Introduction

Brown planthopper Nilaparvata lugens (Stål) (Hereinafter referred to as N.lugens) is a
monophagous insect species, which causes irreversible damage to rice mainly by either piercing or
sucking the phloem juice of rice and transmitting Rice Ragged Stunt Viruses (RRSV) [1]; the frequent
occurrence of N.lugens seriously affects food security worldwide. A number of studies have been
performed to develop technology that controls agricultural pests by utilizing Wolbachia [2–10]. Re-
searchers have identified an endosymbiotic Wolbachia strain, wStri, from a small planthopper Laodel-
phax striatellus (Fallén) that induces cytoplasmic incompatible (CI) phenotypes in its host [3–5]. CI
is a phenomenon of either embryo death or offspring sterility when the male insects infected with
Wolbachia mate with females that are either uninfected or infected with a different strain of Wol-
bachia [5–10]. A study from 2020 reported that Wolbachia wStri can cause cytoplasmic incompatibil-
ity in N.lugens and can significantly inhibit the infection and transmission of rice ragged stunt viruses
(RRSV) in a laboratory environment [2]. This is a breakthrough achievement in the development of a
control mechanism of rice planthopper by applying endosymbiotic bacteria. The artificial cultivation
of the N.lugens line showed the required characteristics of either population replacement or population
suppression in the laboratory.

Because N.lugens is a rice pest with the habit of long-distance migration [11], and the total number
of migrating N.lugens is often in the hundreds of millions, they have a huge impact on the agricul-
tural ecosystem. Over the years, the migration rule of N.lugens in China has been discovered mainly
through modern monitoring technology and international cooperation research: under suitable condi-
tions, N.lugens migrate from the southern rice area in spring, then fly northward alongside monsoons to
the Huaibei rice area, and migrate back to the south in autumn [12–17]. The whole migration process
spans across a large area in a large amount of time, which is one of the main causes for the large-scale
N.lugens disaster. The existing dynamics models of N.lugens generally based the population migration
on the diffusion mode between two patches [18–21]. In 2019, Vattikuti et al. established linear and
nonlinear differential equation models in which the growth rate of N.lugens is described as a function
of temperature, and further estimated the bioclimatological threshold under the influence of tempera-
ture [19]. Additionally, Thuy et al. proposed an ordinary differential equation model of N.lugens where
they rapidly disperse in two patches with a stage structure [20]. In 2022, Nguyen et al. constructed
a herbivore (N.lugens) -host plant (rice) model of N.lugens dispersal between two adjacent patches,
and studied the effect of monsoons on the interaction between N.lugens and rice [21]. However, the
seasonality of N.lugens migration was not fully reflected in the aforementioned models, and more im-
portantly, these models did not consider the spread of Wolbachia in N.lugens. Although we previously
studied the transmission of Wolbachia in N.lugens [5, 6], we did not consider their migration.

In addition, there are some literatures that use the reaction diffusion equation model to study the
transmission dynamics of Wolbachia in a mosquito population [22–25]. Ref. [22, 23] studied the
spreading dynamics of Wolbachia in mosquitoes that activate and diffuse within a relatively isolated
and limited region. The diffusion problem of mosquitoes within a free boundary region was also dis-
cussed in Ref. [24]. Liu et al. proposed a coupled model to evaluate the efficiency of Wolbachia on a
mosquito control [25]. However, the conception of the migration of N.lugens is different from that of
the mosquitoes diffusion. The main characteristics of N.lugens migration are seasonality and the simul-
taneously uniform tropism (i.e., N.lugens migration in one direction is influenced by the unidirectional
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carrier air flow. In this case, the small random diffusion effect in other directions is negligible, where
the carrier air flow is a southeast wind in summer and a northeast wind in autumn [26]). Therefore,
N.lugens migration can not be studied simply by a research method based on diffusion behavior. In this
article, we define a migration coefficient based on the population proportion to construct a Wolbachia
transmission model that reflects the N.lugens migration. Through in-depth research on the basic dy-
namic characteristics of the model, we will analyze how to limit the control effect of Wolbachia during
their migration on brown planthoppers.

This paper is organized as follows. In Section 2, the Wolbachia spreading dynamic model with
the migration of N.lugens is introduced. In Sections 3 and 4, we analyze the existence and stability
of equilibria for the main model. The global stabilities of three subsystems are studied in Section 5.
Then, we provide numerical simulations for the stability of equilibria in Section 6. A discussion for
the impact of migration on the dynamic properties of the system and the control effects of N.lugens are
included in section 7. Finally, we give our conclusions in section 8.

2. Model

2.1. A general diffusion model with two patches

In order to establish the migration model of N.lugens, we give the following assumptions:

• Based on the data of the insect trap catches under lights and the data of field surveys of insects
in Ref. [11], we assume that N.lugens migrates between two areas, where area 1 is referred to as
the main source area of the northward migrants of N.lugens, and area 2 is referred to as the main
destination area of the northward migrants of N.lugens.
• N.lugens infected with wStri is only released in area 1.
• N.lugens mainly migrates northward from area 1 to area 2 in the spring, and it mainly migrates

southward from area 2 to area 1 in the autumn.

Let I(i)(t) and U (i)(t) represent the number of the wStri-infected N.lugens and the uninfected N.lugens
in time t in the area i, respectively. Moreover, the total number of N.lugens within area 1 and area 2 are
denoted as N(i) = I(i)(t) + U (i)(t), respectively, i = 1, 2.

When population migration is not considered, the N.lugens population only interacts within each
patch. Thus, based on the modeling method in [5, 6], it is easy to obtain the following interaction
dynamic model of the N.lugens population in each patch:

dI(1)(t)
dt = bI(1)(t) − d1I(1)(t)N(1)(t),

dU(1)(t)
dt = bU (1)(t) (1−ξ)I(1)(t)

N(1)(t) + bU (1)(t)U(1)(t)
N(1)(t) − d2U (1)(t)N(1)(t),

dU(2)(t)
dt = bU (2)(t) − d2U (2)(t)N(2)(t),

(2.1)

where N.lugens infected with wStri has a perfect maternal transmission characteristic, and wStri can
induce higher CI levels for the uninfected N.lugens female [2, 5] and the CI intensity of the male
N.lugens infected with wStri IM against the uninfected female N.lugens UF be ξ ∈ (0, 1). According
to a two-sex model (1) in Ref [6], b denotes the half natural birth rate of N.lugens. Note that N.lugens
infected with wLug is not considered here. d1 and d2 denote the decay rate constants of the individuals
infected with wStri and the uninfected, respectively.
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When population migration is taken into the aforementioned system (2.1), it is transfered to the
following general discrete diffusion system (2.2):

dI(1)(t)
dt = bI(1)(t) − d1I(1)(t)N(1)(t) − n12I(1)(t) + n21I(2)(t),

dU(1)(t)
dt = bU (1)(t) (1−ξ)I(1)(t)

N(1)(t) + bU (1)(t)U(1)(t)
N(1)(t) − d2U (1)(t)N(1)(t) − m12U (1)(t) + m21U (2)(t),

dI(2)(t)
dt = bI(2) − d1I(2)(t)N(2)(t) + n12I(1)(t) − n21I(2)(t),

dU(2)(t)
dt = bU (2)(t) (1−ξ)I(2)(t)

N(2)(t) + bU (2)(t)U(2)(t)
N(2)(t) − d2U (2)(t)N(2)(t) + m12U (1)(t) − m21U (2)(t),

(2.2)

where ni j and mi j stand for the average migration rate of the wStri-infected N.lugens and the uninfected
N.lugens from area i to area j, respectively, where i, j = 1, 2. It must be specified that all parameters of
model (2.2) have positive values. Notice that the average migration rates of N.lugens are all constant,
and system (2.2) can not fully reflect the characteristics of N.lugens migration affected by a monsoon.
Thus, we need to develop a N.lugens migration model that better reflects the effects of the season.

2.2. Migration model

The diffusion coefficient is generally related to population density of the two patches. Many
predator-prey models with diffusion assume that the diffusion coefficient is a linear function of the
diffused species density; some of these models assume that only one species has this dispersal prop-
erty [27], while others assume that there is a dispersal effect in only one monsoon direction [21]. The
system we consider is markedly different from these models. First, two N.lugens species do not dis-
play a predator-prey relationship. Second, N.lugens migration is different from population diffusion,
in which the directions of migration are different at different seasons. Simply considering N.lugens
migration in one direction does not reflect the bidirectional characteristics of migration. Moreover, the
migration coefficient is not a linear function of the population density of the initial source area because
the linear function can not reflect the phased one-way migration phenomenon. Therefore, it is key to
construct a migration coefficient of N.lugens which can reflect the influence of the season.

Since the migration of N.lugens is influenced by the season, its migration coefficient should reflect
the seasonal factor. In the spring, N.lugens migrates northward due to a southeast wind from area
1 to area 2. At this time, the number of N.lugens in area 1 is much greater than in area 2. When
N.lugens begins to migrate back due to a northeast wind from the northern rice area 2 to the southern
rice area 1 in autumn, the number of N.lugens in area 2 is much greater than in area 1. We use the
ratio N(i)

N( j) , which represent the number of N.lugens in two areas as a diffusion coefficient, to accurately
reflect the seasonal migration characteristics of N.lugens (i, j = 1, 2). We call this coefficient the
ratio dependent migration coefficient. Substituting ni j and mi j with N(i)

N( j) in system (2.2), we obtain the
following migration system (2.3):

dI(1)(t)
dt = bI(1)(t) − d1I(1)(t)N(1)(t) − b12N(1)(t)

N(2)(t) I(1)(t) + a21N(2)(t)
N(1)(t) I(2)(t),

dU(1)(t)
dt = bU (1)(t) (1−ξ)I(1)(t)

N(1)(t) + bU (1)(t)U(1)(t)
N(1)(t) − d2U (1)(t)N(1)(t) − b̄12N(1)(t)

N(2)(t) U (1)(t) + ā21N(2)(t)
N(1)(t) U (2)(t),

dI(2)(t)
dt = bI(2)(t) − d1I(2)(t)N(2)(t) + a12N(1)(t)

N(2)(t) I(1)(t) − b21N(2)(t)
N(1)(t) I(2)(t),

dU(2)(t)
dt = bU (2)(t) (1−ξ)I(2)(t)

N(2)(t) + bU (2)(t)U(2)(t)
N(2)(t) − d2U (2)(t)N(2)(t) + ā12N(1)(t)

N(2)(t) U (1)(t) − b̄21N(2)(t)
N(1)(t) U (2)(t),

(2.3)
with the initial value

I(1)(0) > 0,U (1)(0) ≥ 0, I(2)(0) ≥ 0,U (2)(0) ≥ 0, (2.4)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20213–20244.



20217

where a12 (a21) and ā12 (ā21) denote the successful landing rate of the wStri-infected N.lugens and the
uninfected N.lugens after a long-distance northward (or southward) migration, respectively, and b12

(b21) and b̄12 (b̄21) denote the successful take-off rate of the wStri-infected N.lugens and the uninfected
N.lugens as northward (or southward) migration, respectively. a12, ā12, a21, ā21, b12, b̄12, b21, b̄21 ∈

[0, 1]. Clearly, the successful take-off rate is more than the successful landing rate (i.e., b12 > a12, b21 >

a21, b̄12 > ā12 and b̄21 > ā21). We will analyze the dynamics of system (2.3) with the initial value
condition (2.4) under the aforementioned basic restriction conditions.

System (2.3) can be regarded as the phased migration model in the first and second half of the
year. In the spring, the number of N.lugens in area 1 is much greater than in area 2. The major part
of the last two expressions reflecting the migration in the first two equations of system (2.3) is the
minus term, and the major part of the last two expressions reflecting the migration in the last two
equations of system (2.3) is the plus term, which reveals the reality that there is a significant northward
migration of N.lugens in spring, but not an obvious return to the south. On the contrary, the number of
N.lugens in area 2 is much greater than in area 1 in autumn; this shows that N.lugens has a significant
southward migration, but not an obvious northward migration. It essentially reflects the bidirectional
property of N.lugens migration. Additionally, system (2.3) also reflects a simultaneously uniform
tropism. Therefore, except for the migration coefficient being a function of population density, it is
multiplied by the population density of the corresponding type of N.lugens, which reflects that the
simultaneous uniform tropism effect increases when the population density increases during the same
season.

Denote the right function of system (2.3) by F(I(1),U (1), I(2),U (2)) = ( f1, f2, f3, f4)T . Since

lim(I(1),U(1),I(2),U(2))→(0,0,0,0)F(I(1),U (1), I(2),U (2)) = 0,

the right-hand side function fi of system (2.3) can be continuously extended to the origin (0, 0, 0, 0) by
fi(0, 0, 0, 0) = 0 (i = 1, 2, 3, 4). Thus, system (2.3) is well-defined in the following region:

R4
+ = {(I

(1),U (1), I(2),U (2)) : I(1) ≥ 0,U (1) ≥ 0, I(2) ≥ 0,U (2) ≥ 0}.

3. The nonnegativity and boundedness of solutions for system (2.3)

In this section, we will analyze the nonnegativity and boundedness of solutions for system (2.3).

Theorem 1. Suppose that (I(1)(t),U (1)(t), I(2)(t),U (2)(t)) is any solution of system (2.3) with the initial
condition (2.4). Then, it is nonnegative and bounded.

Proof. Nonnegativity. When I(1) = 0, U (1) ≥ 0, I(2) ≥ 0 and U (2) ≥ 0, we have the following:

f1(0,U (1), I(2),U (2)) =
a21N(2)I(2)

U (1) ≥ 0.

Moreover, when I(1) ≥ 0, U (1) = 0, I(2) ≥ 0 and U (2) ≥ 0, we have the following:

f2(I(1), 0, I(2),U (2)) =
ā21N(2)U (2)

I(1) ≥ 0.

Similarly, when I(1) ≥ 0, U (1) ≥ 0, I(2) = 0 and U (2) ≥ 0, we have the following:

f3(I(1),U (1), 0,U (2)) =
a12N(1)I(1)

U (2) ≥ 0,
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when I(1) ≥ 0, U (1) ≥ 0, I(2) ≥ 0 and U (2) = 0, we have

f4(I(1),U (1), I(2), 0) =
ā12N(1)U (1)

I(2) ≥ 0.

According to proposition B.7 in [28], it follows that

(I(1)(t),U (1)(t), I(2)(t),U (2)(t)) ∈ R4
+, t ≥ 0.

Thus, the solution of system (2.3) with the initial condition (2.4) is nonnegative.
Boundedness. Let W(t) = I(1)(t) + U (1)(t) + I(2)(t) + U (2)(t). From the nonnegativity of solution

which has been proven, and the basic constraints of parameters b12 > a12, b21 > a21, b̄12 > ā12 and
b̄21 > ā21, we have the following:

dW(t)
dt
≤bI(1) − d1I(1)2

+ b(1 − ξ)U (1) + bU (1) − d2U (1)2

+ bI(2) − d1I(2)2
+ b(1 − ξ)U (2) + bU (2) − d2U (2)2

.

Then, we have the following:

dW
dt
+ bW ≤2bI(1) − d1I(1)2

+ b(3 − ξ)U (1) − d2U (1)2

+ 2bI(2) − d1I(2)2
+ b(3 − ξ)U (2) + bU (2) − d2U (2)2

.

Therefore, we obtain the following:

dW
dt
+ bW ≤ − d1

((
I(1) −

b
d1

)2
−

b2

d2
1

)
− d2

((
U (1) −

b(3 − ξ)
2d2

)2
−

b2(3 − ξ)2

4d2
2

)
− d1

((
I(2) −

b
d1

)2
−

b2

d2
1

)
− d2

((
U (2) −

b(3 − ξ)
2d2

)2
−

b2(3 − ξ)2

4d2
2

)
≤

2b2

d1
+

b2(3 − ξ)2

2d2
2

≜ L,

namely, dW
dt + bW ≤ L.

It follows from the differential inequality theory that 0 ≤ W(t) ≤ L
b (1 − e−bt) +W(0)e−bt. Therefore,

we get 0 ≤ W(t) ≤ L/b as t → +∞.
Consequently the solution (I(1)(t),U (1)(t), I(2)(t),U (2)(t)) starting from region R+4 is restricted to the

following region:

Λ = {(I(1),U (1), I(2),U (2)) ∈ R+4 : 0 ≤ I(1)(t) + U (1)(t) + I(2)(t) + U (2)(t) ≤
L
b
},

where L = 2b2

d1
+

b2(3−ξ)2

2d2
2

. □
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The aforementioned region Λ is the positive invariant set with respect to system (2.3). The nonneg-
ative solution for system (2.3) shows that the population density of N.lugens can not be negative, and
the boundedness of the solution for system (2.3) indicates that the population density of N.lugens in
the wild can not increase indefinitely, which are consistent with reality.

4. The existence and the stability of equilibria

4.1. The existence of equilibria

Now we discuss the existence of equilibria of system (2.3). It is easy to see that system (2.3) always
has a trivial equilibrium point E0(0, 0, 0, 0). In addition, system (2.3) may exist as equilibrium infected
with wStri E1(Ī(1), 0, Ī(2), 0), the uninfected equilibrium E2(0, Û (1), 0, Û (2)) and the positive equilibrium
E3(Ĩ(1), Ũ (1), Ĩ(2), Ũ (2)).

1). The existence analysis of the equilibrium infected with wStri E1. Equilibrium E1(Ī(1), 0, Ī(2), 0)
should satisfy the following algebraic equations:bĪ(1) − d1(Ī(1))2 −

b12(Ī(1))2

Ī(2) +
a21(Ī(2))2

Ī(1) = 0,
bĪ(2) − d1(Ī(2))2 +

a12(Ī(1))2

Ī(2) −
b21(Ī(2))2

Ī(1) = 0,

where Ī(i) > 0, i = 1, 2. Simplifying the above equations gives two equivalent equations:b − d1 Ī(1) −
b12 Ī(1)

Ī(2) +
a21(Ī(2))2

(Ī(1))2 = 0,

b − d1 Ī(2) +
a12(Ī(1))2

(Ī(2))2 −
b21 Ī(2)

Ī(1) = 0.
(4.1)

Transferring the terms −d1 Ī(1) and −d1 Ī(2) to the right-hand side of (4.1) and dividing the first equation
with the second equation, we obtain the following:

b − b12
Ī(1)

Ī(2) + a21
(Ī(2))2

(Ī(1))2

b + a12
(Ī(1))2

(Ī(2))2 − b21
Ī(2)

Ī(1)

=
Ī(1)

Ī(2)
. (4.2)

Let Ī(1)

Ī(2) = p. By substituting it into formula (4.2), we obtain the following:

b − b12 p + a21
1
p2

b + a12 p2 − b21
1
p

= p. (4.3)

Simplifying and rearranging formula (4.3) produces a polynomial equation with respect to p:

a12 p5 + (b + b12)p3 − (b + b21)p2 − a21 = 0. (4.4)

Since a12, b+b12, b+b21 and a21 are greater than 0, by ignoring those terms with the zero coefficient,
the number of times of the coefficient signs changes for Eq (4.4) is 1. According to Descartes’ Rule of
Signs, we assert that Eq (4.4) has only one positive real root, which is denoted as c1. As for either the
remaining complex roots or the non-positive real roots, if they exist, they do not meet the requirements.
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Thus, by substituting Ī(1)

Ī(2) = c1 into Eq (4.1), and noticing that Ī(1) = c1 Ī(2), we haveĪ(1) = 1
d1c2

1
(a21 + bc2

1 − b12c3
1),

Ī(2) = 1
d1c3

1
(a21 + bc2

1 − b12c3
1),

(4.5)

or Ī(1) = 1
d1

(a12c3
1 + bc1 − b21),

Ī(2) = 1
d1c1

(a12c3
1 + bc1 − b21).

(4.6)

Note that Ī(1) in formula (4.5) is equivalent to that of formula (4.6), and so is also Ī(2). Therefore, we
obtain the existence of equilibrium E1 as follows.

Theorem 2. If a21+bc2
1−b12c3

1 > 0 or a12c3
1+bc1−b21 > 0, then system (2.3) exists as one equilibrium

infected with wS tri E1(Ī(1), 0, Ī(2), 0), where Ī(1) and Ī(2) are shown in formula (4.5) or (4.6), and c1 is
the positive real root of Eq (4.4).

2). The existence analysis of equilibrium E2(0, Û (1), 0, Û (2)). Similarly, equilibrium E2 should sat-
isfy the following equations:bÛ (1) − d2(Û (1))2 − b̄12

(Û(1))2

Û(2) + ā21
(Û(2))2

Û(1) = 0,
bÛ (2) − d2(Û (2))2 + ā12

(Û(1))2

Û(2) − b̄21
(Û(2))2

Û(1) = 0,

where Û (i) > 0, i = 1, 2.
Simplifying the equation above, we obtain thatb − d2Û (1) − b̄12

Û(1)

Û(2) + ā21
(Û(2))2

(Û(1))2 = 0,

b − d2Û (2) + ā12
(Û(1))2

(Û(2))2 − b̄21
Û(2)

Û(1) = 0,
(4.7)

Thus, we get

b − b̄12
Û(1)

Û(2) + ā21
(Û(2))2

(Û(1))2

b + ā12
(Û(1))2

(Û(2))2 − b̄21
Û(2)

Û(1)

=
Û (1)

Û (2)
.

Let Û(1)

Û(2) = q. By substituting it into the formula above, the following polynomial equation can be easily
obtained via simple algebraic operation:

ā12q5 + (b + b̄12)q3 − (b + b̄21)q2 − ā21 = 0. (4.8)

Because of ā12, b + b̄12,b + b̄21 and ā21 are all greater than 0, it follows from Descartes’ Rule of Signs
that Eq (4.8) has only a positive real root, which is denoted as c2. As for either the remaining complex
roots or non-positive real roots, if they exist, they do not meet the requirements.

Substituting Û(1)

Û(2) with c2 in formula (4.7), we haveÛ (1) = 1
d2c2

2
(ā21 + bc2

2 − b̄12c3
2),

Û (2) = 1
d2c3

2
(ā21 + bc2

2 − b̄12c3
2).

(4.9)
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or Û (1) = 1
d2

(ā12c3
2 + bc2 − b̄21),

Û (2) = 1
d2c2

(ā12c3
2 + bc2 − b̄21),

(4.10)

It is easy to see that formulas (4.9) and (4.10) are actually equivalent from the calculation process
above. Thus, we obtain the existence result of equilibrium E2 as follows.

Theorem 3. If ā21 + bc2
2 − b̄12c3

2 > 0 or ā12c3
2 + bc2 − b̄21 > 0, then system (2.3) has an uninfected equi-

librium E2(0, Û (1), 0, Û (2)), where Û (1) and Û (2) are shown in formula (4.9) or (4.10), and c2 satisfies
Eq (4.8).

4.2. The stability of equilibrium

In this subsection, we discuss the stability of equilibrium for system (2.3). For the sake of conve-
nience, let symbols E(I(1),U (1), I(2),U (2)) be any equilibrium of system (2.3), and let JE = ( fi j)4×4 be
the Jacobi matrix corresponding system (2.3) at equilibrium E, where

f11 =b − d1N(1) − d1I(1) −
b12(I(1) + N(1))

N(2) −
a21N(2)I(2)

(N(1))2 ;

f12 = − d1I(1) −
b12I(1)

N(2) −
a21N(2)I(2)

(N(1))2 ;

f13 =
b12N(1)I(1)

(N(2))2 +
a21(I(2) + N(2))

N(1) ;

f14 =
b12N(1)I(1)

(N(2))2 +
a21I(2)

N(1) ;

f21 =b(1 − ξ)U (1) N(1) − I(1)

(N(1))2 −
b(U (1))2

(N(1))2 − d2U (1) −
b̄12U (1)

N(2) −
ā21N(2)U (2)

(N(1))2 ;

f22 =b(1 − ξ)I(1) N(1) − U (1)

(N(1))2 + b
2U (1)N(1) − (U (1))2

(N(1))2 − d2U (1)

− d2N(1) −
b̄12(U (1) + N(1))

N(2) −
ā21N(2)U (2)

(N(1))2 ;

f23 =
b̄12N(1)U (1)

(N(2))2 +
ā21U (2)

N(1) ;

f24 =
b̄12N(1)U (1)

(N(2))2 +
ā21(U (2) + N(2))

N(1) ;

f31 =
a12(I(1) + N(1))

N(2) +
b21N(2)I(2)

(N(1))2 ;

f32 =
a12I(1)

N(2) +
b21N(2)I(2)

(N(1))2 ;

f33 =b − d1N(2) − d1I(2) −
a12N(1)I(1)

(N(2))2 −
b21(I(2) + N(2))

N(1) ;

f34 = − d1I(2) −
a12N(1)I(1)

(N(2))2 −
b21I(2)

N(1) ;
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f41 =
ā12U (1)

N(2) +
b̄21N(2)U (2)

(N(1))2 ;

f42 =
ā12(N(1) + U (1))

N(2) +
b̄21N(2)U (2)

(N(1))2 ;

f43 =b(1 − ξ)U (2) N(2) − I(2)

(N(2))2 − b
(U (2))2

(N(2))2 − d2U (2) −
ā12N(1)U (1)

(N(2))2 −
b̄21U (2)

N(1) ;

f44 =b(1 − ξ)I(2) N(2) − U (2)

(N(2))2 + b
2U (2)N(2) − (U (2))2

(N(2))2 − d2N(2) − d2U (2)

−
ā12N(1)U (1)

(N(2))2 −
b̄21(U (2) + N(2))

N(1) .

First, we consider the stability of system (2.3) at equilibrium E1. The Jacobi matrix JE1 of the
corresponding linearized system of system (2.3) at equilibrium E1 is as follows:

−b − 3a21
c2

1
−

2a21
c2

1
− b b12c2

1 +
2a21
c1

b12c2
1 +

a21
c1

0 b(1 − ξ) − b̄12c1 − d2 Ī(1) 0 ā21
c1

2a12c1 +
b21
c2

1
a12c1 +

b21
c2

1
−3a12c2

1 − b −2a12c2
1 − b

0 ā12c1 0 b(1 − ξ) − b̄21
c1
− d2 Ī(2)

 .

Thus, the characteristic equation of JE1 is as follows:

(λ2 + A1λ + A2)(λ2 + A3λ + A4) = 0, (4.11)

where

A1 = − 2b(1 − ξ) + d2 Ī(1) + d2 Ī(2) + b̄12c1 +
b̄21

c1
;

A2 =
(
− b(1 − ξ) + b̄12c1 + d2 Ī(1))( − b(1 − ξ) +

b̄21

c1
+ d2 Ī(2)

)
− ā12ā21;

A3 =2b +
3a21

c2
1

+ 3a12c2
1;

A4 =
(
b +

3ā21

c2
1

)
(b + 3a12c2

1) −
(
b12c2

1 +
2a21

c1

)(
2a12c1 +

b21

c2
1

)
.

Since A3 > 0, to make all the roots of the characteristic equation (4.11) have the negative real part,
the following condition (H1) must be satisfied:
(H1) A1 > 0, A2 > 0 and A4 > 0.

Therefore, we have the stability result of system (2.3) at equilibrium E1 as follows:

Theorem 4. Suppose that the condition (H1) holds; then, the equilibrium infected with wStri
E1(Ī(1), 0, Ī(2), 0) of system (2.3) is locally asymptotically stable.

Then, we consider the stability of equilibrium E2(0, Û (1), 0, Û (2)) of system (2.3). The Jacobi matrix
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JE2 of the corresponding linear system of system (2.3) at E2 is as follows:
b − d1Û (1) − b12c2 0 a21

c2
0

−b(1 + ξ) − 2ā21
c2

2
−b − 3ā21

c2
2

b̄12c2
2 +

ā21
c2

b̄12c2
2 +

2ā21
c2

a12c2 0 b − d1Û (2) −
b21
c2

0
ā12c2 +

b̄21
c2

2
2ā12c2 +

b̄21
c2

2
−b(1 + ξ) − 2ā12c2

2 −b − 3ā12c2
2

 .
Therefore, the characteristic equation of JE2 is as follows:

(λ2 + B1λ + B2)(λ2 + B3λ + B4) = 0, (4.12)

where

B1 = − 2b + d1Û (1) + d1Û (2) + b12c2 +
b21

c2
;

B2 =(−b + d1Û (1) + b12c2)
(
− b + d1Û (2) +

b21

c2

)
− a12a21;

B3 =2b +
3ā21

c2
2

+ 3ā12c2
2;

B4 =

(
b +

3ā21

c2
2

)
(b + 3ā12c2

2) −
(
b̄12c2

2 +
2ā21

c2

)(
2ā12c2 +

b̄21

c2
2

)
.

Due to B3 > 0, the following condition (H2) must be satisfied to make all the roots of the character-
istic equation of JE2 have a negative real part:
(H2) B1 > 0, B2 > 0 and B4 > 0.

Therefore, we have the following the stability result of equilibrium E2.

Theorem 5. Suppose that the condition (H2) holds; then, the uninfected equilibrium E2(0, Û (1), 0, Û (2))
of system (2.3) is locally asymptotically stable.

The existence of system (2.3) at the positive equilibrium will be analyzed by a numerical simulation
method in Section 6. The existence and stability of E1 indicates that wStri can fully invade the wild
population even though there exists migration, while the existence and stability of the positive equilib-
rium E3 suggest that migration may lead to an incomplete invasion of wStri; however, the existence and
stability of E2 suggest that migration may lead to a failure of the control method based on Wolbachia.

5. The global stability of the degenerated system for system (2.3)

5.1. The subsystem without N.lugens migration

N.lugens is a wing dimorphic insect with long and short wings. The long-winged morph has a
migration habit, which allows them to escape adverse habitats and track changing resources [29]. The
short-winged morph lacks a long distance migration ability, though its strong fecundity is conducive to
the rapid proliferation of the population. Therefore, in order to theoretically reveal the interaction of the
unmigrated N.lugens population, we need to study the interaction of the subsystem without migration.
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When N.lugens migration is not considered, system (2.3) is degenerated into the following sys-
tem (5.1): 

dI(1)(t)
dt = bI(1)(t) − d1I(1)(t)N(1)(t),

dU(1)(t)
dt = bU (1)(t) (1−ξ)I(1)(t)

N(1)(t) + bU (1)(t)U(1)(t)
N(1)(t) − d2U (1)(t)N(1)(t),

dI(2)(t)
dt = bI(2)(t) − d1I(2)(t)N(2)(t),

dU(2)(t)
dt = bU (2)(t) (1−ξ)I(2)(t)

N(2)(t) + bU (2)(t)U(2)(t)
N(2)(t) − d2U (2)(t)N(2)(t).

(5.1)

Since the first two equations are independent of the second two equations in system (5.1), we study
the following system of the interaction between Wolbachia and N.lugens when N.lugens infected with
wStri is only released in area 1: dI(1)(t)

dt = bI(1)(t) − d1I(1)(t)N(1)(t),
dU(1)(t)

dt = bU (1)(t) (1−ξ)I(1)(t)
N(1)(t) + bU (1)(t)U(1)(t)

N(1)(t) − d2U (1)(t)N(1)(t).
(5.2)

Obviously, system (5.2) always has equilibria E00(0, 0), E10( b
d1
, 0) and E01(0, b

d2
). A straightforward

calculation shows that system (5.2) has a unique positive equilibrium E11(Ǐ(1), Ǔ (1)) if and only if 0 <
1 − d2

d1
< ξ is true, where Ǐ(1) = b

d1ξ

(
1 − d2

d1

)
,

Ǔ (1) = b
d1

(
1 − 1

ξ

(
1 − d2

d1

))
.

(5.3)

By a direct calculation, the Jacobi matrix JE00 corresponding to system (5.2) at the E00 is as follows:(
b 0
0 b

)
.

The Jacobi matrix JE10 and JE01 corresponding to system (5.2) at the E10 and E01 are(
−b −b
0 b(1 − ξ) − bd2

d1

)
,

and (
b(1 − d1

d2
) 0

−b(1 + ξ) −b

)
,

respectively. Moreover, the Jacobi matrix of system (5.2) corresponding to E11 is as follows:

JE11 =

 −dǏ(1) −dǏ(1)

−
ξd2

1
b Ǔ (1) − d2Ǔ (1) −

ξd2
1

b (Ǐ(1))2 + b − d2
b
d1
− d2Ǔ (1)

 ,
and its determinant detJE11 < 0 from the existence condition of E11. Therefore, the stability results of
those equilibria for system (5.2) are obtained as follows:

Lemma 1. E00(0, 0) is always unstable. E10( b
d1
, 0) is locally asymptotically stable if 1 − ξ < d2

d1
.

E01(0, b
d2

) is locally asymptotically stable if d2 < d1. E11(Ǐ(1), Ǔ (1)) is always unstable if it exists.

Theorem 6. If d2
d1
> 2 − ξ, then, equilibrium infected with wStri E10 of system (5.2) is globally asymp-

totically stable in region {(I(1),U (1)) : I(1) > 0,U (1) ≥ 0}.
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Proof. Let (I(1)(t),U (1)(t)) be the trajectory of system (5.2) with the initial value (I(1)
0 ,U

(1)
0 ). It follows

from d2
d1
> 2 − ξ that d2

d1
> 1 and d2

d1
> 1 − ξ; therefore, the unstability of E01(0, b

d2
), the nonexistence of

the positive equilibrium E11 and the local asymptotic stability of E10( b
d1
, 0) are obtained, where E10 is

a saddle point and its stable manifold is U (1)-axis.
If I(1)

0 > 0 and U (1)
0 = 0, then for any t > 0, U (1)(t) = 0 and dI(1)(t)

dt = bI(1) − d1(I(1))2. Therefore, the
system’s trajectories will tend to E10.

If I(1)
0 > 0 and U (1)

0 > 0, then we have I(1)(t) > 0 and U (1)(t) > 0 for all t > 0. To apply the Poincaré’s
method of tangential curves [30], we introduce the following function:

H(t) = ln
((

I(1)(t)
) 1
α1
(
U (1)(t)

)− 1
α2

)
,

where α1 > 0, α2 > 0 and α1
α2
= d1

d2
. Taking the derivative of H(t) with respect to the solution to

system (5.2), we have the following:

dH
dt

∣∣∣∣
(5.2)
=

1
α1I(1)(t)

dI(1)(t)
dt

−
1

α2U (1)(t)
dU (1)(t)

dt

=
b
α1
−

d1

α1
N(1) −

b(1 − ξ)I(1)

α2N(1) −
bU (1)

α2N(1) +
d2

α2
N(1)

=
b
α1
−

b(1 − ξ)I(1)

α2N(1) −
bU (1)

α2N(1)

≥
b
α1
−

b(1 − ξ)
α2

−
b
α2

=
b
α1

(
1 −

d1

d2
(2 − ξ)

)
> 0.

Hence, H(t) strictly increases with respect to t, and it follows that system (5.2) does not have any
nontrivial periodic solution in region {(I(1),U (1)) : I(1) > 0,U (1) ≥ 0}. Thus, the system’s trajectories
from the initial value I(1)

0 > 0 and U (1)
0 > 0 will be attracted to E10.

Therefore, E10 is globally asymptotically stable in region {(I(1),U (1)) : I(1) > 0,U (1) ≥ 0}. □

For example, the parameters are taken as b = 0.45, d1 = 0.1, d2 = 0.2 and ξ = 0.675 because of
1− d1

d2
(2− ξ) = 0.3375 > 0, and the condition of Theorem 6 is satisfied. Thus, the equilibrium infected

with wStri E10 = (4.5, 0) is globally asymptotically stable. In such case, there exists no positive
equilibrium, and the uninfected equilibrium E01 = (0, 2.25) is a saddle point of system (5.2), whose
stable manifold is U (1)-axis. The numerical verification of Theorem 6 is shown in Figure 1.

At the end of this subsection, we provide the existence and stability of equilibria for system (5.1).
There are always three equilibria Ew

0 (0, 0, 0, 0), Ew
1 (b/d1, 0, b/d1, 0), Ew

2 (0, b/d2, 0, b/d2), and there ex-
ists a positive equilibrium Ew

3 (Ǐ(1), Ǔ (1), Ǐ(2), Ǔ (2)) if and only if the condition 1 − ξ < d2
d1
< 1 holds. For

the stability of system (5.1), we have the following conclusion.

Theorem 7. Ew
0 (0, 0, 0, 0) is always unstable. Ew

1 is locally asymptotically stable if 1 − ξ < d2
d1

. Ew
2 is

locally asymptotically stable if d2 < d1. Ew
3 is always unstable if it exists. In addition, Ew

1 and Ew
2 are

both locally asymptotically stable if 1 − ξ < d2
d1
< 1.
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Figure 1. The global asymptotic stability of equilibrium infected with wStri E10 for system
(5.2). The parameters b = 0.45, ξ = 0.675, d1 = 0.1 and d2 = 0.2, the two red lines represent
the horizontal and vertical isocline, respectively.

5.2. The wild N.lugens migration model

In this subsection, we study the migration dynamics of wild N.lugens with the long-winged morph
(i.e., subsystem without N.lugens infected with wStri in system (2.3)) as follows:dU(1)

dt = bU (1) − d2(U (1))2 −
b̄12U(1)

U(2) U (1) + ā21U(2)

U(1) U (2),
dU(2)

dt = bU (2) − d2(U (2))2 + ā12U(1)

U(2) U (1) −
b̄21U(2)

U(1) U (2).
(5.4)

System (5.4) reflects the southward and northward migration dynamic of the wild N.lugens. Denote
the right hand function of system (5.4) by (g1, g2)T , and gi(i = 1, 2) can be continuously extended
to the origin (0, 0) by the supplementary definition g1(U (1), 0) = bU (1) − d2(U (1))2, g1(0,U (2)) = 0,
g2(U (1), 0) = 0, g2(0,U (2)) = bU (2) − d2(U (2))2, g1(0, 0) = g1(0, 0) = 0.

The interior {(U (1),U (2)) : U (1) > 0,U (2) > 0} of the first quadrant for U (1)U (2)-plane is the positive
invariant set of system (5.4), and its trajectory starting from this region is eventually bounded. It is easy
to see that system (5.4) has a trivial equilibrium E20(0, 0), which is unstable by a direct calculation.
Furthermore, if ā21+bc2

2− b̄12c3
2 > 0, then there exists only a positive equilibrium E21(Û (1), Û (2)), where

c2 is the positive real root of equation (4.8), and Û (1) and Û (2) are the same as (4.9).
By a direct calculation, it is not hard to know that the trivial equilibrium E20(0, 0) is always unstable.

We provide the global stability results for the positive equilibrium E21 as follows. The Jacobi matrix
corresponding to system (5.4) at E21 is −b − 3ā21

c2
2

b̄12c2
2 +

2ā21
c2

2ā12c2 +
b̄21
c2

2
−b − 3ā12c2

2

 ,
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and its characteristic equation is

λ2 + B3λ + B4 = 0,

where B3 and B4 are consistent with that of Eq (4.12). Therefore, we have the following result of the
local stability for the positive equilibrium,

Lemma 2. If B4 > 0, then the positive equilibrium E21(Û (1), Û (2)) of system (5.4) is locally asymptoti-
cally stable.

In fact, the positive equilibrium E21 is not only locally asymptotically stable, but also globally
asymptotically stable.

Theorem 8. If B4 > 0, then the positive equilibrium E21(Û (1), Û (2)) of system (5.4) is globally asymp-
totically stable in the region {(U (1),U (2)) : U (1) > 0,U (2) > 0}.

Proof. We only need to show that system (5.4) does not have any nontrivial periodic solution in
{(U (1),U (2)) : U (1) > 0,U (2) > 0}. According to Dulac’s criteria (see, e.g., Theorem 2, Section 3.9
of Ref. [31]), we choose the Dulac function B(U (1),U (2)) = 1

U(1)U(2) , where the divergence of the vector
field (g1B, g2B) satisfies the following:

∇ · (g1B, g2B) =
∂(g1B)
∂U (1) +

∂(g2B)
∂U (2)

= −
d2

U (2) −
b̄12

(U (2))2 −
2ā21U (2)

(U (1))3 −
d2

U (1) −
2ā12U (1)

(U (2))3 −
b̄21

(U (1))2 < 0

for any (U (1),U (2)) ∈ {(U (1),U (2)) : U (1) > 0,U (2) > 0}. Thus, system (5.4) does not exist as a closed
orbit in the interior of the first quadrant of the U (1)U (2)-plane. In addition, the condition B4 > 0 implies
that E21 is locally asymptotically stable, and there exists no other equilibrium in the interior of the first
quadrant for system (5.4). Therefore, the positive equilibrium E21(Û (1), Û (2)) is globally asymptotically
stable in the region {(U (1),U (2)) : U (1) > 0,U (2) > 0}. □

We choose the parameters b = 0.5, d2 = 0.2, ξ = 0.675, b̄12 = 0.75, b̄21 = 0.85, ā12 = 0.7
and ā21 = 0.8; then, we have c2 = 1.0405, Û (1) = 2.2933 and Û (2) = 2.2041. Furthermore, we get
B4 = 2.3761 > 0. It follows from Theorem 8 that the positive equilibrium E21 = (2.2933, 2.2041) is
globally asymptotically stable, and the numerical simulation results as shown in Figure 2.
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Figure 2. The global asymptotic stability of the positive equilibrium E21 for system (5.4).
The parameters b = 0.5, d2 = 0.2, ξ = 0.675, b̄12 = 0.75, b̄21 = 0.85, ā12 = 0.7 and ā21 = 0.8,
the two red lines represent the horizontal and vertical isocline, respectively.

5.3. The migration model of N.lugens infected with wStri

In this subsection, we will analyze the migration dynamics of N.lugens infected with wStri with
long-winged morph (i.e., subsystem without the uninfected N.lugens in system (2.3)) as follows: dI(1)

dt = bI(1) − d1(I(1))2 −
b12I(1)

I(2) I(1) + a21I(2)

I(1) I(2),
dI(2)

dt = bI(2) − d1(I(2))2 + a12I(1)

I(2) I(1) −
b21I(2)

I(1) I(2).
(5.5)

System (5.5) reveals the wStri-infected N.lugens migration dynamic after Wolbachia wStri completely
invades the wild N.lugens. The study of system (5.5) is mainly aimed at proposing the artificial control
measures for the wStri-infected N.lugens.

Similar to system (5.4), the first quadrant of the I(1)I(2)-plane is the positive invariant set of system
(5.5). If a21 + bc2

1 − b12c3
1 > 0 holds, then system (5.5) only has a positive equilibrium E31(Ī(1), Ī(2)),

where c1 is the positive real root of (4.4), and Ī(1) and Ī(2) are consistent with that of formula (4.5) or
(4.6).

The Jacobi matrix corresponding to system (5.5) at E31 is as follows: −b − 3a21
c2

1
b12c2

1 +
2a21
c1

2a12c1 +
b21
c2

1
−b − 3a12c2

1

 .
Its characteristic equation is as follows:

λ2 + A3λ + A4 = 0,

where A3 and A4 are completely consistent with that of Eq (4.11).
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Lemma 3. If A4 > 0, then the positive equilibrium E31(Ī(1), Ī(2)) of system (5.5) is locally asymptotically
stable.

Theorem 9. If A4 > 0, then the positive equilibrium E31(Ī(1), Ī(2)) of system (5.5) is globally asymptot-
ically stable in the region {(I(1), I(2)) : I(1) > 0, I(2) > 0}.

Proof. We only need to show that there exists no closed orbit in the interior of the first quadrant of the
I(1)I(2)-plane for system (5.5). Let (h1, h2)T be the right hand function of system (5.5). Similar to the
proof of Theorem 8, to apply Dulac’s criteria (see, e.g., Theorem 2, Section 3.9 of Ref. [31]), we take
the Dulac function D(I(1), I(2)) = 1

I(1)I(2) , for any I(1) > 0 and I(2) > 0, the divergence of the vector field
(h1D, h2D) is equal to the following:

∇ · (h1D, h2D) =
∂(h1D)
∂I(1) +

∂(h2D)
∂I(2)

= −
d1

I(2) −
b12

(I(2))2 −
2a21I(2)

(I(1))3 −
d1

I(1) −
2a12I(1)

(I(2))3 −
b21

(I(1))2 < 0.

According to the Dulac criterion, system (5.5) has no closed orbit in the interior of the first quadrant
of the I(1)I(2)-plane. Furthermore, it follows from A4 > 0 that the positive equilibrium E31 is locally
asymptotically stable. Additionally, there is no other equilibrium in the interior of the first quadrant.
Therefore, E31(Ī(1), Ī(2)) is globally asymptotically stable in the region {(I(1), I(2)) : I(1) > 0, I(2) > 0}. □

For example, taking the parameters b = 0.6, ξ = 0.675, d1 = 0.1, b12 = 0.6, b21 = 0.85, a12 = 0.5
and a21 = 0.7, we get c1 = 1.1106, Ī(1) = 5.0121 and Ī(2) = 4.5131; then, we have A4 = 2.0410 > 0.
Hence, the positive equilibrium E31 = (5.0121, 4.5131) is globally asymptotically stable from Theorem
9. The numerical simulation results are shown in Figure 3.

Figure 3. The global asymptotic stability of the positive equilibrium E31 for system (5.5).
The parameters b = 0.6, ξ = 0.675, d1 = 0.1, b12 = 0.6, b21 = 0.85, a12 = 0.5 and a21 = 0.7,
the two red lines represent the horizontal and vertical isocline, respectively.
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The result of Theorem 2, 4 and 9 indicate that although N.lugens infected with wStri are only
released in area 1, they can coexist in both area 1 and area 2 after wStri completely invades the wild
population.

6. Numerical simulation

We need to estimate some biological parameters of N.lugens for a numerical simulation, such as
b, d1, d2 and ξ, which can systematically reflect the biological characteristics of the N.lugens population
dynamics and development, and are often used for population dynamics monitoring, prediction and
bioassay [32]. N.lugens has different natural birth rates in the different rice varieties, ranging from
(0.1 ± 0.016, 0.6) [32–34]. However, if N.lugens is not affected by any adverse factors, its birth rates
should be high, and even close to 1. The natural mortality of N.lugens is not only associated with
artificial factors such as insecticide, but also with the meteorological conditions such as rainfall and
temperature. Its daily mortality rates are approximately 3% to 5%, and can reach 10% to 30% in case
of severe weather [35,36]. Therefore, the natural mortality rates of wild N.lugens are within the ranges
of (0.03, 0.3).

The experimental data in Ref. [2] indicated that the lifespan of female N.lugens infected with wStri
was not shorter than that of the uninfected female N.lugens, and there was no significant difference
in male survivorship among those two N.lugens types. Thus, we consider that the mortality rate of
N.lugens infected with wStri has roughly the same range of values as that of the uninfected N.lugens.
In addition, the CI intensity is ξ = 0.675 by [2].

When the N.lugens population migrates northward and returns southward, atmospheric circulation
and the weather exert a direct influence on its takeoff and landing. In September, the peak of N.lugens
infestation appears in the southern rice area under the influence of a low pressure circulation. It is
easy to obtain the daily cumulative numbers of N.lugens infestation by using the data of the insect trap
catches under lights. However, there is no literature reports on the successful landing rate and takeoff
rate of N.lugens after its northward migration.

The above biological and migration parameters of N.lugens are summarized in Table 1.

6.1. Verifying the existences and stabilities of two boundary equilibria of system (2.3)

We take parameters b = 0.54, d1 = 0.0015, d2 = 0.0032, ξ = 0.675, a12 = 0.4222, a21 = 0.5453,
ā12 = 0.543, ā21 = 0.4317, b12 = 0.568, b21 = 0.754, b̄12 = 0.68 and b̄21 = 0.64. By solving equation
(4.4), we obtain c1 = 1.0896. Furthermore, we have E1 = (253.6439, 0, 232.7944, 0), A1 = 2.5339 > 0,
A2 = 1.3586 > 0 and A4 = 1.3144 > 0. Therefore, from Theorem 4, equilibrium infected wStri E1 is
locally asymptotically stable, and the numerical simulation is shown in Figure 4(a). When parameters
are taken as b = 0.6438, d1 = 0.0025, d2 = 0.0011, ξ = 0.675, a12 = 0.4, a21 = 0.5, ā12 = 0.54,
ā21 = 0.42, b12 = 0.56, b21 = 0.75, b̄12 = 0.68 and b̄21 = 0.65, we obtain that c2 = 0.9602, and
E2 = (0, 405.7542, 0, 422.5527). In such a case we have B1 = 2.1020 > 0, B2 = 0.8842 > 0 and
B4 = 1.681 > 0. Thus, the condition of Theorem 5 is met, the uninfected equilibrium E2 is locally
asymptotically stable, and the numerical simulation result is shown in Figure 4(b).
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Table 1. The biological and migration parameters of N.lugens.

Para. Definition Value Reference
b The half birth rate of N.lugens (0.1, 1) [32–34]
hNLT Mean hatching rate per the uninfected N.lugens female

when NLS males mated with NLT females (day−1)
32.5% [2]

ξ The CI intensity of IM against UF: 1 − hNLT 0.675 [2]
d1 The decay of N.lugens infected with wStri (0, 0.3) [2, 35, 36]
d2 The decay of the uninfected N.lugens (0, 0.3) [35, 36]
b12, b̄12 The successful take-off rates of I and U during northward

migration
[0, 1]

b21, b̄21 The successful take-off rates of I and U during southward
migration

[0, 1]

a12, ā12 The successful landing rates of I and U during northward
migration

[0, 1]

a21, ā21 The successful landing rates of I and U during southward
migration

[0, 1]
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Figure 4. The stabilities of equilibria E1 and E2 for system (2.3). The initial value
(I(1)

0 ,U
(1)
0 , I

(2)
0 ,U

(2)
0 , ) = (200, 500, 0, 2). (a) The stability of equilibrium E1. (b) The sta-

bility of equilibrium E2.
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6.2. Existence of the positive equilibrium

Now, we numerically analyze the existence of the positive equilibrium E3 of system (2.3). For
simplicity of presentation, we still use the notation JE3 = ( fi j)4×4 to represent the Jacobian matrix of
system (2.3) at E3 = (Ĩ(1), Ũ (1), Ĩ(2), Ũ (2)), whose characteristic equation is λ4−C1λ

3+C2λ
2−C3λ+C4 =

0. When the parameters are taken as b = 0.6438, d1 = 0.0025, d2 = 0.0031, ξ = 0.675, a12 = 0.1,
a21 = 0.34, ā12 = 0.1593, ā21 = 0.4317, b12 = 0.32, b21 = 0.64, b̄12 = 0.2316 and b̄21 = 0.5639. System
(2.3) has a positive equilibrium E3 = (29.4676, 139.75, 21.9651, 108.2649) and

JE3 =


−0.3751 −0.1800 0.3999 0.1382
−1.1907 −1.0892 0.5991 0.9314
0.2165 0.0866 −0.3417 −0.1674
0.4486 0.6556 −1.2189 −1.1248

 .
The characteristic equation is λ4+2.9308λ3+1.7108λ2+0.2311λ−0.0172 = 0, which has characteristic
roots λ1 = −2.2036, λ3 = −0.4414, λ4 = −0.3382 and λ2 = 0.0524. Therefore, the positive equilibrium
E3 is unstable.

6.3. Bistable phenomena

Further numerical simulation results indicate that system (2.3) can appear as a bistable phenomenon.
For example, we take the parameters b = 0.55, d1 = 0.2, d2 = 0.1, ξ = 0.675, a12 = 0.75, a21 =

0.8, ā12 = 0.6, ā21 = 0.8, b12 = 0.88, b21 = 0.93, b̄12 = 0.85 and b̄21 = 0.98. By numerically
solving equations (4.4) and (4.8), we get c1 = 1.0189 and c2 = 1.0691. Therefore, system (2.3)
exists as an equilibrium infected wStri E1 = (2.1193, 0, 2.0799, 0). In addition, it is easy to obtain
that A1 = 1.8903 > 0, A2 = 0.4112 > 0 and A4 = 2.2373 > 0. From Theorem 4, it follows that E1

is locally asmyptotically stable. On the other hand, system (2.3) also has an uninfected equilibrium
E2 = (0, 3.4119, 0, 3.1913). Furthermore, we can obtain B1 = 2.0313 > 0, B2 = 0.4283 > 0 and
B4 = 1.6263 > 0. Thus, from Theorem 5, we know that E2 is also locally asmyptotically stable.
Therefore, system (2.3) appears as a bistable phenomenon. By randomly generating the initial values
for numerical verification of 10 groups, we obtain the I(1) − U (1) − I(2)-diagram for system (2.3), as
shown in Figure 5. It is apparent from Figure 5 that system (2.3) has two stable equilibria.

7. Discussion

7.1. Impact of migration on dynamical properties of system

When N.lugens migration is not considered, system (5.1) reflects the population evolution of the
wStri-infected N.lugens and the wild N.lugens. From Theorem 7, we know that equilibrium infected
with wStri Ew

1 or the uninfected equilibrium Ew
2 are asymptotically stable under certain conditions,

and Ew
1 and Ew

2 are simultaneously locally asymptotically stable as 1 − ξ < d2
d1
< 1. This indicates

that system (5.1) can exhibit a bistable phenomenon. In addition, the positive equilibrium of system
(5.1) is always unstable, which shows that without considering migration, the two types of N.lugens
must eventually not coexist in each patch. On the other hand, when migration is considered, system
(2.3) reflects population evolution with N.lugens migrating in both patches. According to numerical
simulation results from Subsection 6.2, we know that there exists a positive equilibrium for system
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Figure 5. The bistability of the equilibrium with infected wStri E1 and the uninfected equi-
librium E2 of system (2.3). The initial values are randomly generated.

(2.3) under certain conditions. Moreover, from subsection 6.3, we know that system (2.3) can exhibit
bistable phenomenon.

We further qualitatively summarize the impact of migration parameters on equilibria of system
(2.3). According to Theorems 2 and 4, we know that either decreasing the successful landing rate āi j or
increasing the take-off rate b̄i j of the uninfected N.lugens is beneficial to the existence and stability of
equilibrium infected with wStri E1. Additionally, from Theorem 3 and Theorem 5, we know that either
decreasing the successful landing rate ai j or increasing the take-off rate bi j of N.lugens infected wStri is
conducive to the existence and stability of the uninfected equilibrium E2. We will further analyze the
controllable migration parameters threshold value for the existence and stability of each equilibrium in
Subsection 7.3.

To numerically verifying the above theoretical results, we investigate the effect of migration co-
efficient ā12 on the stability of the equilibrium infected with wStri E1. The parameters are taken
as b = 0.6438, d1 = 0.0025, d2 = 0.0081, ξ = 0.675, a12 = 0.3, a21 = 0.2, ā21 = 0.82,
b12 = 0.76, b21 = 0.55, b̄12 = 0.28, and b̄21 = 0.15. Without considering migration, we have
1 − ξ = 0.325 < d2

d1
= 3.24 and d2 > d1. It follows from Theorem 7 that Ew

1 is locally asymptoti-
cally stable, and Ew

2 and Ew
3 are not stable for system (5.1). When migration is considered, we find that

increasing the migration parameter ā12 to a threshold value 0.75, equilibrium E1 of system (2.3) is not
stable, and E2 is locally asymptotically stable, as shown in Figure 6. The numerical simulations show
that when migration is not considered, equilibrium infected with wStri Ew

1 is stable; with the increase
of migration coefficient āi j, the stability of Ew

1 can be changed from stable to unstable, which may lead
Ew

2 to be stable.
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Figure 6. Impact of migration coefficient on stability of equilibrium infected with wStri. The
initial value (I(1)

0 ,U
(1)
0 , I

(2)
0 ,U

(2)
0 ) = (85, 20, 70, 10), where ā12 = 0.6 < 0.75 in figure (a), and

ā12 = 0.76 > 0.75 in figure (b).

7.2. Impact of migration on control effects of N.lugens using Wolbachia

First, the influence of migration on the control effect of the wild N.lugens will be numerically
analyzed by comparing the control degree of the wild N.lugens:

e(t) =
U (1)

0 + U (2)
0 − U (1)(t) − U (2)(t)

U (1)
0 + U (2)

0

× 100%.

Notice that the control degree of the wild N.lugens at migration refers to the total control degree of both
patches, where the concept of the control degree is consistent with that of the wild N.lugens introduced
in Ref. [6]. The control degree curves are plotted in Figure 7 after computing from system (2.3) (with
migration) and system (5.1) (without migration). Here, Figure 7(b) illustrates that when migration is
considered, all of the N.lugens infected with wStri are only released in area 1, namely the initial value
(I(1)

0 ,U
(1)
0 , I

(2)
0 ,U

(2)
0 ) = (230, 530, 0, 20). When migration is not considered, the wStri-infected N.lugens

is simultaneously released in two areas in proportion to the numbers of the uninfected N.lugens in both
areas, so the initial value (I(1)

0 ,U
(1)
0 , I

(2)
0 ,U

(2)
0 ) = (222, 530, 8, 20). Numerical simulation results show

that the control degree of the wild N.lugens with migration may be smaller than that without migration,
which indicates that migration may lead to a decrease of the control effect of the wild N.lugens, which
is consistent with the general understanding.

It is generally believed that effective control is achieved when the control degree reaches 95% [6].
The dotted lines in Figure 7 show that the goal of effective control is not achieved under migration.
Therefore, in the presence of migration, the original strategy (i.e., quantity and timing of release) for
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releasing N.lugens infected with wStri may not achieve the goal of either complete or even effective
control of the wild N.lugens.
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The control degree with migration

The control degree without migration

Figure 7. The control degree of the wild N.lugens. The biological parameters b =
0.5, d1 = 0.0025, d2 = 0.0031, ξ = 0.675. Migration parameters are a12 = 0.05, a21 =

0.63, ā12 = 0.4573, ā21 = 0.4317, b12 = 0.4716, b21 = 0.7554, b̄12 = 0.6674, and b̄21 =

0.6439. (I(1)
0 ,U

(1)
0 , I

(2)
0 ,U

(2)
0 ) = (230, 530, 0, 20) when without considering migration, while

(I(1)
0 ,U

(1)
0 , I

(2)
0 ,U

(2)
0 ) = (222, 530, 8, 20) when with considering migration.

Notice that the optimal state for controlling N.lugens using Wolbachia is stability of E1. Next, we
numerically analyze the effect of migration on this state. Taking ā12 as an example, we fix b = 0.6438,
d1 = 0.0025, d2 = 0.0031, ξ = 0.675, a12 = 0.1222, a21 = 0.5453, ā21 = 0.4317, b12 = 0.4716,
b21 = 0.7554, b̄12 = 0.6867 and b̄21 = 0.6439. Here, we consider the birth rate of N.lugens in natural
conditions, which is greater than that of N.lugens in resistant rice. Selecting ā12 = 0.15, 0.25, 0.35, 0.45
and 0.55, respectively, the control degree curves under the different migration parameters ā12 are plotted
in Figure 8(a). Similarly, we analyze the influences of the successful landing rate ā21 of a southward
migration on the control degree of the wild N.lugens in both patches. Figure 8(b) shows the control
degree curves of the wild N.lugens within 60 days under the different values of ā21. Although the
stability of E1 makes the control degree of the wild N.lugens close to 1 in a long time, it is not hard to
find that increasing the successful landing rate āi j of the wild N.lugens can decrease its control degree
within a finite time.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20213–20244.



20236

0 10 20 30 40 50 60

Time t(days)

(a)

0

0.2

0.4

0.6

0.8

1

T
h
e
 c

o
n
tr

o
l 
d
e
g
re

e
 o

f 
th

e
 w

ild
  

N
.l
u
g
e
n
s

0 10 20 30 40 50 60

Time t(Days)

(b)

0

0.2

0.4

0.6

0.8

1

T
h
e
 c

o
n
tr

o
l 
d
e
g
re

e
 o

f 
th

e
 w

ild
  

N
.l
u
g
e
n
s

Figure 8. The influence of migration on the optimal control effect. The initial condition
(I(1)

0 ,U
(1)
0 , I

(2)
0 ,U

(2)
0 ) = (230, 530, 0, 2). The insect biological parameters are b = 0.6438, d1 =

0.0025, d2 = 0.0031, ξ = 0.675. (a) The effect of ā12 on the control degree. a12 = 0.1222,
a21 = 0.5453, ā21 = 0.4317, b12 = 0.4716, b12 = 0.7554, b̄12 = 0.6867 and b̄21 = 0.6439.
(b) The effect of ā21 on the control degree. The parameters a12 = 0.1, a21 = 0.34, b12 =

0.32, b21 = 0.64, ā12 = 0.1593, b̄12 = 0.2316, and b̄21 = 0.6639.

7.3. Measures to reduce the impact of migration on the control of N.lugens

A worthy question is how to take the effective measures to reduce the impact of migration on the
control of wild N.lugens. The take-off rate of N.lugens is not easily controlled in practice, while
the successful landing rate for N.lugens migration can be controlled through the relevant interference
measures. Therefore, the successful landing rates of the two types of N.lugens are the controllable
migration parameters. Next, we shall obtain the control measures by comparing the control degree of
the wild N.lugens under the different successful landing rate values. First, the impact of the successful
landing rate āi j on the control degree have been calculated in subsection 7.2. From the numerical
simulation results, we find that decreasing the successful landing rate of the wild N.lugens can improve
its control effects. In future field trials, we can take measures to reduce the landing of the wild N.lugens
in destination area and source area to improve the control effects of the wild N.lugens, such as spraying
pesticides during their flight by unmanned aerial vehicle.

Second, by the similar numerical simulation method, the total control degree of the wild N.lugens in
those two areas can be calculated under the different landing rates a12 and a21 of N.lugens infected with
wStri. The control degree curves of the wild N.lugens are given in Figure 9(a) and (b). The numerical
simulation results indicate that the control degree of the wild N.lugens increases when the successful
landing rate of the northward or southward migration of N.lugens infected with wStri appropriately
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increases. Therefore, increasing the landing rate of N.lugens infected with wStri can improve the
control degree of the wild N.lugens. Although it is not possible to directly increase the landing rate of
N.lugens infected with wStri, we can achieve the same effect by releasing them in area 1 in autumn or
in area 2 in summer. The numerical simulations demonstrate that this measure is feasible.
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Figure 9. Effect of the successful landing rate of N.lugens infected with wStri on the control
degree of the wild N.lugens. The biological parameters of insect are taken as b = 0.6438, d1 =

0.0025, d2 = 0.0031, ξ = 0.675, the initial values (I(1)
0 ,U

(1)
0 , I

(2)
0 ,U

(2)
0 ) = (230, 530, 0, 2). (a)

Effect of a12 on the control of the wild N.lugens. The control parameters a21 = 0.2322, ā12 =

0.4593, ā21 = 0.4317, b12 = 0.4716, b21 = 0.7554, b̄12 = 0.6867 and b̄21 = 0.6439. (b)
Effect of a21 on the control of the wild N.lugens. The control parameters a12 = 0.1222, ā12 =

0.4593, ā21 = 0.4317, b12 = 0.4716, b21 = 0.7554, b̄12 = 0.6867 and ā21 = 0.6439.

Moreover, we study the impacts of the initial release quantity and the CI intensity of the wStri-
infected N.lugens on the control degree of wild N.lugens. Under the parameters b = 0.6438, d2 =

0.0031, d1 = 0.0025, ξ = 0.675, a12 = 0.1222, a21 = 0.5453, ā12 = 0.54, ā21 = 0.4317, b12 = 0.4716,
b21 = 0.7554, b̄12 = 0.6867 and b̄21 = 0.6439, the control degree curves of the wild N.lugens with
respect to the different initial release quantity of the wStri-infected N.lugens are shown in Figure 10(a).
The numerical simulation shows that increasing the initial release quantity of N.lugens infected with
wStri can effectively improve the control degree of the wild N.lugens. Similarly, when the CI intensity
is selected as ξ = 0.375, 0.475, 0.575, 0.675 and ξ = 0.775, respectively, and the remaining parameters
are the same as that of Figure 10(a). The control degree curves of the wild N.lugens with respect to
the different CI intensity are given in Figure 10(b). The numerical simulation results show that an
increase of the CI intensity is beneficial to improve the control degree of the wild N.lugens. Therefore,
to effectively control the wild N.lugens, the release measures can be taken in area 2 to improve the
initial release quantity of the wStri-infected N.lugens with the higher CI intensity.
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Figure 10. The control degree of the wild N.lugens. (a) Effect of the initial release quan-
tity of N.lugens infected with wStri on the control of the wild N.lugens. The initial value
(I(1)

0 ,U
(1)
0 , I

(2)
0 ,U

(2)
0 ) = (230, 530, I(2)

0 , 2), and ξ = 0.675. (b) Effect of the CI intensity of wStri
on the control of the wild N.lugens. The initial value (I(1)

0 ,U
(1)
0 ), I(2)

0 ,U
(2)
0 ) = (230, 530, 0, 2).

Previously, we found relevant control measures for migration by using numerical calculation
method, namely reducing the landing rate āi j or increasing the landing rate ai j. However, the lower
limit of āi j reduction and the upper limit of ai j increase need to be determined theoretically. According
to Theorem 2, we can take measures such as increasing the release quantity of wStri in area 1 such that
the successful landing rate a21 of the southward migration of N.lugens infected with wStri is greater
than the threshold value b12c3

1 − bc2
1, or the successful landing rate a12 of the northward migration of

N.lugens infected with wStri is greater than the threshold value 1
c3

1
(b21 − bc1) in area 2. Further, ac-

cording to stability conditions of E1, in order to ensure local asymptotic stability of E1, the control
measures we take should meet the following three conditions d2 Ī(1) + d2 Ī(2) + b̄12c1 +

b̄21
c1
> 2b(1 − ξ),(

− b(1 − ξ) + b̄12c1 + d2 Ī(1))( − b(1 − ξ) + b̄21
c1
+ d2 Ī(2)) > ā12ā21 and

(
b + 3ā21

c2
1

)
(b + 3a12c2

1) >(
b12c2

1 +
2a21
c1

)(
2a12c1 +

b21
c2

1

)
. Therefore, the wild N.lugens can be completely eliminated by initially

releasing a certain quantity of N.lugens infected with wStri, thereby achieving the ideal control state
for the wild N.lugens in two areas.

From the existence conditions of the uninfected equilibrium E2 in system (2.3), as long as the
artificial control measures taken in area 2 ensure that the successful landing rate ā12 of the wild N.lugens
migrating northward does not exceed the threshold value 1

c3
2
(b̄21 − bc2), or those taken in area 1 ensure

that the successful landing rate ā12 of the wild N.lugens migrating southward does not exceed the
threshold value b̄12c3

2−bc2
2, we can make system (2.3) not have equilibrium E2. Even if the equilibrium
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E2 exists, we can still take the control measures, such as increasing the landing rate ai j of N.lugens
infected with wStri in destination area to make the inequality (−b+d1Û (1)+b12c2)

(
−b+d1Û (2)+ b21

c2

)
<

a12a21 holds, making equilibrium E2 to be unstable.

7.4. Migration strengthens the N.lugens population

The wild N.lugens migration model (5.4) has two important applications. First, the global asymp-
totic stability of the positive equilibrium for model (5.4) indicates that the wild N.lugens can survive
in both areas long term in the process of south-north migration. Therefore, a successful migration
can lead to the rapid development and smooth propagation of N.lugens after adapting to long-distance
migration into a new habitat [37]. Second, it can be used to simulate the phenomenon of migration
strengthening the N.lugens population. In order to know the relationship between migration and popu-
lation reproduction, Shen and Cheng conducted the experiment of pair breeding on Shanyou 63 hybrid
rice by using N.lugens to be emigrated in Guilin and N.lugens moving in An’qing [38]. The results
showed that the amount of eggs laid and the reproductivity of N.lugens have significantly improved
after a long distance migration.

The take-off rate data and the landing rate data of N.lugens are not found, based on the total la-
beled data of rice planthopper in Xiangxiang, Qidong, Linli and Guiyang observation sites in Hunan
Province of China from September 1, 2021 to September 30, 2021 (data from Hunan Provincial plant
protection and inspection station), we first estimate the parameters of model (5.4). Notice that the sta-
tistical data have a strong randomness. By using the Markov Chain Monte Carlo (MCMC) method to
estimate the parameters and the initial value (b, d2, b̄12, ā21, ā12, b̄21,U

(1)
0 ) in system (5.4), we obtain the

estimation values b = 0.6438, d2 = 0.0031, b̄12 = 0.2316, ā21 = 0.4317, ā12 = 0.4593, b̄21 = 0.3639,
and U (1)

0 = 130.0119. We provide additional details about the estimation process in Appendix. In order
to numerically verify that migration strengthens the N.lugens population, by substituting the estimated
parameters into system (5.4), we get that the positive equilibrium (Û (1), Û (2)) = (260.8292, 252.3654)
and B4 = 2.4616 > 0. Thus, from Theorem 8, the positive equilibrium is globally asymptotically sta-
ble. Therefore, the total number of N.lugens eventually approaches Û (1)+Û (2) = 513.1945. In addition,
when there is no migration of N.lugens, the wild N.lugens population only interacts in their respective
area; then, system (5.4) is further reduced to dU(1)

dt = bU (1) − d2(U (1))2 and dU(2)

dt = bU (2) − d2(U (2))2. It is
easy to show that the number of N.lugens in south-north areas eventually approaches 2b

d2
= 415.3548.

Therefore, we have Û (1) + Û (2) > 2b
d2

. This numerical simulation result shows that the number of wild
N.lugens after migration is more than that of N.lugens without migration, as shown in Figure 11. The
main experimental result of Ref. [38] is verified.

8. Conclusions

According to the release methods of N.lugens infected with wStri proposed in our previous work [6],
the wild N.lugens in a paddy field or an area can be effectively controlled. However, N.lugens is an
agricultural pest with a long distance migration habits. The Wolbachia spreading dynamic model,
which takes the migration of N.lugens into account, can better reflect the reality in future field experi-
ments; additionally, it is beneficial to understand how migration affects the control effect of Wolbachia
to provide theoretical guidance for a accurate control of N.lugens and reduction of the risk of N.lugens
occurrence.
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Figure 11. The influence of migration on the reproduction of N.lugens. The parameters
are estimated as b = 0.6438, d2 = 0.0031, ā12 = 0.4593, ā21 = 0.4317, b̄12 = 0.2316, b̄21 =

0.3639 by the way of MCMC. The initial value (U (1)
0 ,U

(2)
0 ) = (130.0119, 200). The blue

dotted line shows the number of the wild N.lugens without migration, while the red dotted
line shows the number of the wild N.lugens after migration.

The northern and southern rice areas were abstracted into two discrete patches. Based on the pro-
posed population density proportional dependent migration coefficient, the discrete migration model
reflecting the spread of Wolbachia in N.lugens is established.

The analysis results of equilibria show that the equilibrium infected with wStri and the uninfected
equilibrium may be locally asymptotically stable under certain conditions. Based on numerical simu-
lation, there may exist a positive equilibrium for system (2.3). From analyzing the subsystem without
migration, we know that the positive equilibrium is always unstable and the subsystem can exhibit a
bistable phenomenon.

The long-distance migration can increase the difficulty of controlling wild N.lugens. Numerical
simulations results indicate that as the successful landing rate of the wild N.lugens increases, the equi-
librium infected with wStri can change from stable state to unstable state, which may cause E2 to be
stable. Moreover, as the successful landing rate of the wild N.lugens decreases, the control degree of
N.lugens increases, while the control degree of N.lugens increases as the successful landing rate of
N.lugens infected with wStri increases. Additionally, some specific measures affecting the landing rate
of N.lugens have also been suggested.

The global asymptotic stability of the positive equilibrium for the subsystem of the wild N.lugens
migration shows that successful migration can lead to rapid development and smooth propagation
of N.lugens after long distance migration. Further numerical simulation results suggested that the
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quantity of N.lugens population is increased after long distance migration, which is consistent with the
experimental results found within literature [38].
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Appendix: Parameter estimation process based on MCMC

Since the observed data are the total labeled data of rice planthopper in four observation sites,
which can be viewed as the number of wild N.lugens in area 1 to a certain extent. In order to use the
MCMC method in Bayes statistical computation to estimate the six parameters and the initial value
for model (5.4), let Xi and Y = (y1, y2, · · · , y30)T be the real data for wild N.lugens and the observed
data, respectively. Because these statistics approximately reflect the Hunan Province labeling data for
wild N.lugens in September, rather than the real number of wild N.lugens for area 1, there is strong
randomness for these statistics, so we assume that the observed data statistic is a Poisson process.
Therefore, given day i, under the condition that the real number of wild N.lugens is xi, the probability
of the statistical data yi is

P(Yi = yi|Xi = xi) =
xyi

i

yi!
e−xi ,

and the observed data each day is independent.
We use Metropolis-Hastings algorithm in MCMC to estimate parameters for model (5.4). Since

N.lugens returns to the south from September, we assume that the initial value of wild N.lugens in area
2 is U (2)

0 = 200. Let the likelihood function be L(Y |θ), where θ = (b, d2, b̄12, ā21, ā12, b̄21,U
(1)
0 ) ∈ Θ. In

order to determine the posterior distribution, the seven parameters are nonnegative constant due to a
practical problem is considered, we select non-informative prior distribution, and assuming the prior
distribution is p(θ) ∝ constant. Thus, the posterior distribution is

p(θ|Y) ∝ L(Y |θ)p(θ)
∝ Π30

i=1 p(yi|xi(θ))

∝ Π30
i=1

xyi
i

yi!
e−xi .

From the initial value (b, d2, b̄12, ā21, ā12, b̄21,U
(1)
0 ) = (0.5, 0.2, 0.06, 0.4, 0.5, 0.05, y1), we choose a

zero-centered uniform distribution as the proposed distribution, and a random walk Metropolis sampler
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is taken to produce the posterior distribution p(θ|Y) as stationary distribution of Markov chains [39,40],
and implementing the following algorithm to generate random numbers (Markov chain):

1 Given the initial vector value θ(0) = (b, d2, b̄12, ā21, ā12, b̄21,U
(1)
0 );

2 Given the initial time i = 0;
3 Circulation

– Sampling θ′ from the proposed distribution g(·|θi);
– Extracting a random number u from the uniform distribution U(0, 1);
– If u ≤ min

{
1, p(θ′ |Y)

p(θ|Y)

}
, then θ(i+1) = θ′, else θ(i+1) = θ(i).

– i = i + 1;
– After a burn-in period, store θ(i+1) after a cycle of each s times.

4 Breaking circulation when i is sufficiently large.

Here, we cycle MCMC 10000 times, and take the burn-in period as 2000, and calculate the average
value of the parameters of the last 8000 times, and get the estimated values of the seven parameters
as follows: b = 0.6438, d2 = 0.0031, b̄12 = 0.2316, ā21 = 0.4317, ā12 = 0.4593, b̄21 = 0.3639, and
U (1)

0 = 130.0119.
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