Research article

Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey

  • Received: 15 February 2023 Revised: 04 April 2023 Accepted: 10 April 2023 Published: 23 April 2023
  • We incorporate the strong Allee effect and fear effect in prey into a Leslie-Gower model. The origin is an attractor, which implies that the ecological system collapses at low densities. Qualitative analysis reveals that both effects are crucial in determining the dynamical behaviors of the model. There can be different types of bifurcations such as saddle-node bifurcation, non-degenerate Hopf bifurcation with a simple limit cycle, degenerate Hopf bifurcation with multiple limit cycles, Bogdanov-Takens bifurcation, and homoclinic bifurcation.

    Citation: Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen. Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486

    Related Papers:

  • We incorporate the strong Allee effect and fear effect in prey into a Leslie-Gower model. The origin is an attractor, which implies that the ecological system collapses at low densities. Qualitative analysis reveals that both effects are crucial in determining the dynamical behaviors of the model. There can be different types of bifurcations such as saddle-node bifurcation, non-degenerate Hopf bifurcation with a simple limit cycle, degenerate Hopf bifurcation with multiple limit cycles, Bogdanov-Takens bifurcation, and homoclinic bifurcation.



    加载中


    [1] M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator–prey model with the harvesting rate, Fractal Fract., 4 (2020), 35. https://doi.org/10.3390/fractalfract4030035 doi: 10.3390/fractalfract4030035
    [2] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.1093/biomet/47.3-4.219 doi: 10.1093/biomet/47.3-4.219
    [3] L. Chen, F. Chen, Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009), 1330–1334. https://doi.org/10.1016/j.aml.2009.03.005 doi: 10.1016/j.aml.2009.03.005
    [4] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model, Math. Biosci. Eng., 16 (2019), 5146–5179. https://doi.org/10.3934/mbe.2019258 doi: 10.3934/mbe.2019258
    [5] J. Chen, X. He, F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator has other food resource, Mathematics, 9 (2021), 1–20. https://doi.org/10.3390/math9080865 doi: 10.3390/math9080865
    [6] P. Cong, M. Fan, X. Zou, Dynamics of a three-species food chain model with fear effect, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105809. https://doi.org/10.1016/j.cnsns.2021.105809 doi: 10.1016/j.cnsns.2021.105809
    [7] Y. Shi, J. Wu, Q. Cao, Analysis on a diffusive multiple Allee effects predator-prey model induced by fear factors, Nonlinear Anal. Real World Appl., 59 (2021), 103249. https://doi.org/10.1016/j.nonrwa.2020.103249 doi: 10.1016/j.nonrwa.2020.103249
    [8] Y. Huang, Z. Zhu, Z. Li, Modeling the Allee effect and fear effect in predator-prey system incorporating a prey refuge, Adv. Difference Equ., 2020 (2020), 321. https://doi.org/10.1186/s13662-020-02727-5 doi: 10.1186/s13662-020-02727-5
    [9] X. Wang, X. Tan, Y. Cai, W. Wang, Impact of the fear effect on the stability and bifurcation of a Leslie-Gower predator-prey model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050210. https://doi.org/10.1142/S0218127420502107 doi: 10.1142/S0218127420502107
    [10] Z. Zhu, R. Wu, L. Lai, X. Yu, The influence of fear effect to the Lotka-Volterra predator-prey system with predator has other food resource, Adv. Difference Equ. 2020 (2020), 237. https://doi.org/10.1186/s13662-020-02612-1 doi: 10.1186/s13662-020-02612-1
    [11] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. 10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [12] K. H. Elliott, G. S. Betini, D. R. Norris, Fear creates an Allee effect: experimental evidence from seasonal populations, Proc. Biol. Sci., 284 (2017), 20170878. https://doi.org/10.1098/rspb.2017.0878 doi: 10.1098/rspb.2017.0878
    [13] B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Natur. Resource Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x
    [14] F. Courchamp, T. Clutton-Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 doi: 10.1016/S0169-5347(99)01683-3
    [15] S. K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors-a mathematical study on prey-predator interactions, Appl. Math. Model., 64 (2018), 1–14. https://doi.org/10.1016/j.apm.2018.07.021 doi: 10.1016/j.apm.2018.07.021
    [16] M. Verma, A. K. Misra, Modeling the effect of prey refuge on a ratio-dependent predator-prey system with the Allee effect, Bull. Math. Biol., 80 (2018), 626–656. 10.1007/s11538-018-0394-6 doi: 10.1007/s11538-018-0394-6
    [17] Z. Zhu, M. He, Z. Li, F. Chen, Stability and bifurcation in a logistic model with Allee effect and feedback control, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 30 (2020), 2050231. https://doi.org/10.1142/S0218127420502314 doi: 10.1142/S0218127420502314
    [18] H. Merdan, Stability analysis of a Lotka-Volterra type predator-prey system involving Allee effect, ANZIAM J., 52 (2010), 139–145. https://doi.org/10.1017/S1446181111000630 doi: 10.1017/S1446181111000630
    [19] X. Liu, B. Dai, Dynamics of a predator-prey model with double Allee effects and impulse, Nonlinear Dynam., 88 (2017), 685–701. https://doi.org/10.1007/s11071-016-3270-7 doi: 10.1007/s11071-016-3270-7
    [20] R. Wu, L. Li, Q. Lin, A Holling type commensal symbiosis model involving Allee effect, Commun. Math. Biol. Neurosci., 2018 (2018), 6. https://doi.org/10.28919/cmbn/3679 doi: 10.28919/cmbn/3679
    [21] X. Guan, F. Chen, Dynamical analysis of a two species amensalism model with Beddington-DeAngelis functional response and Allee effect on the second species, Nonlinear Anal. Real World Appl., 48 (2019), 71–93. https://doi.org/10.1016/j.nonrwa.2019.01.002 doi: 10.1016/j.nonrwa.2019.01.002
    [22] P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Mathe., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401
    [23] E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366–381. https://doi.org/10.1016/j.apm.2010.07.001 doi: 10.1016/j.apm.2010.07.001
    [24] L. Perko, Differential Equations and Dynamical Systems, 3rd ed., Springer-Verlag, New York, 2001.
    [25] Z. F. Zhang, T. R. Ding, W. Z. Huang, Z. X. Dong, Qualitative Theory of Differential Equations (in Chinese), Science Press, Beijing, 1992. English edition, American Mathematical Society, Providence, RI (1992).
    [26] W. Wang, C. Wang, S. Guo, On the walk matrix of the Dynkin graph Dn, Linear Algebra Appl., 653 (2022), 193–206. https://doi.org/10.1016/j.laa.2022.08.015 doi: 10.1016/j.laa.2022.08.015
    [27] R. I. Bogdanov, The versal deformations of a singular point on the plane in the case of zero eigenvalues, Trudy Sem. Petrovsk., 2 (1976), 37–65.
    [28] F. Takens, Forced oscillations and bifurcations. In: Applications of Global Analysis I, pp. 1–59. Comm. Math. Inst. Rijksuniv. Utrecht, Math. Inst. Rijksuniv. Utrecht, 1974.
    [29] S.-N. Chow, C. Z. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.
    [30] A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett., 14 (2001), 697–699. https://doi.org/10.1016/S0893-9659(01)80029-X doi: 10.1016/S0893-9659(01)80029-X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(983) PDF downloads(129) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog