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Abstract: We incorporate the strong Allee effect and fear effect in prey into a Leslie-Gower model.
The origin is an attractor, which implies that the ecological system collapses at low densities. Qual-
itative analysis reveals that both effects are crucial in determining the dynamical behaviors of the
model. There can be different types of bifurcations such as saddle-node bifurcation, non-degenerate
Hopf bifurcation with a simple limit cycle, degenerate Hopf bifurcation with multiple limit cycles,
Bogdanov-Takens bifurcation, and homoclinic bifurcation.
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1. Introduction

Predation is a ubiquitous interaction among species and thus it has been studied extensively. Most
predator-prey models are extensions and modifications of the classical Lotka-Volterra model by incor-
porating many other factors. The obtained theoretical results can guide us to make appropriate policies
on ecological protection and ecological sustainable development [1]. One important modification is
the Leslie-Gower model described by

dx
dt = rx

(
1 − x

K

)
− P(x)y,

dy
dt = ys

(
1 − y

nx

)
,

(1.1)

where x(t) and y(t) stand for the densities of the prey and predator at time t, respectively. Here both
species have the logistic growths with respective intrinsic growth rates r and s and with the carrying
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capacities K for the prey and nx for the predator (which depends on the density of the prey). n is a
measure of the quality of the prey and nx is called the Leslie-Gower term [2]. P(x) is the functional
response of predators to prey. Model (1.1) has been extensively studied and promoted (see, for ex-
ample, [3, 4]). Recently, the influence of fear effect and Allee effect on the dynamical behaviors of
predator-prey models has attracted many researchers’ attention.

Fear effect of predator is a form of indirect predation impacting the prey population [5–7]. To
some extent, the physiological states of prey are disturbed by the fear effect. As a result, in the long
run, the fear effect may lead to a loss in prey population. Meanwhile, the prey suffered from scare
usually forage less and then their birth rate decreases which may be not good for the survival of prey’s
population. There is an example that some birds make anti-predator defenses against the sound of the
predator and once perceive danger, they flee from their nests. As far as prey is concerned, frequent
exposure to fear and anti-predation behavior will affect their birth rate. Therefore, it is necessary to
take into account of fear factor in the predator-prey interaction [8–10]. In [11], Wang et al. first
modeled the fear effect by introducing a factor f (k, y), where k represents the intensity of anti-predator
behaviors of the prey caused by fear. See the paper for more detail on the properties of f (k, y). A recent
experiment designed by Elliott et al. [12] demonstrated that Allee effect [13–15] can be induced by the
fear effect. Moreover, the strong Allee effects [16,17] should be paid more attention, because too large
fear intensity will drive the species to extinction.

Allee effect mainly signifies that individual fitness is directly proportionate to population density.
Due to the variety of species, the causes of Allee effect are also different. Such as sperm limitation,
reproduction facilitation, cooperative breeding, anti-predator behavior and predator satiation. During
the last decades, lots have been done for predator-prey models with Allee effects. For example, Mer-
dan [18] investigated the stabilityof a Lotka-Volterra type predator-prey system involving Allee effect;
Liu and Dai [19] considered an impulsive predator-prey model with double Allee effects; Wu et al. [20]
tried to understand the Allee effect in a commensal symbiosis mode; studied Guan and Chen [21] stud-
ied an amensalism model with Allee effect on the second species; and Naik et al. [22] explored the
effect of strong Allee effect in a discrete predator-prey model.

On the one hand, based on the experimental observations of Elliott et al. [12], Sasmal [15] proposed
and investigated the following predator-prey model with prey subject to Allee effect and fear effect,

dx
dt

= rx
(
1 −

x
K

)
(x − θ)

1
1 + f y

− axy,

dy
dt

= αaxy − my,

where θ and f are Allee constant and fear factor, respectively. They showed that the cost of fear has
no influence on the stability of equilibria. On the other hand, González-Olivares et al. [23] studied the
following Leslie-Gower model with Allee effect in prey,

dx
dt

= rx
(
1 −

x
K

)
(x − m) − qxy,

dy
dt

= sy
(
1 −

y
nx

)
,

where m represents the Allee effect threshold. Without Allee effect, there is a unique equilibrium,
which is globally asymptotically stable. However, with the presence of strong Allee effect, the number
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of equilibria varies with respect to m. It is shown that the system exhibits local bifurcations including
Hopf bifurcation and Bogdanov-Takens bifurcation.

Inspired by these two works [15, 23], it is natural and interesting to investigate the combined influ-
ence of both Allee effect and fear effect on dynamics of Leslie-Gower predator-prey models. In other
words, whether the qualitative structure and bifurcation phenomena will become more complex? The
thoretical results will help humans manage ecosystems. Precisely, the model to be studied in this paper
is

dx
dt = rx

(
1 − x

K

)
(x − m) 1

1+ f y − qxy,
dy
dt = ys

(
1 − y

nx

)
,

(1.2)

where r, K, f , q, n, s, and m are all positive constants and 0 < m < K. For simplicity of analysis, we
introduce new variables

x̄ =
x
K
, ȳ =

1
nK

y, t̄ = rKt,

and denote
m̄ =

m
K
, q̄ =

nq
r
, s̄ =

s
rk
, f̄ = f nK.

Then system (1.2) becomes
dx
dt = x(1 − x)(x − m) 1

1+ f y − qxy,
dy
dt = ys

(
1 − y

x

)
,

(1.3)

(note that we have dropped the bars here), where m, f , q, and s are positive constants with 0 < m < 1.
Though not defined at x = 0, the dynamical behavior of (1.3) in the absence of prey is of interest.

For this end, we take the time scaling dt = (1 + f y)xdτ to get a new system (still label τ as t),

dx
dt

= x2(1 − x)(x − m) − qx2y(1 + f y), (1.4a)

dy
dt

= ys(x − y)(1 + f y). (1.4b)

This new system with the time scale reaches stable equilibria much faster than the original one . As a
result, in the following we only focus on (1.4). Due to the biological background, the initial conditions
(x(0), y(0)) ∈ R2

+. Obviously, for such an initial condition, (1.4) has a unique global solution which
stays in R2

+.
In the following, we first present the results on boundedness of solutions and the attraction of

the origin. Followed is the existence and local stability of equilibria. The results indicate possible
occurrence of bifurcations. We thus explore the detail on saddle-node bifurcation of codimension
1, Hopf bifurcation of codimension 1, and Bogdanov-Takens bifurcation of codimension 2. A brief
conclusion ends the paper.

2. Preliminaries

We first show the ultimate boundedness of solutions of (1.4).

Proposition 1. Let (x(t), y(t)) be a solution of (1.4). Then

lim sup
t→∞

x(t) ≤ 1 and lim sup
t→∞

y(t) ≤ 1.
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Proof. We show lim supt→∞ x(t) ≤ 1 by distinguishing two cases. Firstly, we assume x(t) ≥ 1 for t ≥ 0.
Then it follows from (1.4a) that x is a decreasing function. Denote limt→∞ x(t) by l. It is easy to see
that l = 1. Next, we assume that x(t0) < 1 for some t0 ≥ 0. We claim that, for t ≥ t0, x(t) ≤ 1.
Otherwise, there exists a t∗ > t0 such that x(t∗) > 1. Let x(t̂) = max{x(t)|t0 ≤ t ≤ t∗}. As dx(t∗)

dt < 0, we
have t̂ ∈ (t0, t∗) and hence dx(t̂)

dt = 0. This is impossible as x(t̂) > 1, which gives dx(t̂)
dt < 0. The claim

is proved. To sum up, lim supt→∞ x(t) ≤ 1 is proved. Now, for ε0 > 0, there exists t̆ ≥ 0 such that
x(t) ≤ 1 + ε0 for t ≥ t̆. It follows that, for t ≥ t̆,

dy(t)
dt
≤ ys(1 + ε0 − y)(1 + f y).

Then arguing similarly as for lim supt→∞ x(t) ≤ 1, we can get lim supt→∞ y(t) ≤ 1+ε0. As ε0 is arbitrary,
we immediately have lim supt→∞ y(t) ≤ 1. �

3. Existence and local stability of equilibria

We start with finding the equilibria to (1.4), which are determined by solutions tox2(1 − x)(x − m) − qx2y(1 + f y) = 0,
ys(x − y)(1 + f y) = 0.

Clearly, (1.4) always admits two positive boundary equilibria P1(m, 0) and P2(1, 0). Moreover, for a
positive equilibrium (x, x) (or coexistence equilibrium), x satisfies

− (1 + f q)x2 + (m − q + 1)x − m = 0. (3.1)

If m−q + 1 ≤ 0 then (3.1) has no positive roots and hence (1.4) has no positive equilibria. Now assume
that m − q + 1 > 0, which implies that q < m + 1 < 2. Denote the discriminant of (3.1) by ∆ and it can
be expressed as a quadratic function of m,

∆(m) = m2 − 2(2 f q + q + 1)m + (q − 1)2.

Note that ∆(1) = q(q − 4 − 4 f ) < 0 and ∆(q − 1) = 2(1 − q)(2 + f q). It follows that if q ≥ 1 then
∆(m) < 0, which again implies that (1.4) has no positive equilibrium. Finally, if 0 < q < 1, then
∆(m) > 0 only when 0 < m < m1 while ∆(m) = 0 only when m = m1, where

m1 = 2 f q + q + 1 − 2
√

f 2q2 + f q2 + f q + q.

In the former, (3.1) has two positive roots, x3 =
m−q+1−

√
∆(m)

2(1+ f q) and x4 =
m−q+1+

√
∆(m)

2(1+ f q) , which are in

(0, 1) while in the latter, x̄ = 1 −
√

f q+q
f q+1 ∈ (0, 1) is the unique positive root. The above discussion is

summarized as follows.

Theorem 2. (i) There are always three boundary equilibria (0, 0), P1(m, 0), and P2(1, 0) for sys-
tem (1.4).

(ii) Besides the three boundary equilibria, for (1.4) to have positive equilibria it is necessary that
0 < q < 1. In this case,
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(a) if m1 < m < 1, there is no positive equilibrium;

(b) if m = m1, there is a unique positive equilibrium P̄(x̄, x̄), where x̄ = 1 −
√

f q+q
f q+1 ;

(c) if 0 < m < m1, there are distinct positive equilibria P3(x3, x3) and P4(x4, x4), where x3 =
m−q+1−

√
∆(m)

2(1+ f q) and x4 =
m−q+1+

√
∆(m)

2(1+ f q) .

Remarks 3. Considering f = 0, we have q + 1 − 2
√

q := m0. Obviously, m1 < m0, which means that
influenced by fear effect, Allee threshold value decreases. In other words, prey are more likely to die
out at low density.

Next, we consider the attractivity of the origin.

Theorem 4. The origin is a non-hyperbolic attractor for (1.4).

Proof. Note that the technique of linearization is inapplicable as J(0, 0) is the zero matrix for (1.4).
The approach here is the blow-up method. With the horizontal blow-up

(x, y) = (x, ux) and dτ = xdt

along the invariant line x = 0, we rewrite system (1.4) as

dx(τ)
dτ

= −x[m − (m + 1)x + qux + x2 + f qu2x2],

du(τ)
dτ

= u[m + s − su − (m + 1)x + ( f s + q)ux

+x2 − f su2x + f qu2x2].

On the nonnegative u-axis, the above system admits two equilibria C1(0, 0) and C2(0, m+s
s ). The corre-

sponding Jacobian matrices are

JC1 =

(
−m 0
0 m + s

)
and JC2 =

(
−m 0

−
(m+1)(m+s)

s −m − s

)
,

respectively. Obviously, C1 is a saddle while C2 is an attractor. After blow-down, the origin is an
attractor. �

Theorem 5. P1 is a hyperbolic repeller node while P2 is a saddle.

Proof. At P1 and P2, the Jacobian matrices are respectively

JP1 =

(
m(1 − m) 0

0 s

)
and JP2 =

(
m − 1 0

0 s

)
.

respectively. Clearly, since m < 1, JP1 has two positive eigenvalues while JP2 has one positive and one
negative eigenvalues. Then the results follow immediately. �

The result below indicates that the stability of the positive equilibrium P̄ depends on s.

Theorem 6. Suppose that 0 < q < 1 and m = m1, which guarantee the existence of P̄. Then we have
the following statements.
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(i) P̄ is a saddle-node with an attracting parabolic sector when s > s∗, where s∗ =
qx̄(1+2 f x̄)

f x̄+1 ;
(ii) P̄ is a saddle-node with a repelling parabolic sector when s < s∗;

(iii) P̄ is a degenerate equilibrium when s = s∗. Furthermore, if either (0 < x̄ < 2 −
√

3 and f , f1)
or 2 −

√
3 ≤ x̄ < 1, then P̄ is a cusp of codimension two; if 0 < x̄ < 2 −

√
3 and f = f1, then P̄ is

a cusp of codimension at least three, where

f1 =
2x̄2 − 5x̄ + 1 + x̄

√
2x̄2 − 4x̄ + 1

2x̄2(2 − x̄)
.

Fig. 1 shows the phase portraits.

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 0.1
s = 0.1418397789

q = 0.5
m = 0.080131585
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(a) P̄ is a cusp of codimension 2

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  
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(b) P̄ is a saddle-node with an attracting
parabolic sector

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 0.1
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(c) P̄ is a saddle-node with a repelling
parabolic sector

Figure 1. Phase portraits near P̄

Proof. Note that the Jacobian matrix of (1.4) at P̄ is

JP̄ =

(
−x̄2(2x̄ − m1 − 1) −qx̄2(1 + 2 f x̄)

x̄s(1 + f x̄) −x̄s(1 + f x̄)

)
.

We easily see that

det(P̄) = sx̄3 1 + f x̄
1 + f q

(
x̄ − 1 +

√
f q + q
f q + 1

)
= 0
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and hence JP̄ has zero as an eigenvalue.
First of all, we use the transformation

X = x − x̄, Y = y − ȳ

to translate P̄ into (0, 0) and system (1.4) into

dX
dt = a10X + a01Y + a20X2 + a11XY + a02Y2 + a30X3

+a21X2Y + a12XY2 + a03Y3 + O(|X,Y |4),
dY
dt = b10X + b01Y + b20X2 + b11XY + b02Y2 + b30X3

+b21X2Y + b12XY2 + b03Y3 + O(|X,Y |4),

(3.2)

where

a10 = qx̄2(1 + 2 f x̄), a01 = −qx̄2(1 + 2 f x̄), a20 = −5x̄2 + (2m1 + 2)x̄,

a11 = −2qx̄(1 + 2 f x̄), a02 = −q f x̄2, a30 = m1 + 1 − 4x̄, a21 = −q(1 + 2 f x̄),
a12 = −2 f qx̄, a03 = 0, b10 = s(1 + f x̄), b01 = −s(1 + f x̄), b20 = 0,
b11 = s(1 + 2 f x̄), b02 = −s(1 + 2 f x̄), b30 = b21 = 0, b12 = f s, b03 = − f s.

Now, assume that s , s∗. Then the linear transformation

X = u + v, Y = u +
b01

a01
v

is nonsingular. This, combined with the time scale dτ = (a10 + b01)dt, transforms system (3.2) into (we
still denote τ as t)

du
dt

= a′20u2 + a′11uv + a′02v2 + O(|u, v|3),

dv
dt

= v + b′20u2 + b′11uv + b′02v2 + O(|u, v|3),
(3.3)

where

a′20 =
sx̄(1 + f x̄)m1

(a10 + b01)2 ,

a′11 =


sx̄

(
4x̄4 f 2 + 2( f 2s − f m1 − f + 4) f x̄3

+2(2 f m1 + 3 f s − 2m1 − f q − 2) f x̄2

+(6 f m1 + 5 f s − q)x̄ + 2m1 + s
)


(1 + 2 f x̄)(a10 + b01)2 ,

a′02 =
s(1 + f x̄)20 f 2qx̄5

q(1 + 2 f x̄)2(a10 + b01)2 +
s(1 + f x̄)

(
16 f 3s − 10 f 2m1 − 10 f 2 + 18 f

)
qx̄4

q(1 + 2 f x̄)2(a10 + b01)2

+
s(1 + f x̄)

(
−3 f 3s2 + 4 f 2m1q + 28 f 2qs − 9 f m1q − 9 f q + 4q

)
x̄3

q(1 + 2 f x̄)2(a10 + b01)2

+
s(1 + f x̄)

(
−6 f 2s2 + 4 f m1q + 16 f qs − 2m1q − 2q

)
x̄2

q(1 + 2 f x̄)2(a10 + b01)2
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+
s(1 + f x̄)

(
−4 f s2 + m1q + 3qs

)
x̄

q(1 + 2 f x̄)2(a10 + b01)2 +
s(1 + f x̄)−s2

q(1 + 2 f x̄)2(a10 + b01)2 ,

b′20 = −
s(1 + f x̄)x̄m1

(a10 + b01)2 ,

b′11 =
12 f qx̄5

(a10 + b01)2 +

(
10 f 2qs − 6 f m1q + 8 f q2 − 6 f q + 12q

)
x̄4

(a10 + b01)2

+

(
− f 2s2 + 2 f m1q + 6 f qs − m1q − q

)
x̄3

(a10 + b01)2

+

(
−3 f s2 + 2m1q + 3qs

)
x̄2

(a10 + b01)2 +
−s2 x̄

(a10 + b01)2 ,

b′02 =
20 f 2q2 x̄6

q(1 + f x̄)(a10 + b01)2 +

(
8 f 3s − 10 f 2m1 − 10 f 2 + 18 f

)
q2 x̄5

q(1 + f x̄)(a10 + b01)2

+

(
5 f 3qs2 + 4 f 2m1q2 + 16 f 2q2s − 9 f m1q2 − 9 f q2 + 4 q2

)
x̄4

q(1 + f x̄)(a10 + b01)2

+

(
−2 f 3s3 + 10 f 2qs2 + 4 f m1q2 + 10 f q2s − 2m1q2 − 2q2

)
x̄3

q(1 + f x̄)(a10 + b01)2

+

(
−5 f 2s3 + 6 f qs2 + m1q2 + 2q2s

)
x̄2

q(1 + f x̄)(a10 + b01)2 +

(
qs2 − 4 f s3

)
x̄

q(1 + f x̄)(a10 + b01)2

−
s3

q(1 + f x̄)(a10 + b01)2 .

Since a′20 > 0, with the center manifold method [24], the equation near the center manifold can be
approximated by

du
dt

=
s(1 + f x̄)x̄m1

(a10 + b01)2 u2 + O(|u|3). (3.4)

Making use of [25, Theorem 7.1], the degenerate equilibrium P̄ is a saddle-node where the parabolic
sector is located at the right half plane. From the time scaling dτ = (a10 + b01)dt, we see that if s > s∗,
the parabolic sector is attracting while if s < s∗ the parabolic sector is repelling.

Next, we assume s = s∗. It follows from

x̄ =
m1 − q + 1
2(1 + f q)

and m1 = 2 f q + q + 1 − 2
√

f 2q2 + f q2 + f q + q

that

m1 =
x̄2( f + 1)

1 − x̄2 f + 2x̄ f
and q = q∗ ,

(x̄ − 1)2

1 − x̄2 f + 2x̄ f
.

Obviously, m1 ∈ (0, 1), q∗ > 0, and s∗ > 0 still hold under the assumptions that f > 0 and x̄ ∈ (0, 1).
Then (X,Y) = (u,−a01

a10
u + 1

a10
v) transforms (3.2) into

du
dt = v + c20u2 + c11uv + c02v2 + O(|u, v|3),
dv
dt = d20u2 + d11uv + d02v2 + O(|u, v|3),

(3.5)

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10977–10999.
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where

c20 =
x̄2( f +1)

x̄2 f−2x̄ f−1 , c11 =
2(3x̄ f +1)
x̄(2x̄ f +1) ,

c02 =
f (x̄2 f−2x̄ f−1)

(2x̄ f +1)2 x̄2(x̄−1)2 , d20 = −
x̄4( f +1)(x̄−1)2(2x̄ f +1)

(x̄2 f−2x̄ f−1)2 ,

d11 = −
x̄(x̄−1)2(2x̄2 f 2+4x̄ f +1)
(x̄ f +1)(x̄2 f−2x̄ f−1)2 , d02 =

3x̄2 f 2+3x̄ f +1
x̄(2x̄ f +1)(x̄ f +1) .

Thus the C∞ change of coordinates in a small neighborhood of (0, 0),

z1 = u −
c11 + d12

2
u2 − c02uv, z2 = v + c20u2 − d02uv,

produces the normal form of system (3.5),

dz1
dt = z2 + O(|z1, z2|

3),
dz2
dt = f20z2

1 + f11z1z2 + O(|z1, z2|
3),

(3.6)

where

f20 = −
x̄4( f + 1)(−1 + x̄)2(2x̄ f + 1)

(x̄2 f − 2x̄ f − 1)2 ,

f11 =
x̄((2x̄4 − 4x̄3) f 2 + (4x̄3 − 10x̄2 + 2x̄) f + x̄2 − 4x̄ + 1)

(x̄ f + 1)(1 − x̄2 f + 2x̄ f )
.

Obviously, f20 < 0 and the sign of f11 relies on the sign of

ϕ( f ) , (2x̄4 − 4x̄3) f 2 + (4x̄3 − 10x̄2 + 2x̄) f + x̄2 − 4x̄ + 1.

Note that 2x̄4 − 4x̄3 < 0 since 0 < x̄ < 1. Denote

∆1 , (4x̄3 − 10x̄2 + 2x̄)2 − 4(2x̄4 − 4x̄3)(x̄2 − 4x̄ + 1) = 4(2x̄2 − 4x̄ + 1)x̄2(x̄ − 1)2.

Then

∆1


< 0 if 2−

√
2

2 < x̄ < 1,
> 0 if 0 < x̄ < 2−

√
2

2 ,
= 0 if x̄ = 2−

√
2

2 .

Thus ϕ( f ) < 0 if 2−
√

2
2 < x̄ < 1. If x̄ = 2−

√
2

2 , then ϕ( f ) = 2
√

2−3
2 ( f + 1)2 < 0 since f > 0. Now consider

the case where 0 < x̄ < 2−
√

2
2 . Notice that

4x̄3 − 10x̄2 + 2x̄


> 0 if 0 < x̄ < 5−

√
17

4 ,
< 0 if 5−

√
17

4 < x̄ < 2−
√

2
2 ,

= 0 if x̄ = 5−
√

17
4 ,

and

x̄2 − 4x̄ + 1


> 0 if 0 < x̄ < 2 −

√
3,

= 0 if x̄ = 2 −
√

3,
< 0 if 2 −

√
3 < x̄ < 1.
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It follows that ϕ( f ) < 0 if 2 −
√

3 < x̄ < 2−
√

2
2 and ϕ( f ) = f [(90 − 52

√
3) f + (38 − 22

√
3)] < 0 when

x̄ = 2 −
√

3 since f > 0. If 0 < x̄ < 2 −
√

3, then

ϕ( f )


> 0 if 0 < f < f1,
= 0 if f = f1,
< 0 if f > f1,

where

f1 =
2x̄2 − 5x̄ + 1 + (1 − x̄)

√
2x̄2 − 4x̄ + 1

2x̄2(2 − x̄)
.

Then the results follow and this completes the proof. �

At last, we consider the positive equilibria P3 and P4.

Theorem 7. Suppose 0 < q < 1 and 0 < m < m1. Then P3 is always a saddle point while P4 is a sink
if s > x4(−2 x4+m+1)

f x4+1 , is a source if s < x4(−2 x4+m+1)
f x4+1 , and a center or fine focus if s =

x4(−2 x4+m+1)
f x4+1 .

Proof. After a simple calculation, we can get

det(JP3) = −sx3
3

√
∆(m)

1 + f x3

1 + f q
< 0 and det(JP4) = sx3

4

√
∆(m)

1 + f x4

1 + f q
> 0,

where JP3 and JP4 are the Jacobian matrices of (1.4) at P3 and P4, respectively. It follows immediately
that P3 is always a saddle. For the stability of P4, we need the trace of JP4 , which is

Tr(JP4) = −x4
[
2x2

4 + ( f s − m − 1)x4 + s
] 
< 0 if s > x4(−2 x4+m+1)

f x4+1 ,

> 0 if s < x4(−2 x4+m+1)
f x4+1 ,

0 if s =
x4(−2 x4+m+1)

f x4+1 .

Then the results follow easily. �

4. Bifurcation analysis

The goal of this section is to analyse the saddle-node bifurcation, Hopf bifurcation, and Bogdanov-
Takens bifurcation that may occur in system (1.4).

4.1. Saddle-node bifurcation

From Theorems 6 and 7, it is not difficult to obtain the saddle-node surface,

S N = {(m, q, f , s) : m = m1, s , s∗, f > 0, s > 0, q > 0, 0 < m < 1}.

The phase of the saddle-node bifurcation corresponding to the ecology system has obvious critical
Allee value m1. When m > m1, the prey will face the risk of extinction; when m < m1, the dynamic
behavior of system (1.4) becomes complex since the saddle and anti-saddle come out in the phase,
which means that the density of prey must be large enough for survival.
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4.2. Hopf bifurcation

From Theorem 7, the local stability of P4 will change as the parameter s varies. Besides,
there exists an sH =

x4(−2 x4+m+1)
f x4+1 which satisfies Tr(JP4)|sH = 0 and then P4 becomes a non-hyperbolic

equilibrium which loses its stability. Meanwhile, it is easy to verify the transversality condition,

d
ds

Tr(JP4)|sH = −x4( f x4 + 1) < 0.

Therefore, there exists a Hopf bifurcation in a small neighbourhood of P4. This is summarized as
follows.

Theorem 8. Let s be the Hopf bifurcation parameter. When s crosses the threshold value sH =
x4(−2 x4+m+1)

f x4+1 , system (1.4) undergoes a non-degenerate Hopf bifurcation around P4.

There is at least one limit cycle which appears around P4 due to the occurrence of Hopf bifurcation.
The stability of the limit cycle is very significant for ecology systems and we can use the sign of the
Lyapunov number to determine it. In order to simplify the computation, we translate P4(x4, x4) to (1, 1)
with the following state variable scaling and time rescaling:

x̄ = x
x4
, ȳ =

y
x4
, τ = x2

4t, K̄ = 1
x4
,

m̄ = m
x4
, q̄ = q, f̄ = f x4, s̄ = s

x4
.

(4.1)

After dropping the bars and relabelling τ as t, we transform system (1.4) into

dx
dt = x2

(
1 − x

K

)
(x − m) − qx2y(1 + f y),

dy
dt = ys(x − y)(1 + f y).

(4.2)

Because system (4.2) has an equilibrium P̄4(1, 1) (i.e., P4(x4, x4) of (1.4)), we have q =
(K−1)(1−m)

K(1+ f ) > 0.
Then we can get another positive equilibrium P̄3(x̄3, x̄3), where x̄3 and x̄4 are positive distinct roots of
the equation

(1 − m)(K − 1) + (1 + f )
K(1 + f )

x2 +
(m + K)(1 + f ) − (1 − m)(K − 1)

K(1 + f )
x − m = 0.

By Vieta theorem [26], x̄3 x̄4 =
Km(1+ f )

−K f m+K f + f m+1 < 1. From the scalings (4.1), we see that the parameters
in system (4.2) satisfy

K > 1, m < 1, f > 0, s > 0,
Km (1 + f )

−K f m + K f + f m + 1
< 1. (4.3)

With q being replaced by (K−1)(1−m)
K(1+ f ) , system (4.2) becomes

dx
dt = x2

(
1 − x

K

)
(x − m) − (K−1)(1−m)

K(1+ f ) x2y(1 + f y),
dy
dt = ys(x − y)(1 + f y),

(4.4)

where the parameters K, m, f , and s satisfy (4.3). Therefore, we study the stability of the weak focus
P̄4(1, 1) for system (4.4) to acquire the stability of the weak focus P4(x4, y4) in system (1.4).
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The Jacobian matrix of system (4.4) at Ē4(1, 1) is

JĒ4 =

(
−2+m+K

K
(K−1)(−1+m)(1+2 f )

K(1+ f )

s(1 + f ) −s(1 + f )

)
.

It follows that
det(JP̄4) = −

(2K f m − K f + Km − f m − 1) s
K

and
Tr(JP̄4) = −

K f s + Ks − K − m + 2
K

.

With the help of (4.3), we see that det(JP̄4) > 0. Thus the necessary conditions on parameters for Hopf
bifurcation occurring around Ē4 are

m+K−2
K(1+ f ) > 0, K > 1, m < 1,
f > 0, s > 0, Km(1+ f )

−K f m+K f + f m+1 < 1.
(4.5)

Note that at s = sh f ,
m+K−2
K(1+ f ) , JP̄4 has a pair of conjugate pure imaginary eigenvalues. Moreover,

d
ds

Tr(JP̄4)|sh f = −( f + 1) < 0,

that is, the transversality condition holds.
Now translating P̄4(1, 1) to the origin (0, 0) by the change (x̂, ŷ) = (x − 1, y − 1) when s = sh f , we

rewrite (4.4) as 
dx̂
dt = ˆa10 x̂ + ˆa01ŷ + ˆa20 x̂2 + ˆa11 x̂ŷ + ˆa02ŷ2 + ˆa30 x̂3

+ ˆa21 x̂2ŷ + ˆa12 x̂ŷ2 + ˆa03ŷ3 + O(|x̂, ŷ|4),
dŷ
dt = ˆb10 x̂ + ˆb01ŷ + ˆb20 x̂2 + ˆb11 x̂ŷ + ˆb02û2 + ˆb30 x̂3

+ ˆb21 x̂2ŷ + ˆb12 x̂ŷ2 + ˆb03ŷ3 + O(|x̂, ŷ|4),

(4.6)

where

ˆa10 = −2+m+K
K , ˆa01 =

(K−1)(−1+m)(1+2 f )
K(1+ f ) , ˆa20 = 2 K+2 m−5

K ,

ˆa11 = 2 (K−1)(−1+m)(1+2 f )
K(1+ f ) , ˆa02 = 2 (K−1)(−1+m)(1+2 f )

K(1+ f ) , ˆa30 = −4+K+m
K ,

ˆa21 =
(K−1)(−1+m)(1+2 f )

K(1+ f ) , ˆa12 = 2 (K−1)(−1+m) f
K(1+ f ) , ˆa03 = 0,

ˆb10 = −2+m+K
K , ˆb01 = −−2+m+K

K , ˆb20 = 0,
ˆb11 =

(−2+m+K)(1+2 f )
K(1+ f ) , ˆb02 = −

(−2+m+K)(1+2 f )
K(1+ f ) , ˆb30 = 0,

ˆb21 = 0, ˆb12 =
(−2+m+K) f

K(1+ f ) , ˆb03 = −
(−2+m+K) f

K(1+ f ) .

We now make another transformation û = −x̂, v̂ = 1
√

D
( ˆa10 x̂ + ˆa01ŷ), and dτ =

√
Ddt to change

system (4.6) into  dû
dt = −v̂ + f (û, v̂),
dv̂
dt = û + g(û, v̂),
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where

D =
(2 − m − K)(2K f m − K f + Km − f m − 1)

K2(1 + f )
,

f (û, v̂) = ˆc20û2 + ˆc11ûv̂ + ˆc02v̂2 + ˆc30û3 + ˆc21û2v̂

+ ˆc12ûv̂2 + ˆc03v̂3 + O(|û, v̂|4),
g(û, v̂) = ˆd20û2 + ˆd11ûv̂ + ˆd02v̂2 + ˆd30û3 + ˆd21û2v̂

+ ˆd12ûv̂2 + ˆd03v̂3 + O(|û, v̂|4).

Here we have omitted the expressions of ĉi j and d̂i j.
Applying the formal series method in [25] and calculating the first Lyapunov number with the help

of MAPLE, we get

l1 =
1
8

p1 f 2 + p2 f + p3
√

Dp4

,

where

p1 = (2K − 1)2m3 + (4K3 − 32K2 + 33K − 8)m2

−(4K − 1)(K2 − 8 K + 6)m + K3 − 8K2 + 6K,

p2 = (4K2 − 3K)m3 + (4K3 − 30K2 + 24K − 1)m2

+(−3K3 + 24K2 − 12K − 6)m − K2 − 6K + 6,
p3 = (K2 − K)m3 + K(K − 1)(K − 7)m2

−(K − 1)(K2 − 6K − 2)m − 2K + 2,
p4 = (1 + 2 f )(−1 + m)(K − 1)K((2Km − K − m) f + Km − 1).

Under condition (4.5), we have p4 > 0. Thus the sign of l1 depends on that of

l11 = p1 f 2 + p2 f + p3.

Theorem 9. If l11 > 0 then system (4.4) exhibits a subcritical Hopf bifurcation around P̄4 at s = sh f

(see Fig. 2(a)) while if l11 < 0 then it exhibits a supercritical Hopf bifurcation around P̄4 at s = sh f

(see Fig. 2(b)).

When l11 = 0, we should consider the second Lyapunov number l2 to determine the stability of
the order-two weak focus. The expression of l2 is too complicated, so we just provide a numerical
example with (K, f ,m, s) = (2, 36281

21430 ,
2
5 ,

4286
57711 ). For such a set of parameter values, we have l1 = 0

and l2 = 0.4025314467 > 0, which means that system (4.4) undergoes a multiple Hopf bifurcation
of codimension two and there are two limit cycles (the inner one is stable and the outer one is unsta-
ble) bifurcated from P̄4(1, 1) when the bifurcation parameters ( f , s) = (36281

21430 ,
4286

57711 ) is disturbed (see
Fig. 2(c)).

4.3. Bogdanov-Takens bifurcation

From Theorem 6, system (1.4) admits that P̄ is a cusp of codimension 2 when m = m1, s = s∗,
q = q∗, and ϕ( f ) , 0. In the following, we show that Bogdanov-Takens bifurcation around P̄ can
occur.
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(a) A stable focus surrounded by an unsta-
ble limit cycle appears with (K, f ,m, s) =

( 211
100 ,

67
25 ,

4
10 ,

33
500 )

f = 16652/10873
s = 6189/87647

K = 211/100
m = 3/10

 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

y

(b) An unstable focus surrounded by sta-
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(c) An unstable focus surrounded by two
limit cycles (the inner one is stable and
the outer one is unstable) appear with
(K, f ,m, s) = (2, 36281

21430 + 2
5 ,

2
5 ,

4286
57711 −

241
25000 )

Figure 2. Hopf bifurcation around Ē4 of (4.4)

Theorem 10. Under the condition that P̄ is a cusp of codimension 2, we choose the parameters m and
s as bifurcation parameters. As the parameters (m, s) vary around (m1, s∗), system (1.4) experiences
Bogdanov-Takens bifurcation in a small neighborhood of P̄. Furthermore,

(i) Given ϕ( f ) > 0, system (1.4) exhibits a supercritical Bogdanov -Takens bifurcation, which ac-
companies with the appearance of a stable limit cycle originated from the supercritical Hopf
bifurcation followed by a stable homoclinic loop;

(ii) Given ϕ( f ) < 0, system (1.4) exhibits a subcritical Bogdanov -Takens bifurcation, which ac-
companies with the appearance of an unstable limit cycle originated from the subcritical Hopf
bifurcation followed by an unstable homoclinic loop.

Proof. We give the unfolding system of system (1.4),

dx
dt = x2(1 − x)(x − m1 − λ1) − qx2y(1 + f y),
dy
dt = y(s∗ + λ2)(x − y)(1 + f y),

(4.7)

where λ1 and λ2 are disturbed in a small neighbourhood of the origin. For convenience, we should find
the versal unfolding of system (4.7), which is helpful to study the change of the topological structure.
We make some transformations as follows to achieve it.

Firstly, use the transformation u1 = x − x̄ and u2 = y − x̄ to translate the positive equilibrium P̄ to
(0, 0) and transform system (4.7) into

du1
dt = ã00 + ã10u1 + ã01u2 + ã20u2

1 + ã11u1z2 + ã02u2
2 + O(|u1, u2|

3),
du2
dt = b̃10u1 + b̃01u2 + b̃20u2

1 + b̃11u1u2 + b̃02u2
2 + O(|u1, u2|

3),
(4.8)

where

ã00 = x̄3λ1 − x̄2λ1,

ã10 =
x̄(2x̄4 f + (−3 fλ1 − 4 f + 1)x̄3 + (8 fλ1 + 2 f − 2)x̄2 + (−4 fλ1 + 3λ1 + 1)x̄ − 2λ1)

2x̄ f + 1 − x̄2 f
,
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ã01 =
(x̄2 − 2x̄ + 1)x̄2(2x̄ f + 1)

x̄2 f − 2x̄ f − 1
,

ã20 =
5x̄4 f + (−3 fλ1 − 10 f + 2)x̄3 + (7 fλ1 + 4 f − 5)x̄2 + (−2 fλ1 + 3λ1 + 2)x̄ − λ1

2x̄ f + 1 − x̄2 f
,

ã11 =
2x̄(x̄2 − 2x̄ + 1)(2x̄ f + 1)

x̄2 f − 2x̄ f − 1
,

ã02 =
(x̄2 − 2x̄ + 1)x̄2 f

x̄2 f − 2x̄ f − 1
,

b̃10 =
(2x̄4 f + (− f 2λ2 − 4 f + 1)x̄3 + (2 f 2λ2 − fλ2 + 2 f − 2)x̄2 + (3 fλ2 + 1)x̄ + λ2)x̄

2x̄ f + 1 − x̄2 f
,

b̃01 = −b̃10,

b̃20 = 0,

b̃11 =
(2x̄4 f + (− f 2λ2 − 4 f + 1)x̄3 + (2 f 2λ2 − fλ2 + 2 f − 2)x̄2(3 fλ2 + 1)x̄ + λ2)(2x̄ f + 1)

(x̄ f + 1)(x̄2 f − 2x̄ f − 1)
,

b̃02 = −b̃11.

Next, letting u3 = u2, u4 = du2
dt , we transform system (4.8) into

du3
dt = u4,

du4
dt = c̃00 + c̃10u3 + c̃01u4 + c̃20u2

3 + c̃11u3u4 + c̃02u2
4 + O(|u3, u4|

3),
(4.9)

where

c̃00 = ã00b̃10, c̃10 = b̃11ã00 − ã10b̃01 + ã01b̃10, c̃01 = ã10 + b̃01,

c̃20 = −
ã10b̃10b̃02 − ã01b̃10b̃11 − ã20b̃2

01 + ã11b̃01b̃10 − ã02b̃2
10

b̃10
,

c̃11 = −
2 ã20 ˜b01 − ã11 b̃10 − 2 b̃02 b̃10 + b̃11 b̃01

b̃10
,

c̃02 =
ã20 + b̃11

b̃10
.

In order to remove the c̃02u2
4 term in system (4.9), we make a new time variable τ by dt = (1 −

c̃02u3)dτ and let u5 = u3, u6 = u4(1 − c̃02u3). We still denote τ as t to get from (4.9) that
du5
dt = u6,

du6
dt = d̃00 + d̃10u5 + d̃01u6 + d̃20u2

5 + d̃11u5u6 + O(|u5, u6|
3),

(4.10)

where

d̃00 = c̃00, d̃10 = c̃10 − 2c̃02c̃00, d̃01 = c̃01,

d̃20 = c̃20 − 2c̃10c̃02 + c̃00c̃2
02, d̃11 = c̃11 − c̃01c̃02.

Notice that d̃20 → −
(x̄−1)2(2x̄ f +1)x̄4( f +1)

(x̄2 f−2x̄ f−1)2 < 0 when (λ1, λ2) → (0, 0). Then we employ the transforma-
tion

u7 = u5, u8 =
u6√
−d̃20

, τ =

√
−d̃20t
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to change d̃20 into −1. Meanwhile with this transform and relabelling τ as t, system (4.10) becomes

du7
dt = u8,

du8
dt = ẽ00 + ẽ10u7 + ẽ01u8 − u2

7 + ẽ11u7u8 + O(|u7, u8|
3),

(4.11)

where

ẽ00 = −
d̃00

d̃20
, ẽ10 = −

d̃10

d̃20
, ẽ01 =

d̃01√
−d̃20

, ẽ11 =
d̃11√
−d̃20

.

Now eliminate u7 by the transformation u9 = u7 −
ẽ10
2 , u10 = u8 to change system (4.11) into

du9
dt = u10,

du10
dt = f̃00 + f̃01u10 − u2

9 + f̃11u9u10 + O(|u9, u10|
3),

(4.12)

where
f̃00 = ẽ00 +

1
4

ẽ2
10, f̃01 = ẽ01 +

1
2

ẽ10ẽ11, f̃11 = ẽ11.

Lastly, to obtain the versal unfolding of (4.7), we need to make ˜f11 be 1. Since f̃11 →
x̄ϕ( f )

(x̄ f +1)(1−x̄2 f +2x̄ f ) , 0 as (λ1, λ2)→ (0, 0), we can perform the transformation

x = − ˜f11
2
u9, y = f̃ 3

11u10, τ = −
t

f̃11
. (4.13)

Relabelling τ as t, we can rewrite (4.12) as

dx
dt = y,
dy
dt = g̃00 + g̃01y + x2 + xy + O(|x, y|3),

(4.14)

where
g̃00 = − ˜f00 ˜f11

4
, g̃01 = − ˜f01 ˜f11.

With the assistance of MAPLE,

∂(g̃00, g̃01)
∂(λ1, λ2)

∣∣∣∣
λ1=λ2=0

=
ϕ5( f )(x̄2 f − 2x̄ f − 1)2

( f + 1)4(x̄ f + 1)4(x̄ − 1)5(2x̄ f + 1)3 x̄6 , 0, (4.15)

which implies that g̃00 and g̃10 are independent parameters. Therefore, system (4.14) is the versal
unfolding of system (4.7) such that both have the same topological structure. As g̃00 and g̃10 vary, the
topological structure of system (4.14) will change and system (1.4) will undergo Bogdanov-Takens
bifurcation. Noticing that there exists time scale t = − ˜f11τ in the transformation (4.13), we have the
following conclusions:

(i) if ϕ( f ) > 0, then − f̃11 < 0. Thus system (1.4) undergoes a supercritical Bogdanov-Takens bifurca-
tion of codimension 2, which consists of saddle-node bifurcation of codimension 1, supercritical
Hopf bifurcation of codimension 1, and homoclinic bifurcation of codimension 1.

(ii) if ϕ( f ) < 0, then − f̃11 > 0. Thus system (1.4) undergoes a subcritical Bogdanov-Takens bifur-
cation of codimension 2, which consists of saddle-node bifurcation of codimension 1, subcritical
Hopf bifurcation of codimension 1, and homoclinic bifurcation of codimension 1.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10977–10999.



10993

�

Before drawing the phase portraits, we need to acquire the expression of the bifurcation curves
within Bogdanov-Takens bifurcation in the (λ1, λ2)-plane.

By the conclusion in Bogdanov [27] and Takens [28] (see also Chow et al. [29] and Perko [24]), we
can obtain the following local representations of the bifurcation curves.

(i) The saddle-node bifurcation curve S N = {(g̃00, g̃01) : g̃00 = 0, g̃01 , 0};
(ii) the Hopf bifurcation curve H = {(g̃00, g̃01) : g̃01 =

√
−g̃00, g̃00 < 0};

(iii) the homoclinic bifurcation curve HL = {(g̃00, g̃01) : g̃01 = 5
7

√
−g̃00, g̃00 < 0}.

In the case of repelling Bogdanov-Takens bifurcation (ϕ( f ) > 0), we will use λ1 and λ2 to describe
the bifurcation curves S N, H, and HL. By (4.15) and the Implicit Function Theorem, we get the
expressions of λ1 and λ2 in terms of ˜g00 and ˜g10,

λ1 = a1g̃00 + a2g̃10 + O(| g̃00, g̃10 |), λ2 = b1g̃00 + b2g̃10 + O(| g̃00, g̃10 |), (4.16)

where

a1 =

x̄6(x̄3 f 2 + x̄3 f + x̄2 f + x̄2)(x̄ f + 1)3( f + 1)2(2x̄3 f − 4x̄2 f
+x̄2 + 2x̄ f − 2x̄ + 1)2

(x̄2 f − 2x̄ f − 1)(x̄ − 1)(2x̄5 f 2 − 4x̄4 f 2 + 4x̄4 f
−10x̄3 f + x̄3 + 2x̄2 f − 4x̄2 + x̄)4

,

a2 = 0,

b1 =
b̄1 x̄3( f + 1)2( f x̄ + 1)(x̄ − 1)2(2 f x̄ + 1)

ϕ4( f )(1 − f x̄2 + 2 f x̄)
,

b2 =
x̄2(x̄ − 1)2( f + 1)(2x̄ f + 1)

(1 − x̄2 f + 2x̄ f )ϕ( f )
> 0,

b̄1 = 16x̄8 f 4 − (68 f 4 − 50 f 3)x̄7 + (76 f 4 − 246 f 3 + 48 f 2)x̄6

−(12 f 4 − 330 f 3 + 284 f 2 − 17 f )x̄5

−(8 f 4 + 114 f 3 − 436 f 2 + 131 f − 2)x̄4

−(4 f 3 + 188 f 2 − 231 f + 21)x̄3 + (12 f 2 − 113 f + 43)x̄2

+(12 f − 23)x̄ + 3.

For the saddle-node bifurcation curve S N, let Λ1 , ˜g00(λ1, λ2) = 0. Due to

∂Λ1

∂λ1

∣∣∣∣∣∣
λ=0

=
ϕ4( f )(x̄2 f − 2x̄ f − 1)

x̄4(x̄ − 1)3(2x̄ f + 1)2( f + 1)3(x̄ f + 1)4 , 0,

turning to the Implicit Function Theorem, there exists a unique function λ1(λ2), which satisfies λ1(0) =

0 and Λ1(λ1(λ2), λ2) = 0. It follows that
λ1(λ2) = 0.

Furthermore, on the curve Λ1 = 0, from (4.16), we know λ2 = b2 ˜g10 + O(| ˜g10 |
2), which implies that

λ2 > 0 if ˜g10 > 0 and λ2 < 0 if ˜g10 < 0. Therefore, we acquire

S N+ = {(λ1, λ2)|λ1 = 0, λ2 < 0} and S N− = {(λ1, λ2)|λ1 = 0, λ2 > 0}.
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For the Hopf bifurcation curve H, let Λ2 , ˜g00(λ1, λ2) + ˜g10
2(λ1, λ2) = 0. Due to

∂Λ2

∂λ1

∣∣∣∣
λ=0

=
ϕ4( f )(x̄2 f − 2x̄ f − 1)

x̄4(x̄ − 1)3(2x̄ f + 1)2( f + 1)3(x̄ f + 1)4 , 0,

there exists a unique function λ1(λ2), which satisfies λ1(0) = 0 and Λ2(λ1(λ2), λ2) = 0. Then

λ1(λ2) =
( f x̄2 − 2 f x̄ − 1)( f + 1)( f x̄ + 1)4

ϕ2( f )(1 − x̄)
λ2

2 + O(| λ2 |
2).

Furthermore, on the curve Λ2 = 0, from (4.16), we know λ2 = b2 ˜g10 + O(| ˜g10 |
2), which implies that

λ2 < 0 if ˜g10 < 0. Therefore, we get

H = {(λ1, λ2)
∣∣∣∣λ1 =

( f x̄2−2 f x̄−1)( f +1)( f x̄+1)4

ϕ2( f )(1−x̄) λ2
2 + O(| λ2 |

2)}.

For the Homoclinic bifurcation curve HL, let Λ3 ,
25
49 ˜g00(λ1, λ2) + ˜g10

2(λ1, λ2) = 0. Due to

∂Λ3

∂λ1

∣∣∣∣∣∣
λ=0

=
25
49

ϕ4( f )(x̄2 f − 2x̄ f − 1)
x̄4(x̄ − 1)3(2x̄ f + 1)2( f + 1)3(x̄ f + 1)4 , 0,

there exists a unique function λ1(λ2), which satisfies λ1(0) = 0 and Λ3(λ1(λ2), λ2) = 0. Then

λ1(λ2) =
49
25

( f x̄2 − 2 f x̄ − 1)( f + 1)( f x̄ + 1)4

ϕ2( f )(1 − x̄)
λ2

2 + O(| λ2 |
2).

Moreover, on the curve Λ3 = 0, from (4.16), we know λ2 = b2 ˜g10 + O(| ˜g10 |
2), which implies that

λ2 < 0 if ˜g10 < 0. Therefore,

HL =

{
(λ1, λ2)

∣∣∣∣∣∣λ1 =
49
25

( f x̄2 − 2 f x̄ − 1)( f + 1)( f x̄ + 1)4

ϕ2( f )(1 − x̄)
λ2

2 + O(| λ2 |
2)
}
.

Analogously, the Bogdanov-Takens bifurcation curve in terms of λ1 and λ2 can be described.
To end this section, we present two sets of numerical simulations to verify the theoretical results

with the help of MATLAB.
First, let x̄ = 0.5 and f = 3. Then m1 = 4

13 , q∗ = 1
13 , s∗ = 4

65 , and ϕ( f ) = −57
8 < 0. Therefore,

system (1.4) undergoes a repelling Bogdanov-Takens bifurcation. With the disturbance of (λ1, λ2) in a
small neighborhood of (0, 0), the repelling Bogdanov-Takens bifurcation diagram and its local phase
portraits are shown in Fig 3.

Next, let x̄ = 0.1 and f = 8. Then m1 = 1
28 , q∗ = 9

28 , s∗ = 13
280 , and ϕ( f ) = 1.1988 > 0. Therefore,

system (1.4) undergoes an attracting Bogdanov-Takens bifurcation. With the disturbance of (λ1, λ2) in
a small neighborhood of (0, 0), the attracting Bogdanov-Takens bifurcation diagram and its local phase
portraits are illustrated by Fig. 4.

5. Conclusion

In the present study, the dynamical behavior of a Leslie-Gower model with linear (Holling Type
I) functional response and with both Allee effect and fear effect in prey is investigated. Although
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(a) Bifurcation diagram

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 3
s = 4/65

q = 1/13
m = 4/13 + 0.01
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(b) There is no positive equilibrium when (λ1, λ2) = (0.01, 0)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 3
s = 4/65 − 0.029

q = 1/13
m = 4/13 − 0.01
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(c) There are an unstable focus and a saddle when (λ1, λ2) =

(−0.01,−0.029)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 3
s = 4/65 − 0.021

q = 1/13
m = 4/13 − 0.01
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(d) There is an unstable limit cycle with a hyperbolic stable
focus and a saddle when (λ1, λ2) = (−0.01,−.021)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 3
s = 4/65 − 0.0189

q = 1/13
m = 4/13 − 0.01
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(e) There is a homoclinic loop consists of unstable homo-
clinic and a saddle when (λ1, λ2) = (−0.01,−0.0189)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 3
s = 4/65 − 0.018

q = 1/13
m = 4/13 − 0.01
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(f) There are a hyperbolic stable focus and a saddle when
(λ1, λ2) = (−0.01, 0.018)

Figure 3. Repelling Bogdanov-Taken bifurcation of (4.7)

the model is not defined when the density of the prey is zero, the origin is an attractor with the help
of the blow-up method and the technique of time scaling. Correspondingly, prey will die out at low
densities. Moreover, solutions are bounded. Based on the work of Korobeinikov [30] that system
(1.4) admits a unique globally asymptotically stable positive equilibrium when m = 0 and f = 0,
qualitative analysis reveals that Allee effect results in complex dynamics. The number and stability of
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(a) Bifurcation diagram

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 8
s = 13/280

q = 9/28
m = 1/28 + 0.001
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(b) There is no positive equilibrium when (λ1, λ2) =

(0.001, 0)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 8
s = 13/280 + 0.003

q = 9/28
m = 1/28 − 0.001
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(c) There are a hyperbolic stable focus and a saddle when
(λ1, λ2) = (−0.001, 0.003)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 8
s = 13/280 + 0.0015

q = 9/28
m = 1/28 − 0.001
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(d) There is a stable limit cycle with a hyperbolic unstable
focus and a saddle when (λ1, λ2) = (−0.001, 0.0015)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 8
s = 13/280 + 0.0011

q = 9/28
m = 1/28 − 0.001
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(e) There are a stable homoclinic orbit and a saddle when
(λ1, λ2) = (−0.001, 0.0011)

x ’ = x2 (1 − x) (x − m) − q x2 y (1 + f y)
y ’ = y s (x − y) (1 + f y)                  

f = 8
s = 13/280 + 0.0001

q = 9/28
m = 1/28 − 0.001
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(f) There are a hyperbolic unstable focus and a saddle when
(λ1, λ2) = (−0.001, 0.0001)

Figure 4. Attracting Bogdanov-Takens bifurcation of (4.7)

equilibria in system (1.4) depend on the Allee constant. The model has two boundary equilibria, one
an unstable node and the other a saddle which means that the prey population will not fully reach the
environmental capacity. There is a cusp coexistence equilibrium of codimension 2 or 3 if Theorem 6
holds. Furthermore, with the help of the formal series method in [25], we calculated the order of the
weak focus to determine the stability of limit cycles bifurcated from Hopf bifurcation, which means
that there is the possibility of periodic distributions of prey and predator populations. Choosing the
Allee constant and intrinsic growth rate of the predator as bifurcation parameters and by means of a
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series of near-identity transformations, it was demonstrated that system (1.4) undergoes Bogdanov-
Takens bifurcation of codimension 2 through calculating the versal unfolding.

Compared to the work of González-Olivares et al. [23], we focus on the cost of the anti-predation
response in the prey reproduction. Our investigation indicates that the cost of fear still does not chang
the stability of equilibria. This is similar to the result that the stability of positive equilibrium will not
be influenced and the system still undergoes analogous bifurcation.

Different from the work of Sasmal [15], we considered a Leslie-Gower model where the carry-
ing capacity of the predator relies on the abundance of prey. The model has abundant bifurcation
phenomena. Through rigorous mathematical analysis, as the Allee constant varies, the model experi-
ences saddle-node bifurcation and there are at most two equilibria in the phase diagram. Meanwhile,
the model can undergo more complex bifurcation, Bogdanov-Takens bifurcation, than the traditional
predator-prey model. Further, the model undergoes subcritical or supercritical Hopf bifurcation, which
means that there is a stable or unstable limit cycle around a positive equilibrium. The model can even
exhibit multiple Hopf bifurcations by a set of numerical simulations when the first Lyapunov number
is zero.
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